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Abstract

The finite element method FEM is an important tool used in various areas of science, where partial
differential equations need to be discretized. The problem’s domain is approximated by means of a
geometric element partition, polyhedrons or polygons, with well defined properties. Then, a standard
or reference element is associated with each distinct geometric figure present in the partition. All the
operations to be made in the deformed elements are loaded instead of this in the reference element
by means of an affine transformation. Thus, for example, instead of defining a numerical integration
rule for each deformed element, one defines a single integration rule in the reference element, and
the calculation is performed employing the affine transformation. In the case of integration of the
equations, using the Jacobian of the transformation, too.

In this paper we make a rigorous analysis of the formal mathematical aspects of mapping between
the finite geometric elements of zero, one, two, and three dimensions, commonly employed in the
finite element theory. We show that this kind of mapping preserves all the geometric properties
present between the reference element and the deformed element, alike the same number of vertices,
edges, faces, and its dimension. c©2016 All rights reserved.
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1. Introduction

Nowadays, the use of the finite element method has expanded into a large number of applications
in different areas of knowledge. The use of finite element method has grown steeply over the past
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decades covering most - if not all - areas of the Exact Sciences. The advantage to using FEM as a
method of numerical interpolation against the use of analytical solutions lies in the ease of imple-
menting in different programming languages, as shown in Becker et al. [3]. Another advantage is
that, with the same program, it is possible to obtain approximate solutions for different geometries,
including the more complicated ones, and different combinations of boundary conditions without
having to reprogram the method.

A geometric element in the usual sense is defined by a simple geometric figure, such as a closed
interval in 1D, one triangle or quadrilateral in 2D, a tetrahedron, hexahedron, pyramid, and penta-
hedron in 3D, as defined in Ayala et al. [1, 2, 6]. These elements are introduced with the objective of
providing an interpolation for the solution in a small portion of the domain. Therefore, a polynomial
space of certain degree is associated to each element. All of it is commonly constructed by the FEM
defining certain points within the element called nodes and associating polynomials of certain degree
to them, Zienkiewicz et al. [8]. The polynomials defined like this constitute a basis set. Thus, the
interpolation space of the element is generated by the combination of basic polynomials. Basically,
the finite element is composed by the geometric element plus the interpolation space associated.

From this small brick or interpolating unit the solution is estimated by juxtaposition in whole
domain according to the systematics of the FEM method. There is an extensive and good literature
that teaches the basics of FEM method. For a detailed description of the polynomial approximation
of a family of hierarchical finite elements see Ayala et al. [1, 6].

In this work we make a rigorous mathematical study to define accurately which is the mapping
used to obtain the deformed finite element that has all the good properties for the correct application
of the method.

2. Mathematical description of the geometric mapping

It is possible to define the topological space of the geometric element as the convex wrapping of
certain special points, the nodes. Let n be a positive integer and A ⊂ <n.

Definition 2.1. A is said to be a convex set if for each x, y ∈ A we have

t x+ (1− t) y ∈ A , 0 ≤ t ≤ 1.

That is, A contains the segment joining any two points in A.

Definition 2.2. The convex hull of A, denoted conv A, is defined as the smallest convex set of <n
containing A.

Remark 2.3. From the above definition it follows that the convex hull of A is given by:

conv A = ∩F.

where, F is the family of all convex sets in <n containing the set A.

Definition 2.4. Geometric elements of reference:

Pt = conv {0}.

L = conv {−1, 1}.

T = conv {(0, 0), (1, 0), (0, 1)}.
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Q = conv {(−1,−1), (1,−1), (1, 1), (−1, 1)}.

H = conv {(−1,−1,−1), (1,−1,−1), (1, 1,−1), (−1, 1,−1),

(−1,−1, 1), (1,−1, 1), (1, 1, 1), (−1, 1, 1)}.

T e = conv {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.

P r = conv {(0, 0,−1), (1, 0,−1), (0, 1,−1), (0, 0, 1), (1, 0, 1), (0, 1, 1)}.

P i = conv {(−1,−1, 0), (1,−1, 0), (1, 1, 0), (−1, 1, 0), (0, 0, 1)}.

This nomenclature refers to a point, line, triangle, quadrilateral, hexahedron, tetrahedron, prism and
pyramid, respectively.

In fact it is possible to demonstrate the following result.

Proposition 2.5. The convex hull of A ⊂ <n is the set of all convex combinations of points in A,
that is,

conv A =

{
k∑
j=1

ajxj : xj ∈ A and such that
k∑
j=1

aj = 1

}

Definition 2.6. Let X and Y be two topological spaces. A bijective and continuous application
f : X → Y is said to be a homeomorphism if the function f−1 : Y → X is continuous.

Remark 2.7. Note that each geometric reference element is a compact set.

Remark 2.8. Consider the function f : (L−{1})→ S1 defined by f(x) = e2π i x. Clearly f is bijective
and continuous. Although the application f−1 is not continuous in (1, 0). Indeed, there are points
on the circle S1 near to the point (1, 0) separated of f−1 by a distance greater than 1

2
. To see this

consider the points (1−ε,+
√

(1− (1− ε)2) and (1−ε,−
√

(1− (1− ε)2) the circle with ε sufficiently
small.

In this work we are interested in the study of the finite element as geometric entities that are con-
structed from deformations obtained in the geometric elements of reference declared in the Definition
2.4. In particular, it is desired that the topology of the deformed geometry elements be determined by
the topology of its referential. So it is necessary and sufficient to consider the functions of deformation
as homeomorphisms, Lima [7].

In particular the topological varieties obtained are compacts and the topological dimension of
any deformed geometric element EG obtained by the homeomorphism f equals the dimension of the
variety with boundary f−1(EG). In fact, let (U, h) be a chart of EG, that is, U is an opening of the
topology of EG and h,

h : U → h(U) ⊂ <s

is a homeomorphism for any s ∈ {1, 2, 3}. Then,

(f−1(U), h ◦ f)

is a chart for f−1(EG). Indeed, f−1(U) is an opening of the referential and

h ◦ f : f−1(U)→ h(U)

is a homeomorphism, Figure 1. Thus, the dimensions coincide.
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Figure 1: Chart of the deformed geometric element EG.

Observe that this is a consequence of the definition of the possible deformations that have been
considered, the geometric transformations, which will be explicated below in details. Note that, for
example, the circle S1 can be constructed via one homeomorphism, from the boundary of a triangle
or a rectangle or in general from a planar polygonal of k−sides, for each k ≥ 3. Since we don’t want
that type of anomaly, we consider only certain subspaces of homeomorphism: those that preserve the
essential characteristics of the reference elements. More precisely, the idea is to consider the classes
of differentiable and bijective functions with inverse differentiable, that is, global diffeomorphisms
that deform the reference geometric elements in surfaces which border is contained in <3, keeping in
essence the vertices number.

Denote by O any reference geometric element and f(O) the deformed element in <3, constructed
from the diffeomorphism f

f : O ⊂ <s → f(O) ⊂ <3 , s = 1, 2, 3,

where s depends on the dimension of O. Hereafter, an appropriated mathematical object is used to
define vertices, edges, faces, and the inside of a deformed element f(O). In the first place, for x ∈ O
is introduced the concept of the Tangent Cone generated by x, and denoted by Cx as follows:

Cx =
{
γ̇(0)|γ : (−ε, ε)→ O, continuous, differentiable in t = 0, and γ(0) = x

}
.

In words, the Cx cone generated by x, is the set which elements are the derivatives in t = 0 from the
curves γ (vectors) differentiable in 0, continuous in its domain, that go through x, that is, γ(0) = x,
is such that exists a number ε non negative, sufficiently small in such a way that the image γ(−ε, ε)
is contained in the reference element O. It is important to observe the following:

v ∈ Cx ⇔ λ v ∈ Cx,∀λ  0.

A question that justified the cone name. A tangent cone is said Proper Cone if it does not
contain a nontrivial subspace1 , that is, different from {0}.

1Proper subspaces of R2 can be {0} and lines through the origin. Proper subspaces of R3 can be {0}, lines and
planes through the origin.
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Figure 2: Tangent cone to vertex x.

Example 2.9. To elucidate some ideas take as an example the triangle T .

• Case 1: In case x ∈
◦
T (interior of T ) then Cx = Tx<2, that is, the tangent cone coincides with

the tangent plane in the point x ∈ <2, the proper <2.

• Case 2: If x belongs to an edge of T but is not a vertex, then, Cx is a semiplane of Tx<2.

• Case 3: If x is a vertex then Cx is a proper cone, that is, Cx does not contain any nontrivial sub-
space of Tx<2. Indeed, this cone is generated from the linear combinations with non negatives
coefficients of the vectors constructed with the triangle sides whose intersection determines the
vertex itself, Figure 2.

Example 2.10. In case of tetrahedron:

• Case 1: If x ∈
◦
Te then Cx = Tex<2, that is, the tangent cone coincides with all the space at

x ∈ <3 (the <3 itself).

• Case 2: If x belongs to a face of Te but it is not within an edge or vertex, then Cx is a semispace
of the Tex<3, a plane.

• Case 3: If x belongs to an edge of Te but it is not a vertex of Te, then Cx is a cone that contains
a single subspace of dimension 1 of Tex<3, a straight line. Indeed, this cone is constructed with
non negative linear combinations of vetoers starting from x and that belongs to faces whose
intersection determines the edge in question and arbitrary coefficients of any non null vectors
that belongs to this edge.

• Case 4: If x is a vertex of Te, then Cx is a proper cone, that is, it only contains the subspace
{0}. This cone is generated from the linear combinations with non negative coefficients of three
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Figure 3: Cone elements in x and in f(x).

vectors constructed with the three edges whose intersection determines the vertex in question.

Since f(O) is a compact surface with boundary, it is possible to define in analogous way to Cx
the tangent cone to f(O) in point f(x) in a natural manner, as it follows.

Cf(x) =
{

( ˙f ◦ γ)(0) | γ : (−ε, ε)→ O, continuous, differentiable in t = 0, and γ(0) = x
}
.

Next, Cf(x) is a set of elements that are initiated in f(x) and that are obtained from tangent
vectors at continuous curves the type f ◦ γ over an interval (−ε, ε) and whose derivative exist in
t = 0, Figure 3.

In others words, the cone in f(x) is an image from the cone in x by the Jacobian transformation,
or

Cf(x) = Jac(f)(x)(Cx),

where

Jac(f)(x) = [Df(x)]cancan

and the linear transformation

Df(x) : Tx<3 → Tx<3

is the derivative of f in point x, that is, the linear approximation of f in x. From the definition of
derivative it follows:

v ∈ Tx<s ⇒ Df(x)(v) =
d

dx
f(γ(t))ct=0,

when γ(t) is justly a continuous curve defined on the interval of type (−ε, ε) differentiable in t = 0
and such that γ(t) = v. That proves that the Jacobian of f carry any tangent cone in a tangent
cone. Once that f : O → f(O) admits to being a diffeomorphism, in particular we conclude that for
each x ∈ O,

Df(x) : Tx<s → Tf(x)f(O)
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is an isomorphism between tangent subspaces. In particular, if S is a subspace of k dimension of
Tx<s, 0 ≤ k ≤ s, then Df(x)(S) is a subspace of k dimension. Consequently, if f is a diffeomorphism,
for each x ∈ O it follows:

• Case 1: If x ∈
◦
O

Consider f(O) a topological space with the induced topology from <3, then

Cx = Tx<s ⇒ Df(x)(Tx<s) = Tf(x)f(O)⇒ f(x) ∈
◦

f(O).

• Case 2: If x ∈ ∂O then the following situations are given:
◦ for s = 1
C−1 and C1 are semi-straight and the same happens with Cf(−1) and Cf(1).
◦ for s = 2

1. if x belongs to interior of an edge A of O. Then Cx is a semi-plane of Tx<2 with
support the straight line LA generated by the edge A. Next, Cf(x) is a semi-plane of
Tf(x)f(O) with support to the subspace Df(x)(LA);
2. if x is a vertex, in this case the proper cone Cx is taken by Df(x) in the proper cone
Cf(x). Indeed, if Cf(x) contains one nontrivial subspace then Df−1(f(x))(Cf(x)) = Cx
would contain one nontrivial subspace;

◦ for s = 3
1. if x belongs to the inside of the face F of O. Then Cx is one semi-space of Tx<3

and contains a single bidimensional subspace S. Then, Cf(x) is one semi-space that is
contained in one of the connected components of Tf(x)f(O) that determines the subspace
Df(x)(S);
2. if x belongs to the interior of one edge A of O. Then, Cx is one cone that contains
a single unidimensional subspace LA, the one generated by the edge A. Soon, the same
happens with Cf(x), that is, it is one cone in Tf(x)f(O) that contains a single unidimen-
sional subspace Df(x)(LA);
3. if x is one vertex. In this case, both Cx and Cf(x) are proper cones. Indeed, neither
one of two cones contains nontrivial subspaces.

Based on previous deductions, it follows that the admissible classes of deformations of the refer-
ence geometric element are exactly the diffeomorphism classes.

Definition 2.11. Let f : O ⊂ <s → f(O) ⊂ <3 be a geometric element.

(i) One point x ∈ f(O) is said to be a vertex if, Cx ⊂ Txf(O) is a proper cone.

(ii) A curve a : [0, 1]→ O is said to be an edge of f(O),

(a) a(0) and a(1) are vertices;
(b) for each point x in the inside of an edge A, the tangent cone Cx contains a single subspace

of Txf(O) of the dimension 1.

(iii) A set F ⊂ f(O) is said to be a face of f(O) if:

(a) for each point x ∈
◦
F , the tangent cone Cx contains a single subspace of dimension 2;

(b) ∂F consists of exactly n− vertices and n− edges, in the case of a n− polygonal face1 .

With these premises in mind, the following result has been proven.

1A triangle face have 3 vertices and 3 edges. One quadrilateral face have 4 vertices and 4 edges, etc.
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Theorem 2.12. Let O be a reference element and f : O ⊂ <s → f(O) ⊂ <3. Then, the diffeomor-
phism f takes vertex by vertex, edge by edge, face by face and volume by volume. In particular, the
cardinality of vertices, edges, and faces of the elements O and f(O) coincide.

Remark 2.13. Despite that both Q and Te have the same cardinality of vertices, there is no ambi-
guity with the previous definition. This is due to the fact that the reference elements belong to the
environment with spaces of different dimensions, dimension that is kept by the diffeomorphism f ,
as explained previously. Obviously, f is a homeomorphism. In other words, f(Q) cannot be diffeo-
morphic to g(Te) to any diffeomorphisms f and g, because of the theorem of invariance of Brouwer [5].

Example 2.14. We finished illustrating different types of finite elements where such geometric
transformations are present.

(1) Standard elements. Deformed elements like the image of a linear transformation. The inverse
is also a linear transformation. For elements with straight edges and flat faces this is a common
transformation in standard finite element programs. They are known as Affine Transformation.

(2) Isoparametric elements. The T transformation is defined using the shape functions associated
with the vertices of the elements. Then, the deformed element is defined as follows:

T (x) =
n∑
i=1

viψi(x),

where vi represents the vertices of the deformed element, i = 1, 2, ..., n. The shape functions
of the reference elements are obtained satisfying ψi(xj) = δij, where the last symbol is the
Cronecker’s delta. Thus the functions are linear over the element’s edge. A less trivial example
is shown in Ayala et al. [2] for the pyramid element of high p− order with rational terms.

(3) Curved elements. In general the transformation is non-linear and can be given by a polynomial
of higher degree. Sometimes this kind of element can be obtained from standard reference ele-
ments, as given in Bernadou [4]. This reference presented specific mathematically well prepared
examples to demonstrate all the necessary properties. Curved elements may also be isoparametric
elements (or not).
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