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Abstract

By using the Riccati technique, which reduces the higher order dynamic equations to a Riccati dynamic inequality, we will
establish some new sufficient conditions for the oscillation of half-linear/Emden-Fowler neutral dynamic equation of the form

(r(ρ)((x(ρ) + p(ρ)x(τ(ρ)))∆)γ)∆ + q(ρ)xa(δ(ρ)) + v(ρ)xβ(η(ρ)) = 0,

on a time scale T, where γ, a, and β are quotients of odd positive integers. An example with particular equation is constructed
in consistent to the above equation and oscillation criteria are established for its solution.
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1. Introduction and background

The oscillation theory provides significant insights into the dynamics of solutions of problems modeled
with equations in various areas of engineering and science. In recent years, the study of the oscillation
theory of fractional order difference equation has become remarkably constructive, advancing rapidly and
being the focus of research for many scientists; for instance, the reader can refer to [14, 20] for models
where oscillation and/or delay actions may be formulated by means of cross-diffusion terms.

In the recent two decades, many authors have studied the oscillation of the second order nonlinear
neutral delay dynamic equations on time scales and established several sufficient conditions for different
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types of equations. For completeness, we review some relevant works. In [23], Saker investigated the
oscillation of second order neutral delay dynamic equations of Emden-Fowler type of the form[

r(ρ)
(
x(ρ) + p(ρ)x(τ(ρ))

)∆]∆
+ q(ρ)

∣∣x(δ(ρ))∣∣γsign(x(δ(ρ))) = 0,

on a time scale T, where, γ > 1, r, p, q, τ, and δ are real-valued functions defined on T with τ(ρ) 6 ρ,

δ(ρ) 6 ρ for all ρ ∈ T and lim
ρ→∞ τ(ρ) = lim

ρ→∞ δ(ρ) = ∞,
∫∞
ρ0

1
r(ρ)

1
γ∆ρ = ∞, r∆(ρ) > 0 and 0 6 p(ρ) < 1.

Further in [24] and under similar assumptions, the same author studied the oscillation of the neutral delay
dynamic equation of the form[

r(ρ)
(
[x(ρ) + p(ρ)x(τ(ρ))]∆

)γ]∆
+ q(ρ)xγ(δ(ρ))) = 0,

where γ > 0 is a quotient of odd positive integers. The results represented further improvements for
those given for superlinear and sublinear neutral dynamic equations.

Thandapani and Piramanantham [28] considered the oscillation of second order nonlinear neutral
dynamic equations on time scales of the form[

r(ρ)
(
(x(ρ) + p(ρ)x(ρ− τ))∆

)γ]∆
+ q(ρ)xβ(ρ− δ) = 0, ρ ∈ T,

where T is a time scale. They obtained their results under the conditions γ > 1 and β > 0 which are
quotients of odd positive integers, τ, δ are fixed nonnegative constants, r, p, q are real valued positive
rd-continuous functions defined on T such that 0 6 p < 1. The results are proved for the cases

∫∞
ρ0

1
a(ρ)

1
γ

∆ρ =∞ and
∫∞
ρ0

1
a(ρ)

1
γ

∆ρ <∞. (1.1)

In [27], Sun et al. worked on the oscillation of a second order quasiliniear neutral delay dynamic
equation on a time scales of the form[

r(ρ)
([

x(ρ) + p(ρ)x(τ(ρ))
]∆)γ]∆

+ q1(ρ)xα(τ1(ρ)) + q2(ρ)xβ(τ2(ρ)) = 0,

on a time scale T, where α,β,γ are quotients of odd positive integers, r, p, q1, q2 are rd-continuous
functions on T and r,q1,q2 are positive, −1 < −p0 6 p(ρ) < 1, p0 > 0, the delay functions τi : T → T

satisfy τi(ρ) 6 ρ for ρ ∈ T and τi(ρ) → ∞ as ρ → ∞, for i = 1, 2 and there exists a function τ : T → T

satisfying τ(ρ) 6 τ1(ρ), τ(ρ) 6 τ2(ρ), τ(ρ) →∞ as ρ→∞. The main results are established by the help of
Riccati transformation and under the cases (1.1).

On the other direction, the authors in [15] established some oscillation theorems for second order
neutral delay dynamic equation on time scales of the form[

r(ρ)
([

x(ρ) + p(ρ)x(τ(ρ))
]∆)γ)∆

+ q1(ρ)xa(τ1(ρ)) + q2(ρ)xβ(τ2(ρ)) = 0,

where γ,a,β are ratios of odd positive integers, r,p,q1,q2 are rd-continuous functions on T and r,q1,q2
are positive, and the delay functions τ1 and τ2 satisfy the same conditions in [21]. The main theorems are

proved by comparison technique and under the case
∫∞
ρ0

1
a(ρ)

1
γ∆ρ =∞.

In the recent paper [26], Sethi considered the second order sublinear neutral delay dynamic equation
of the form [

r(ρ)
([

x(ρ) + p(ρ)x(τ(ρ))
]∆)γ]∆

+ q1(ρ)xγ(τ1(ρ)) + q2(ρ)xγ(τ2(ρ)) = 0,
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where 0 < γ 6 1 is a quotient of odd positive integers, p,q1,q2 are rd-continuous functions on T and
the delay functions satisfy the usual assumptions. Both cases in (1.1) are considered and the results are
proved by the aid of Riccati transformation.

In this paper, we are concerned with a certain class of the following half-linear/Emden-Fowler neutral
delay equation[

r(ρ)
(
(x(ρ) + p(ρ)x(τ(ρ)))∆

)γ]∆
+ q1(ρ)xa(δ(ρ)) + q2(ρ)xβ(η(ρ)) = 0, for ρ ∈ [ρ0,∞)T , (1.2)

where γ, a, β are quotients of odd positive integers, r ∈ Crd([ρ0,∞)T , (0,∞)) and p, q1,q2 ∈
Crd([ρ0,∞)T , R+) with 0 6 p(ρ) < 1, and τ, δ, η ∈ Crd([ρ0,∞)T , R+) and τ(ρ) 6 ρ, δ(ρ) 6 ρ, η(ρ) 6 ρ

with limρ→∞ τ(ρ) = lim
ρ→∞ δ(ρ) = limρ→∞ η(ρ) = ∞. By a solution of (1.2), we mean a nontrivial real-

valued function x(ρ) ∈ C1
rd([Tx,∞), R), Tx > ρ0, which has the properties that r(x∆)γ)∆ ∈ C1

rd([Tx,∞), R)
such that x(ρ) satisfies (1.2) for all [Tx,∞)T . The half-linear/Emden-Fowler equations have numerous
applications in the study of p-Laplace equations, non-Newtonian fluid theory, porous medium; for more
details see for instance the papers [5–7].

The objective of this paper is to establish new sufficient conditions for the oscillation of equation (1.2)
by employing the Riccati technique and applying some basic lemmas. Reported results are obtained
under the condition

(H0)
∫∞
ρ0

1
a(ρ)

1
γ∆ρ =∞.

We say that a solution x of (1.2) has a generalized zero at ρ if x (ρ) = 0 and has a generalized zero
in (ρ,σ(ρ)) in case x (ρ) xσ (ρ) < 0 and the graininess function µ(ρ) := σ(ρ) − ρ > 0. To investigate the
oscillation properties of (1.2) it is proper to use some notions such as conjugacy and disconjugacy of the
equation (1.2). Equation (1.2) is disconjugate on the interval [ρ0,b]T , if there is no nontrivial solution of
(1.2) with two (or more) generalized zeros in [ρ0,b]T . Equation (1.2) is said to be nonoscillatory on [ρ0,∞]T
if there exists c ∈ [ρ0,∞]T such that this equation is disconjugate on [c,d]T for every d > c. Otherwise, (1.2)
is said to be oscillatory on [ρ0,∞]T . A solution x (ρ) of (1.2) is said to be oscillatory if it is neither eventually
positive nor eventually negative, otherwise it is oscillatory. We say that (1.2) is right disfocal (left disfocal)
on [a,b]T if the solutions of (1.2) such that x∆ (a) = 0 (x∆ (b) = 0) have no generalized zeros in [a,b]T .

2. Main results

This section is devoted to the main oscillation results for equation (1.2) under the hypothesis (H0).
Throughout the paper, we use the notation

z(ρ) = x(ρ) + p(ρ)x(τ(ρ)). (2.1)

Lemma 2.1 ([2]). Assume that (H0) holds and r(ρ) ∈ C1
rd([(a,∞), R+) such that r∆(ρ) > 0. Let x(ρ) be an

eventually positive real valued function such that (r(ρ)(x∆(ρ))γ)∆ 6 0, for ρ > ρ1 > ρ0. Then x∆(ρ) > 0 and
x∆∆(ρ) < 0 for ρ > ρ1 > ρ0.

Lemma 2.2. Assume that Lemma 2.1 holds and let τ(ρ) be a positive continuous function such that τ(ρ) 6 ρ and
lim
ρ→∞ τ(ρ) =∞. Then there exists ρl > ρ1 such that for each l ∈ (0, 1),

x(τ(ρ))
x(δ(ρ))

> l
τ(ρ)

δ(ρ)
.

Proof. Indeed, for ρ > ρ1,

u(δ(ρ)) − u(τ(ρ)) =

∫δ(ρ)
τ(ρ)

u∆(s)∆s 6 (δ(ρ) − τ(ρ))u∆(τ(ρ)),
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which implies that
u(δ(ρ))

u(τ(ρ))
6 1 + (δ(ρ) − τ(ρ))

u∆(τ(ρ))

u(τ(ρ))
.

On the other hand, it follows that

u(τ(ρ)) − u(ρ1) =

∫τ(ρ)
ρ1

u∆(s)∆s > (u(ρ) − ρ1)u
∆(τ(ρ)).

That is ∀ l ∈ (0, 1), ∃ a ρl > ρ1 such that

l(τ(ρ)) 6
u(τ(ρ))

u∆(τ(ρ))
, ρ > ρl.

Consequently,
u(δ(ρ))

u(τ(ρ))
6 1 + (δ(ρ) − τ(ρ))

u∆(τ(ρ))

u(τ(ρ))
6
δ(ρ)

lτ(ρ)
.

The proof is complete.

For convenience, we use the following notations:

a1(ρ) :=

∫∞
ρ

[q1(s)(1 − p(δ(s)))]

(
lδ(s)

σ(s)

)a
∆s+

∫∞
ρ

[q2(s)(1 − p(δ(s)))]

(
lδ(s)

δ(s)

)a
∆s,

and

A1(ρ,K1) :=

[
a1(ρ) +K1

∫∞
ρ

(
1
r(s)

) 1
γ

(aσ1 (s))
1+ 1

γ∆s

] 1
γ

, for ρ ∈ [ρ0,∞)T ,

where K1 > 0 is an arbitrary constant.

Theorem 2.3. Assume that (H0) holds and let 0 6 p(ρ) 6 a < 1, r∆(ρ) > 0 and γ < a < β, η(ρ) > δ(ρ) and
δ∆(ρ) > 1 for ρ ∈ [ρ0,∞)T . If

(H1a) lim sup
ρ→∞ a1(ρ) <∞;

(H1β)
∫∞
ρ0
( 1
r(s))

1
γAσ1 (s,K1)∆s =∞,

then every solution of (1.2) oscillates on [ρ0,∞)T .

Proof. Suppose the contrary that x(ρ) is a nonoscillatory solution of (1.2). Without loss of generality, we
may assume that x(ρ) > 0 for ρ > ρ0. Hence there exists ρ ∈ [ρ0,∞)T such that x(ρ) > 0, x(τ(ρ)) >
0, x(δ(ρ)) > 0 and x(η(ρ)) > 0 for ρ > ρ1. Using (2.1), we see that (1.2) becomes

(r(ρ)(z∆(ρ))γ)∆ = −q(ρ)xa(δ(ρ)) − v(ρ)xβ(η(ρ)) 6 0, for ρ > ρ2. (2.2)

So r(ρ)(z∆(ρ))γ is nonincreasing on [ρ1,∞)T , that is, either z∆(ρ) > 0 or z∆(ρ) < 0. By Lemma 2.1, it
follows that z∆(ρ) > 0 for ρ > ρ2. Hence there exists ρ3 > ρ2 such that

z(ρ) − p(ρ)z(τ(ρ)) = x(ρ) + p(ρ)x(τ(ρ)) − p(ρ)x(τ(ρ)) − p(ρ)p(τ(ρ))p(τ(τ(ρ)))
= x(ρ) − p(ρ)p(τ(ρ))p(τ(τ(ρ))) 6 x(ρ),

which implies that
x(ρ) > (1 − p(ρ))z(ρ), for ρ ∈ [ρ3,∞)T .
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Therefore (1.2) can be written as

(r(ρ)(z∆(ρ))γ)∆ + q(ρ)(1 − p(δ(ρ)))aza(δ(ρ)) + v(ρ)(1 − p(η(ρ)))aza(η(ρ)) 6 0,

where γ < a < β. Define Riccati transformation

w(ρ) = r(ρ)
(z∆(ρ))γ

za(ρ)
, for ρ ∈ [ρ3,∞)T . (2.3)

By using the product and quotient rules, we see that

w∆(ρ) =
(r(z∆)γ)∆

(zσ)a
−

(r(z∆)γ)σ(za)∆

za(zσ)a
, for ρ ∈ [ρ3,∞)T . (2.4)

Now, since η(ρ) > δ(ρ) and due to (2.3) and (2.4), we have

w∆(ρ) 6 −q(1 − pδ)a − v(1 − pδ)a
(zδ)a

(zσ)a
−

wσ(za)∆

za
, for ρ ∈ [ρ3,∞)T .

By using the chain rule [8], we get that

(za(ρ))∆ = a

∫ 1

0
[(1 − h)z(ρ) + hz(σ(ρ))]a−1dhz∆(ρ) >

{
a(z(ρ))a−1z∆(ρ), a > 1,
a(z(σ(ρ)))a−1z∆(ρ), 0 < a 6 1.

Since z(ρ) is a nondecreasing function on [ρ3,∞)T , then for ρ > ρ3,

(za(ρ))∆

za(ρ)
>

a
z∆(ρ)
z(ρ) , for a > 1,

a
(z(σ(ρ)))a−1

za(ρ) z∆(ρ), for 0 < a 6 1.

Using the fact that ρ 6 σ(ρ), we have

(za)∆

za
> a

z∆

zσ
, a > 0 on [ρ3,∞)T .

Therefore (2.4) yields that

w∆ 6 −q(1 − pδ)a − v(1 − pδ)a
(zσ)a

(zδ)a
− awσ

z∆

zσ
, ρ > ρ3. (2.5)

Now, since
(
r

1
γ z∆

)
is nonincreasing on [ρ3,∞)T , then for ρ 6 σ(ρ), we have that

z∆ > r−
1
γ (wσ)

1
γ (zσ)

a
γ , ρ > ρ3. (2.6)

Substituting (2.6) into (2.5), we get

w∆ 6 −q(1 − pδ)a
(zδ)a

(zσ)a
− v(1 − pδ)a

(zδ)a

(zσ)a
− ar−

1
γ (wσ)1+ 1

γ (zσ)
a

γ
− 1, ρ > ρ3.

Since z(ρ) is nondecreasing on [ρ3,∞)T , then there exist ρ4 > ρ3 and C > 0 such that

(z(σ(ρ)))
a
γ−1 > (z(ρ))

a
γ−1 > C, for ρ > ρ4.

By using Lemma 2.2, it follows from the last inequality that

w∆(ρ) 6 −q(1 − p(δ(ρ)))a
(
lδ(ρ)

σ(ρ)

)a
− v(1 − p(δ(ρ)))a

(
lδ(ρ)

σ(ρ)

)a
− aCr−

1
γ (ρ)(wσ(ρ))1+ 1

γ , ρ > ρl > ρ4.
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Integrating the above inequality from ρ to u (ρ < u) for ρ, u ∈ [ρ4,∞)T , we obtain

−w(ρ) 6 w(u) − w(ρ) 6 −

∫u
ρ

[
q(1 − pδ)a

(
lδ(ρ)

σ(ρ)

)a
+ v(1 − pδ)a

(
lδ(ρ)

σ(ρ)

)a
+ aCr−

1
γ (ρ)(wσ(ρ))1+ 1

γ

]
∆s,

that is,

w(ρ) > a1(ρ) +K1

∫∞
ρ

r−
1
γ (s)w(σ(s))1+ 1

γ∆s, ρ > ρ1,

where K1a = Ca. Indeed, w(ρ) > a1(ρ) implies that

w(ρ) > a1(ρ) +K1

∫∞
ρ

r−
1
γ (s)(a1(σ(s)))

1+ 1
γ∆s = Aγ1 (ρ,K1).

Since ρ 6 σ(ρ), we see
r(z∆)γ > (r(z∆)γ)σ,

which implies that
r(z∆)γ

(zσ)a
>

(r(z∆)γ)σ

(zσ)a
= wσ > (Aγ1 (ρ,k1))

σ,

that is,
(zσ)δz∆ > r−

1
γ (Aσ1 (ρ,k1)), ρ ∈ [ρ5,∞]T ,

where δ = (aγ) > 1. Using the chain rule, we have

(z1−δ(ρ))∆ = (1 − δ)

∫ 1

0
[(1 − h)z(ρ) + hz(σ(ρ))]δdhz∆(ρ) 6 (1 − δ)(z(σ(ρ)))−δz∆(ρ),

that is,
(z1−δ(σ(ρ)))∆

1 − δ
> z(σ(ρ))−δz∆(σ(ρ)).

Hence
(z1−δ(ρ))∆

1 − δ
> (z(σ(ρ)))−δz∆(ρ),

and then due to (2.6), we see that

(z1−δ(ρ))∆

1 − δ
> r−

1
γ (ρ)(Aσ1 (ρ,k1)), ρ ∈ [ρ5,∞)T .

Integrating the above inequality from ρ5 to ρ, we get∫ρ
ρ5

r(s)−
1
γ (Aσ1 (s,K1))

1
γ ∆s <∞,

which contradicts (H1β).

Theorem 2.4. Let 0 6 p(ρ) 6 p(ρ) 6 1, r∆(ρ) > 0 for ρ ∈ [ρ0,∞)T and γ = a = β, η(ρ) > σ(ρ) and assume
that (H0) and (H1a) hold. Furthermore, assume that

(H2) lim sup
ρ→∞

(∫ρ
ρ0
r−

1
γ (s)A1(s,K1)∆s

)
> 1.

Then every solution of (1.2) oscillates.
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Proof. Proceeding as in the proof of Theorem 2.3, we get

w(ρ) > Aγ1 (ρ,K1) for ρ ∈ [ρ4,∞)T.

Using the fact that r
1
γ z∆ is nonincreasing on [ρ4,∞)T , we get

z(ρ) = z(ρ4) +

∫ρ
ρ4

z∆(s)∆s = z(ρ4) +

∫ρ
ρ4

r−
1
γ (s)

(
r(s)−

1
γ z∆(s)

)
∆s > r

1
γ (ρ)z∆(ρ)r−

1
γ (s)∆s,

that is,
r(ρ)

1
γ z∆(ρ)

z(ρ)
6
( ∫ρ
ρ4

r(s)−
1
γ∆s

)−1
, ρ > ρ4. (2.7)

Consequently,

A1(ρ,K1) 6 w
1
γ (ρ) =

r(ρ)
1
γ z′(ρ)

z(ρ
6
( ∫ρ
ρ2

r−
1
γ (s)∆s

)−1
,

which implies that ( ∫ρ
ρ4

r−
1
γ (s)∆s

)
A1(ρ,K1) 6 1,

which contradicts (H2). Hence the theorem is proved.

Theorem 2.5. Let 0 6 p(ρ) 6 p(ρ) 6 1, r∆(ρ) > 0 for ρ ∈ [ρ0,∞)T and γ > a > β, η(ρ) > σ(ρ) and assume
that (H0) and (H1β) hold. Furthermore, assume that

(H3) lim sup
ρ→∞ (a1(ρ))

(γ−a)
aγ

(∫ρ
ρ0
r−

1
γ (s)∆s

)[
a1(ρ) +K1

∫∞
ρ

(
1
r(s)

) 1
γ
(aσ1 (s))

1+ 1
γ∆s

] 1
γ

=∞.

Then every solution of (1.2) oscillates.

Proof. Following similar steps as in the proof of Theorem 2.3, we obtain (2.2) and (2.3) and hence w(ρ) >
a1(ρ), for ρ ∈ [ρ4,∞). Consequently, it follows from (2.3) that

r
1
γ z∆ > z

a
γa

1
γ

1 , for ρ > ρ4.

We deduce from (rz∆)γ)∆ 6 0 that there exists a constant C > 0 and ρ5 > ρ4 such that r
1
γ z∆ 6 C, for

ρ > ρ5, that is C > r
1
γ z∆ > z

a
γa

1
γ

1 and hence

z(ρ) 6 C
γ
aa1(ρ)

− 1
a , for ρ ∈ [ρ5,∞)T , (2.8)

which implies that

(zσ)
(a−γ)
γ > C

(a−γ)
a (aσ1 )

(γ−a)
aγ for ρ ∈ [ρ5,∞)T . (2.9)

Due to (2.5), (2.6), and using Lemma 2.2, we have that

w∆(ρ) 6 −q(1 − p(δ(ρ)))a
(lδ(ρ)
σ(ρ)

)a
− v(1 − p(δ(ρ)))a

(lδ(ρ)
σ(ρ)

)a
− aCr−

1
γ (ρ)(wσ(ρ))1+ 1

γ (zσ(ρ))
(a−γ)
a .

Integrating the last inequality as in the proof of Theorem 2.3 and using (2.8), we obtain for ρ > ρ1 > ρ5
that

w(ρ) > a1(ρ) +K3

∫∞
ρ

r−
1
γ (s)(a1(s))

1+ 1
γ∆s, for ρ ∈ [ρl,∞)T ,
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where K1 = aC
(a−γ)
γ . Substituting (2.9) into (2.3), it is easy to verify that

(z(ρ))
(a−γ)
γ
r

1
γ (ρ)z∆(ρ)

z(ρ)
>
[
a1(ρ) +K1

∫∞
ρ

r−
1
γ (s)(aσ1 (s))

1+ 1
γ∆s

] 1
γ

. (2.10)

Using (2.7) and (2.9) in (2.10), we can find

C
a−γ
a a1(ρ)

(γ−a)
aγ

( ∫ρ
ρ2

r−
1
γ (s)∆s

)−1
>
[
a1(ρ) +K1

∫∞
ρ

r−
1
γ (s)(aσ1 (s))

1+ 1
γ∆s

] 1
γ

, for ρ ∈ [ρ1,∞)T .

Therefore, for ρ > ρ1 we have

(a1(ρ))
(γ−a)
aγ

( ∫ρ
ρ2

r−
1
γ (s)∆s

)[
a1(ρ) +K1

∫∞
ρ

r−
1
γ (s)(aσ1 (s))

1+ 1
γ∆s

] 1
γ
6 C

a−γ
a ,

which contradicts (H3).

Theorem 2.6. Let 0 6 p(ρ) 6 1, r∆(ρ) > 0 for ρ ∈ [ρ0,∞)T and γ < β < a, η(ρ) > σ(ρ). If (H0) and (H1β)
hold, then every solution of (1.2) oscillates.

The proof of the theorem follows from Theorem 2.3. Hence the details are omitted.

Theorem 2.7. Let 0 6 p(ρ) 6 1, r∆(ρ) > 0 for ρ ∈ [ρ0,∞)T and a > γ > β, η(ρ) > σ(ρ). If (H0) and (H1β)
hold, then every solution of (1.2) oscillates.

The proof of the theorem follows from Theorem 2.3.

Theorem 2.8. Let 0 6 p(ρ) 6 1, r∆(ρ) > 0 for ρ ∈ [ρ0,∞)T and a < β < γ, η(ρ) > σ(ρ). If (H0), (H1a), and
(H2) hold, then every solution of (1.2) oscillates.

The proof of the theorem follows from Theorem 2.3 and Theorem 2.5.

Theorem 2.9. Let 0 6 p(ρ) 6 1, r∆(ρ) > 0 for ρ ∈ [ρ0,∞)T and a < γ < β, η(ρ) > σ(ρ). If (H0), (H1a), and
(H2) hold, then every solution of (1.2) oscillates.

The proof of the theorem follows from Theorems 2.3 and 2.5.
In the following theorems we will denote

a2(ρ) =

∫∞
ρ

[
λQ(s)

(
lδ(ρ)

δ(ρ)

)a
+ µV(s)

(
lδ(ρ)

σ(ρ)

)a]
∆s, ρ ∈ [ρ0,∞)T ,

and

A2(ρ,K2) =

[
λa2(τ

−1(ρ))

1 + aa
+
µa2(τ

−1(ρ))

1 + aa
+K2

∫∞
τ−1(ρ)

(
1
r(s)

) 1
γ

((a2(τ
−δ(s)))1+ 1

γ∆s

] 1
γ

,

where K2 is an arbitrary positive constant and a > 0 λ,µ > 0 are positive constants, and

Q(ρ) = min{q(ρ),q(τ(ρ))} and V(ρ) = min{v(ρ), v(τ(ρ))}.

From the definitions of τ, δ, η, we see that τ−1, δ−1, η−1 : T → T and τ−1, δ−1, η−1 are rd-continuous
functions and τ−1(ρ) > ρ, δ−1(ρ) > ρ and η−1(ρ) > ρ.

Theorem 2.10. Let 1 6 p(ρ) 6 p < ∞, r∆(ρ) > 0 τ(δ(ρ)) = δ(τ(ρ)), τ(η(ρ)) = η(τ(ρ)) and γ < a < β,
η(ρ) > δ(ρ) with (H0) and the following conditions hold:

(H4) lim supρ→∞ a2(ρ) <∞;
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(H5)
∫∞
ρ0
( 1
r(s))

1
γAσ2 (s,K2)∆s =∞,

then every solution of (1.2) oscillates.

Proof. Let x(ρ) be a nonoscillatory solution of (1.2) such that x(ρ) > 0 for ρ > ρ0. Proceeding as in the
proof of Theorem 2.3, we get (2.2) for ρ ∈ [ρ2,∞), that is either z∆(ρ) > 0 or z∆(ρ) < 0. By Lemma 2.1, it
follows that z∆(ρ) > 0. From (1.2), it is easy to see for ρ > ρ1, that

(r(ρ)(z∆(ρ))γ)∆ + pβ(r(τ(ρ))(z∆(τ(ρ))γ)∆ + q(ρ)xa(δ(ρ)))

+ pβq(τ(ρ))xa(δ(τ(ρ)) + v(ρ)xβ(η(ρ))) + pβv(τ(ρ))xβ(η(τ(ρ)) = 0.
(2.11)

Assuming that there exists λ > 0 such that uγ(x) + uγ(y) > λuγ(x + y), x, y ∈ R+, and there exists µ > 0
such that uγ(x) + uγ(y) > µuγ(x + y), x, y ∈ R+, we obtain (note that γ < a < β) that

(r(ρ)(z∆(ρ))γ)∆ + pa(r(τ(ρ))(z∆(τ(ρ))γ)∆ + λQ(ρ)za(δ(ρ)) + µV(ρ)za(η(ρ)) 6 0,

for ρ ∈ [ρ2,∞)T , where z(ρ) 6 x(ρ) + px(τ(ρ)). Define w(ρ) as in (2.3), upon using the fact that

ω∆(ρ) =
(r(z∆)γ)∆

(zδ)a
−
r(z∆)γ)δ(za)∆

za(zδ)a

and
(za)∆

(zσ)a
> a

(z∆)
zσ

, a > 0 for ρ ∈ [ρ3,∞)T .

Since z(ρ) is nondecreasing, then using (2.11) in (2.10) we obtain

ω∆ 6
(r(z∆)γ)∆

(zσ)a
− awσ

z∆

zρ
, ρ > ρ3.

Due to (2.6) and (z(σ(ρ)))
a
γ > C, there exists ρ4 > ρ3 such that, for ρ ∈ [ρ4,∞)T ,

w∆ 6
(r(z∆)γ)∆

(zσ)a
− aCr−

1
γ (wσ)1+ 1

γ . (2.12)

From (2.12), we find

ω∆ + aawτ∆ 6
(r(z∆)γ)∆

(zσ)a
− aCr−

1
γ (wσ)1+ 1

γ + aa
(r(z∆)γ)τ∆

(zσ∆)a
− aC(rτ)−

1
γ (wστ)1+ 1

γ ,

that is,

ω∆ + aawτ∆ 6
(r(z∆)γ)∆

(zσ)a
+ aa

(r(z∆)γ)τ∆

(zσ∆)a
− aC

[
r−

1
γ (wσ)1+ 1

γ + aa(rτ)−
1
γ (wστ)1+ 1

γ

]
.

Applying the Lemma 2.2 to the above inequality we get

ω∆ + aawτ∆ 6 −λQ

(
lδ

σ

)a
− µV

(
lδ

σ

)a
− aC

[
r−

1
γ (wσ)1+ 1

γ + aa(rτ)−
1
γ (wστ)1+ 1

γ

]
for ρ ∈ [ρ1,∞)T , that is

ω∆ + aawτ∆ 6 −λQ(ρ)

(
lδ

σ

)a
− µV(ρ)

(
lδ

σ

)a
− aCr−

1
γ (1 + aa)(wσ)1+ 1

γ , (2.13)
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where we used the fact that r∆(ρ) > 0 and w(ρ) is a decreasing function due to (2.6) and (2.13) on [ρ1,∞)T .
Integrating (2.13) from ρ to v (ρ < v) for ρ, v ∈ [ρ1,∞)T , it is easy to verify that

ω∆ + aawτ(ρ) >
∫∞
ρ

λQ(s)

(
lδ

σ

)a
∆s+

∫∞
ρ

µV(s)

(
lδ

σ

)a
∆s+ aC(1 + aa)

∫∞
ρ

[
r(s)−

1
γw(σ(s))1+ 1

γ

]
∆s,

that is,

ω∆ + aawτ(ρ) = a2(ρ) + aC(1 + aa)

∫∞
ρ

[
r(s)−

1
γw(σ(s))1+ 1

γ

]
∆s,

which implies that

(1 + aa)w(τ(ρ)) > a2(ρ) + aC(1 + aa)

∫∞
ρ

r−
1
γ (s)w(σ(s))1+ 1

γ∆s. (2.14)

Due to (H1β), (2.14) yields that

w(ρ) >
a2(τ

−1(ρ))

(1 + aa)
+ aC

∫∞
τ−1(ρ)

r−
1
γ (s)w(σ(s))1+ 1

γ∆s.

Indeed

w(ρ) >
a2(τ

−1(ρ))

(1 + aa)
.

Hence the last inequality becomes

w(ρ) >
a2(τ

−1(ρ))

(1 + aa)
+ aC

∫∞
τ−1(ρ)

[
r−

1
γ (s)

(
1

1 + aa

)1+ 1
γ

a2(τ
−1(σ(s)))1+ 1

γ

]
∆s

=
a2(τ

−1(ρ))

(1 + aa)
+K2

∫∞
τ−1(ρ)

[
r−

1
γ (s)(a2(τ

−1(σ(s)))1+ 1
γ

]
∆s = Aγ2 (ρ,K2),K2 = aC

(
1

1 + aa

)1+ 1
γ

.

Proceeding as in the proof of Theorem 2.3, we obtain∫ρ
ρ4

r−
1
γ (s)Aσ2 (s,K2)∆s <∞,

a contradiction due to (H5). Hence the theorem is complete.

Theorem 2.11. Let 1 6 p(ρ) 6 p <∞, r∆(ρ) > 0 for ρ ∈ [ρ0,∞)T , τ(δ(ρ)) = δ(τ(ρ)), τ(η(ρ)) = η(τ(ρ)) with
γ = a = β, η(ρ) > δ(ρ). If (H0), (H4), (H5) are satisfied and

(H6) lim supρ→∞
( ∫ρ
ρ0
r−

1
γ (s)A2(s,K2)∆s

)
> 1,

then every solution of (1.2) oscillates.

Theorem 2.12. Let 1 6 p(ρ) 6 a < ∞, r∆(ρ) > 0 τ(σ(ρ)) = σ(τ(ρ)), τ(η(ρ)) = η(τ(ρ)), γ > a > β,
η(ρ) > δ(ρ). If (H0), (H1β), (H4), (H6) are satisfied and

(H7) lim supρ→∞(a1(ρ))
(γ−a)
aγ
∫ρ
ρ0
r−

1
γ (s)∆s

[
a1(ρ) +K3

∫∞
ρ ( 1
r(s))

1
γ (aσ1 (s))

1+ 1
γ∆s

] 1
γ
=∞,

then every solution of (1.2) oscillates.

The proofs of the above two theorems follow as a consequence of the proofs of Theorems 2.4 and 2.10.
Hence the details are omitted.
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3. Examples

Two numerical examples are presented in this section. The theoretical results are verified and con-
firmed.

Example 3.1. Let T = R and therefore σ(t) = t. Consider the equation

(x(ρ) + (1 −
1

2ρ
)x(δ(ρ)))

′′
+

1
ρ

x3(
ρ

2
) +

1
ρ

x3(
ρ

3
) = 0, (3.1)

where r(ρ) = 1, p(ρ) = 1 − 1
2ρ , q1(ρ) = q2(ρ) =

1
ρ . Here, R(t) =

∫∞
t0

(
1
tγ

) 1
γ
dt = ∞ and a1(ρ) =

l3

8ρ + l3

8ρ =

( l8ρ)
3 so that limt→∞ supa1(ρ) <∞. Further, we have

A1(ρ,K1) = (
l

8ρ
)3 + k1

∫∞
ρ

(
l

8s
)3ds = (

l3

8
) + (

l6

64
)

1
ρ

.

Hence, all conditions of Theorem 2.3 are satisfied. Therefore, (3.1) is oscillatory.

Example 3.2. Let T = Z and σ(t) = t+ 1. Consider the equation

∆2[x(ρ) + (1 + e−ρ)x(τ(ρ))] + q1(ρ)x3(δ(ρ(p)) + q2(ρ)x5(η(ρ(p)) = 0, (3.2)

where r(ρ) = 1, p(ρ) = 1 + e−ρ, γ = 1, α = 3, β = 5, q(ρ) = ρ − 2, δ(ρ) = ρ − 3, η(ρ) = ρ − 2,
q1(ρ) = e

−4t(e7 + e11), and q2(ρ) = 2e−6ρ+9(1 + e+ e2) + 2e−7ρ+10(1 + e2). It is not difficult to check that
(H0), (H5), and (H6) hold true. Therefore, by Theorem 2.10, every solution of (3.2) oscillates. In particular
x(ρ) = (−1)ρe−ρ is such a solution.
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