
J. Math. Computer Sci., 29 (2023), 369–386

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

On a system of (p,q)-analogues of the natural transform for
solving (p,q)-differential equations

Sansumpan Jirakulchaiwonga, Kamsing Nonlaopona,∗, Jessada Tariboonb, Sortiris K. Ntouyasc, Shrideh
Al-Omarid

aDepartment of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
bDepartment of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800,
Thailand.

cDepartment of Mathematics, University of Ioannina, Ioannina 45110, Greece.
dFaculty of Engineering Technology, Al-Balqa Applied University, Amman 11134, Jordan.

Abstract
In this work, we apply the concept of (p,q)-calculus or post quantum calculus to establish the definitions of (p,q)-analogues

of the natural transform of the first and second kind, which is a symmetric relation between (p,q)-analogues of the natural,
Laplace, and Sumudu transforms. Moreover, as a result of the convolution theorem, some properties and some functions present
in the table of (p,q)-analogues of the natural transform are discussed. Also, we apply them to solve higher order (p,q)-IVP with
constants and coefficients, and to show the performance and effectiveness of the proposed transform.
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1. Introduction

Integral transform techniques have been used for a long time as a significantly powerful tool to solve
some problems in various fields, such as applied mathematics, physics, and engineering. They have also
played a crucial part in a variety of theories and applications. Among numerous techniques, two of the
most frequently used techniques are Laplace and Sumudu transforms, first introduced in 1780 and 1993,
respectively. Following such introductions, in 2008, Khan [34] established a new integral transform, called
the natural transform, and applied it to the unsteady flow over a plane wall.

In 2011, Silambarasan and Belgacem [44] derived certain electric field solutions of the natural trans-
form to Maxwell’s equation in conducting media and showed that the natural transform converges to
Laplace and Sumudu transforms. In 2012, they studied some properties and applied this transform to
Maxwell’s equations describing transient electromagnetic [16]. In 2013, Al-Omari [8] applied the natural
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transform to some ordinary differential equations and some spaces of Boehmians. Recently, Al-Omari
and Araci [12] investigated the definition and the properties of the generalized natural transform on sets
of generalized functions.

Quantum calculus or q-calculus, is also known as calculus without limits. Euler was the first mathe-
matician to study quantum calculus in the early eighteenth, which Gauss and Ramanujan later developed.
In 1910, Jackson [27, 28] studied q-calculus in a symmetrical and introduced q-derivative and q-integral,
which are known as Jackson derivative and Jackson integral. Quantum calculus has been used in the
applications of diverse areas such as mathematics, applied mathematics, and physics; for instance, Fock
[24] studied the symmetry operators of the hydrogen atoms using the q-difference equations. Many re-
searchers have generalized and developed the q-calculus as found in [4, 5, 15, 21, 23, 30, 37, 45, 46] and
their references. Also, the fundamental explanation of the q-calculus aspects can be found in the book by
Kac and Cheung [32].

Around a decade ago, the topic of q-integral transform has piqued many researchers’ interest, leading
to various investigation forms. In 2011, Ganie and Jain [25] presented the q-Laplace transform of two
variables and sought for application to figure out a generalized form of diffusion, wave, and space-time
telegraphic equations. In 2013, Albayrak et al. [6] investigated q-analogues of Sumudu transform and
derived specific properties. In 2014, Chung et al. [20] studied the q-analogues of the Laplace transform
and pinpointed some distinct properties of the q-Laplcae transform to further the investigation. In 2018,
Al-Omari [9] proposed the q-analogues of the natural transform on many functions of a special kind with
the first kind and the second kind, and some of their respective properties. In 2020, he proposed the
q-analogues and properties of the Laplace-type integral operator in the quantum calculus [10]. Recently,
he presented the generalized q-theory of the q-Mellin transform and its specific properties in a set of
q-generalized functions [11]; see [7, 13, 48] for more details.

The post quantum calculus or (p,q)-calculus is a generalized form of q-calculus. It was first studied
in 1991 by Chakrabarti and Jagannathan [18]. It is pertinent that the direct substitution of q by q/p in
q-calculus cannot provide valid quantum calculus; however, if p = 1 in (p,q)-calculus, it will reduce to
q-calculus. In 2013, Sadjang [41] studied the concept of the (p,q)-derivative, the (p,q)-integration, (p,q)-
Taylor formulas, and the fundamental theorem of (p,q)-calculus. The studies and developments of the
(p,q)-calculus have been conducted many times as found in [1–3, 14, 17, 19, 22, 26, 33, 36, 38, 39] and
their references.

A slew of extensive research about (p,q)-integral transforms can also be seen later. In 2017, Sadjang
[40] studied the properties of (p,q)-analogues of the Laplace transform and attempted to apply those
properties to solve certain (p,q)-difference equations. In 2019, Sadjang [42] studied the (p,q)-analogues
of the Sumudu transform and gave some properties to solve (p,q)-difference equations. In 2020, Tassaddiq
et al. [47] proposed (p,q)-analogues of Laplace and (p,q)-analogues of Sumudu transforms with (p,q)-
Aleph function. Recently, Jirakulchaiwong et al. [31] established (p,q)-analogues of Laplace-type integral
transforms and use some obtained properties to apply some (p,q)-differential equations.

We are fascinated by such inspirational literature as mentioned above, and therefore, propose to extend
the q-analogues of the natural transform to (p,q)-analogues of the natural transform while giving a result
of convolution theorem, some properties, and some functions that cover (p,q)-analogues of Laplace and
Sumudu transform just by letting u = 1 and v = 1, respectively, and to apply those properties to solve
higher order (p,q)-IVP with constants and coefficients.

The outline of this paper is as follows. Section 2 consists of some basic knowledge and notations
that use in the following sections. Section 3 comprises of some properties of the (p,q)-analogues of the
natural transform. Section 4 demonstrates the application to (p,q)-differential equations. Section 5 is
about discussion, and the last section includes is the conclusion.
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2. Preliminaries

For the convenience, we give some usual notations and definitions used in the (p,q)-calculus, which
can be found in [36, 39–41]. Throughout this paper, let 0 < q < p 6 1 be constants.

The (p,q)-analogue or (p,q)-number of n ∈N is defined by

[n]p,q =
pn − qn

p− q
. (2.1)

If p = 1 in (2.1), then (2.1) is the q-analogue of n or q-number.
The (p,q)-factorial is defined by

[n]p,q! =

{∏n
j=1[j]p,q = [n]p,q[n− 1]p,q · · · [1]p,q, for n > 1,

1, for n = 0.
(2.2)

If p = 1 in (2.2), then (2.2) is q-factorial. The (p,q)-binomial coefficients are defined by(
n

j

)
p,q

=
[n]p,q!

[j]p,q![n− j]p,q!
=

(
n

n− j

)
p,q

(2.3)

for 0 6 j 6 n. If p = 1 in (2.3), then (2.3) reduces to the q-binomial coefficients. The (p,q)-analogue of
derivative of a function f : [0,∞)→ R is defined by

Dp,qf(t) =
f(pt) − f(qt)

(p− q)t
, t 6= 0. (2.4)

If p = 1 in (2.4), then Dp,qf(t) = Dqf(t), which is the q-derivative of the function f, see [32]. Also, if
q→ 1 in (2.4), then we get the classical derivative.

The (p,q)-derivatives of higher order are given by(
D0
p,qf

)
(t) = f(t) and

(
Dkp,qf

)
(t) = Dp,q

(
Dk−1
p,q f

)
(t), k ∈N.

Example 2.1. Define the function f : R+ → R by f(t) = t2 + 5t+ c and t 6= 0, where c is a constant, then

Dp,q(t
2 + 5t+ c) =

(p2t2 + 5pt+ c) − (q2t2 + 5qt+ c)
(p− q)t

=
(p2 − q2)t2 + 5(p− q)t

(p− q)t
= (p+ q)t+ 5.

(2.5)

The (p,q)-derivatives of the product and quotient rules of functions f and g are as follows:

Dp,q(f(t)g(t)) = f(pt)Dp,qg(t) + g(qt)Dp,qf(t), (2.6)

Dp,q

(
f(t)

g(t)

)
=
g(qt)Dp,qf(t) − f(qt)Dp,qg(t)

g(pt)g(qt)
, g(t) 6= 0. (2.7)

If p = 1 in (2.6) and (2.7), then (2.6) and (2.7) reduce to q-derivative of the product and quotient rules of
functions f and g, respectively.

The (p,q)-integral of f and (p,q)-integral of f on [0,∞) are defined by∫
f(t)dp,qt = (p− q)t

∞∑
j=0

qj

pj+1 f

(
qj

pj+1 t

)
, (2.8)

∫∞
0
f(t)dp,qt = (p− q)

∞∑
j=−∞

qj

pj+1 f

(
qj

pj+1

)
. (2.9)
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If p = 1 in (2.9), then (2.9) reduces to the q-integral of the function f, see [32]. Also, if q→ 1 in (2.9), then
we get the classical integral.

The (p,q)-integral in an interval [a,b] is given by∫b
a

Dp,qf(t)dp,qt = f(b) − f(a). (2.10)

The (p,q)-integration by parts is given by∫b
a

f(pt)(Dp,qg(t))dp,qt = f(b)g(b) − f(a)g(a) −

∫b
a

g(qt)Dp,qf(t)dp,qt. (2.11)

Note that b =∞ is allowed. If p = 1 in (2.11), then (2.11) reduces to the q-integration by parts.
The two types of (p,q)-exponential functions are defined by

ep,q(z) =

∞∑
n=0

p(
n
2)

[n]p,q!
zn, (2.12)

Ep,q(z) =

∞∑
n=0

q(
n
2)

[n]p,q!
zn. (2.13)

If p = 1 in (2.12) and (2.13), then we have the q-exponential function, see [32]. Also, if q → 1, then (2.12)
and (2.13) reduce to the classical exponential function.

Moreover, the derivative of the (p,q)-exponential functions is given by

Dp,qep,q(nt) = nep,q(npt), (2.14)
Dp,qEp,q(nt) = nEp,q(nqt).

Due to (2.12) and (2.13), the (p,q)-analogues of the trigonometric functions cosine and sine are as follows:

cosp,q(z) =
ep,q(iz) + ep,q(−iz)

2
=

∞∑
n=0

(−1)np(
2n
2 )

[2n]p,q!
z2n,

Cosp,q(z) =
Ep,q(iz) + Ep,q(−iz)

2
=

∞∑
n=0

(−1)nq(
2n
2 )

[2n]p,q!
z2n,

sinp,q(z) =
ep,q(iz) − ep,q(−iz)

2i
=

∞∑
n=0

(−1)np(
2n+1

2 )

[2n+ 1]p,q!
z2n+1,

Sinp,q(z) =
Ep,q(iz) − Ep,q(−iz)

2i
=

∞∑
n=0

(−1)nq(
2n+1

2 )

[2n+ 1]p,q!
z2n+1.

The (p,q)-integral of f on [0,∞) for a ∈ R\{0} can be written as below:∫∞
0
f(at)dp,qt =

1
a

∫∞
0
f(t)dp,qt. (2.15)

Example 2.2. Define the function f : R+ → R by f(t) = ep,q(−t), then by (2.14) and (2.10), we obtain∫∞
0
ep,q(−5t)dp,qt = −

p

5

∫∞
0
Dp,qep,q

(
−

5t
p

)
dp,qt = −

p

5
(0 − 1) =

p

5
,

and
1
5

∫∞
0
ep,q(−t)dp,qt = −

p

5

∫∞
0
Dp,qep,q

(
−
t

p

)
dp,qt = −

p

5
(0 − 1) =

p

5
.

Therefore, ∫∞
0
ep,q(−5t)dp,qt =

1
5

∫∞
0
ep,q(−t)dp,qt.
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The (p,q)-gamma function of the first kind is defined by

Γp,q(n) = p
n(n−1)

2

∫∞
0
tn−1Ep,q(−qt)dp,qt. (2.16)

Using (2.16) and (2.11), we have
Γp,q(n+ 1) = [n]p,q!. (2.17)

The (p,q)-gamma function of the second kind is defined by

γp,q(n) = q
n(n−1)

2

∫∞
0
tn−1ep,q(−pt)dp,qt. (2.18)

Using (2.18) and (2.11), we have
γp,q(n+ 1) = [n]p,q!.

The (p,q)-beta function is defined by

Bp,q(s, t) =
∫ 1

0
xs−1(1 − qx)t−1

p,q dp,qx. (2.19)

The relation between the (p,q)-gamma function and the (p,q)-beta function is

Bp,q(s, t) = p
(t−1)(2s+t−2)

2
Γp,q(s)Γp,q(t)

Γp,q(s+ t)
, (2.20)

see [36] for more details.

3. Some properties of the (p,q)-natural transform

The natural transform of a function f(t) for t,u, v,M, jk > 0, and k ∈ N, was proposed by Khan [34],
which is defined over the set A,

A =
{
f(t) | ∃M, j1, j2 > 0, |f(t)| < Me|t|/jk , t ∈ (−1)k × [0,∞),k = 1, 2

}
,

which is given as

N(f(t);u, v) =
1
u

∫∞
0
f(t) exp

(
−
vt

u

)
dt,

where the constants u, v > 0. The natural transform can be converted to Laplace and Sumudu transforms
just by letting u = 1 and v = 1, respectively. Hence, the relation between the natural, Laplace, and
Sumudu transforms is a symmetric relation.

Next, Al-Omari [9] extended to the q-natural transform which is defined over the sets B and C,
respectively,

B =

{
f(t) | ∃M, j1, j2 > 0, |f(t)| < MEq

(
|t|

jk

)
, t ∈ (−1)k × [0,∞),k = 1, 2

}
,

C =

{
f(t) | ∃M, j1, j2 > 0, |f(t)| < Meq

(
|t|

jk

)
, t ∈ (−1)k × [0,∞),k = 1, 2

}
,

by the following formulas:

Nq(f(t);u, v) =
1
u

∫∞
0
f(t)Eq

(
−
qvt

u

)
dqt and Nq(f(t);u, v) =

1
u

∫∞
0
f(t)eq

(
−
vt

u

)
dqt,

where the constants u, v > 0.
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Now, we present the (p,q)-natural transform which covers (p,q)-Laplace and (p,q)-Sumudu trans-
forms. We introduce N1

p,q and N2
p,q which are called Np,q-transform of the first kind and second kind,

respectively. Let

D =

{
f(t) | ∃M, j1, j2 > 0, |f(t)| < MEp,q

(
|t|

jk

)
, t ∈ (−1)k × [0,∞),k = 1, 2

}
,

and

E =

{
f(t) | ∃M, j1, j2 > 0, |f(t)| < Mep,q

(
|t|

jk

)
, t ∈ (−1)k × [0,∞),k = 1, 2

}
.

Next, we define N1
p,q and N2

p,q in Definition 3.1.

Definition 3.1. The N1
p,q and N2

p,q of the function f(t) of exponential order are defined over the set of
functions D and E, respectively, as follows:

N1
p,q(f(t);u, v) =

1
u

∫∞
0
f(t)Ep,q

(
−
qvt

u

)
dp,qt, (3.1)

and

N2
p,q(f(t);u, v) =

1
u

∫∞
0
f(t)ep,q

(
−
pvt

u

)
dp,qt,

where the constants u, v > 0.

Now, we only show the properties of N1
p,q but N2

p,q omitted because N2
p,q can be showed in the same

way.

Theorem 3.2 (Linearity). If f,g ∈ D, then the following formula holds:

N1
p,q(αf(t) +βg(t);u, v) = αN1

p,q(f(t);u, v) +βN1
p,q(g(t);u, v),

where α and β are constants.

Proof. Use the Definition 3.1, we have

N1
p,q(αf(t) +βg(t);u, v) =

1
u

∫∞
0
(αf(t) +βg(t))Ep,q

(
−
qvt

u

)
dp,qt

=
α

u

∫∞
0
f(t)Ep,q

(
−
qvt

u

)
dp,qt+

β

u

∫∞
0
g(t)Ep,q

(
−
qvt

u

)
dp,qt

= αN1
p,q(f(t);u, v) +βN1

p,q(g(t);u, v).

This completes the proof.

Theorem 3.3 (Scaling). If f ∈ D, then the following formula holds:

N1
p,q(f(ξt);u, v) = N1

p,q(f(t); ξu, v),

where ξ is a non-zero constant.

Proof. Using (3.1), we have

N1
p,q(f(ξt);u, v) =

1
u

∫∞
0
f(ξt)Ep,q

(
−
qvt

u

)
dp,qt.

Next, using (2.15), we get

N1
p,q(f(ξt);u, v) =

1
ξu

∫∞
0
f(t)Ep,q

(
−
qvt

ξu

)
dp,qt = N

1
p,q(f(t); ξu, v).

Therefore, the proof is completed.
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In Table 1, we provide the (p,q)-natural transforms of the first kind and second kind of some basic
functions.

Table 1: Table of the (p,q)-natural transforms.
No. Function First kind Second kind

f(t) N1
p,q(f(t);u, v) N2

p,q(f(t);u, v)
1 1 1

v
1
v

2 t u
pv2

u
qv2

3 tα
Γp,q(n+1)un

vn+1p(
n+1

2 )
, α > −1 γp,q(n+1)un

vn+1q(
n+1

2 )
, α > −1

4 tn
[n]p,q!un

vn+1p(
n+1

2 )
, n ∈N

[n]p,q!un

vn+1q(
n+1

2 )
, n ∈N

5 ep,q(at)
p

vp−au , u <
∣∣vp
a

∣∣ 1
v

∞∑
n=0

p(
n
2)(

au
v )

n

q(
n+1

2 )

6 Ep,q(at)
1
v

∞∑
n=0

q(
n
2)
(
au
v

)n
p(
n+1

2 )
q

vq−au , u <
∣∣vq
a

∣∣
7 sinp,q(at)

apu
v2p2+a2u2

au

v2

∞∑
n=0

(−1)np(
2n+1

2 ) (au
v

)2n

q(
2n+2

2 )

8 cosp,q(at)
p2v

v2p2+a2u2

1
v

∞∑
n=0

(−1)np(
2n
2 )
(
au
v

)2n

q(
2n+1

2 )

9 sinhp,q(at)
apu

v2p2−a2u2 , u <
∣∣vp
a

∣∣ au

v2

∞∑
n=0

p(
2n+1

2 ) (au
v

)2n

q(
2n+2

2 )

10 coshp,q(at)
p2v

v2p2−a2u2 , u <
∣∣vp
a

∣∣ 1
v

∞∑
n=0

p(
2n
2 )
(
au
v

)2n

q(
2n+1

2 )

11 H(t− a) 1
vEp,q

(
−avu

) 1
vep,q

(
−avu

)
12 δ(t− a) 1

uEp,q
(
−aqvu

) 1
uep,q

(
−aqvu

)
Theorem 3.4 (Transforms of derivatives). If f ∈ D and Dnp,q has the N1

p,q of type one for each n ∈N, then the
transforms of the first, second, and n-th derivatives of f can be written in the following forms:

(i)

N1
p,q(Dp,qf(t);u, v) = −

f(0)
u

+
vN1
p,q(f(t);pu, v)

u
;

(ii)

N1
p,q(D

2
p,qf(t);u, v) = −

f ′(0)
u

−
vf(0)
pu2 +

v2N1
p,q(f(t);p2u, v)

pu2 ;

(iii)

N1
p,q(D

n
p,qf(t);u, v) =


−
f(0)
u +

vN1
p,q(f(t);pu,v)

u , for n = 1,
vnN1

p,q(f(t);upn,v)

unp(
n
2)

−
∑n−3
k=0

vn−k−1u−n+k(Dkp,qf)(0)

p
(n−k−2)(n−k+1)

2 +1

−
∑n−1
k=n−2

vn−k−1u−n+k(Dkp,qf)(0)
pn−k−1 , for n = 2, 3, . . . .

Proof.

(i). Using Definition 3.1 and (2.11) and (2.15), we have

N1
p,q(Dp,qf(t);u, v) =

1
u

∫∞
0
Dp,qf(t)Ep,q

(
−
qvt

u

)
dp,qt
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=
1
u

[
lim
a→∞

[
f(t)Ep,q

(
−
vt

u

)]a
0
−

∫∞
0
f(pt)Dp,qEp,q

(
−
vt

u

)
dp,qt

]
= −

f(0)
u

+
v

u2p

∫∞
0
f(t)Ep,q

(
−
qvt

pu

)
dp,qt = −

f(0)
u

+
v

u
N1
p,q(f(t);pu, v).

Applying the result of (i), we get

N1
p,q(D

2
p,qf(t);u, v) =

1
u

∫∞
0
D2
p,qf(t)Ep,q

(
−
qvt

u

)
dp,qt

= −
f ′(0)
u

+
v

u
N1
p,q(f

′(t);pu, v) = −
f ′(0)
u

−
vf(0)
pu2 +

v2

pu2N
1
p,q(f(t);p

2u, v),

which is (ii).

(iii). If n = 1, it is not difficult to see that

N1
p,q(D

n
p,qf(t);u, v) =

vnN1
p,q(f(t);upn, v)

unp−np(
n+1

2 )
−

n−1∑
k=0

vn−k−1u−n+k(Dkp,qf(0))
pn−k−1 . (3.2)

If n > 1, we apply (3.2) by changing pn−k−1 to p
(n−k−2)(n−k+1)

2 +1 and putting n = 2. We can write

N1
p,q(D

n
p,qf(t);u, v)

= −
(Dn−1
p,q f)(0)
u

−
v(Dn−2

p,q f)(0)
pu2 +

v2N1
p,q(D

n−2
p,q f(t);p2u, v)
pu2

= −
(Dn−1
p,q f)(0)
u

−
v(Dn−2

p,q f)(0)
pu2 +

v2

pu2

[
vn−2N1

p,q(f(t);upn, v)

unp−np2n−1p(
n−1

2 )

−

n−3∑
k=0

vn−k−3(p2u)−n+k+2(Dkp,qf)(0)

p
(n−k−4)(n−k−1)

2 +1

]

= −
(Dn−1
p,q f)(0)
u

−
v(Dn−2

p,q f)(0)
pu2 +

vnN1
p,q(f(t);upn, v)

unp−np(
n+1

2 )
−

n−3∑
k=0

vn−k−1u−n+k(Dkp,qf)(0)

p(p2n−2k−4)(p
(n−k−4)(n−k−1)

2 +1)

= −
(Dn−1
p,q f)(0)
u

−
v(Dn−2

p,q f)(0)
pu2 +

vnN1
p,q(f(t);upn, v)

unp−np(
n+1

2 )
−

n−3∑
k=0

vn−k−1u−n+k(Dkp,qf)(0)

p
(n−k−2)(n−k−1)

2 +1

=
vnN1

p,q(f(t);upn, v)

unp(
n
2)

−

n−3∑
k=0

vn−k−1u−n+k(Dkp,qf)(0)

p
(n−k−2)(n−k+1)

2 +1
−

n−1∑
k=n−2

vn−k−1u−n+k(Dkp,qf)(0)
pn−k−1 .

Therefore, the proof is completed.

Theorem 3.5 (Transforms of integrals). If f ∈ D, then the following Formulae hold:

(i)

N1
p,q

(∫t
0
f(x)dp,qx;pu, v

)
=
u

v
N1
p,q(f(t);u, v);

(ii)

N1
p,q

(∫t
0

∫x
0
f(τ)dp,qτdp,qx;p2u, v

)
=
pu2

v2 N
1
p,q(f(t);u, v);
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(iii)

N1
p,q


∫t

0

(∫x2

0
· · ·
(∫xn

0
f(x1)dp,qx1

)
· · ·dp,qxn−1

)
dp,qxn︸ ︷︷ ︸

n times

;pnu, v

 =
p(
n
2)un

vn
N1
p,q(f(t);u, v).

Proof. Using (2.11) and (2.15) to prove (i)-(iii), we have

N1
p,q

(∫t
0
f(x)dp,qx;u

)
=

1
u

∫∞
0
Ep,q

(
−
qvt

u

) ∫t
0
f(x)dp,qxdp,qt.

We set Φ(t) =
∫t

0 f(x)dp,qx and applying the (p,q)-integration by part, we get∫∞
0
Φ(pt)Dp,qEp,q

(
−
vt

u

)
dp,qt =

[
Φ(t)Ep,q

(
−
vt

u

)]∞
t=0

−

∫∞
0
Ep,q

(
−
qvt

u

)
Dp,qΦ(t)dp,qt.

Next, we obtain
v

u

∫∞
0
Φ(pt)Ep,q

(
−
qvt

u

)
dp,qt =

∫∞
0
Ep,q

(
−
qvt

u

)
f(t)dp,qt.

Consequently,

N1
p,q

(∫t
0
f(x)dp,qx;pu, v

)
=
u

v
N1
p,q(f(t);u, v).

Let Φ(x) =
∫x

0 f(τ)dp,qτ, then we get

N1
p,q

(∫t
0

∫x
0
f(τ)dp,qτdp,qx;p2u, v

)
= N1

p,q

(∫t
0
Φ(x)dp,qx;p2u, v

)
=
pu

v
N1
p,q(Φ(t);pu, v)

=
pu

v
N1
p,q

(∫t
0
f(τ)dp,qτ;pu, v

)
=
pu2

v2 N
1
p,q(f(t);u, v).

Next, we set Φ1(x) =
∫x

0

∫x1
0 f(τ1)dp,qτ1dp,qx1, then we obtain

N1
p,q

(∫t
0

∫x
0

∫x1

0
f(τ1)dp,qτ1dp,qx1dp,qx;p3u, v

)
=
p3u3

v3 N1
p,q(f(t);u, v).

Similarly, after continuing this process, we obtain the sequence

N1
p,q

∫t
0

(∫xn
0
· · ·
(∫x2

0
f(x1)dp,qx1

)
· · ·dp,qxn−1

)
dp,qxn︸ ︷︷ ︸

n times

;pnu, v

 =
p(
n
2)un

vn
N1
p,q(f(t);u, v).

Therefore, the proof is completed.

Theorem 3.6 (Convolution theorem). If f1, f2 ∈ D are defined by f1(t) = tδ and f2(t) = tζ−1 for δ > 0 and
ζ > 1, then

N1
p,q((f1 ∗ f2)p,q;u, v) = up(ζ

2−3ζ−2δ)/2N1
p,q(t

δ;u, v)N1
p,q(t

ζ−1;u, v),

where

(f1 ∗ f2)p,q(t) =

∫t
0
f1(η)f2(t− qη)dp,qη. (3.3)
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Proof. Using (3.3), we get

(f1 ∗ f2)p,q(t) =

∫t
0
ηδ(t− qη)ζ−1dp,qη. (3.4)

Then, we change the variables in (3.4) by η = rt and use (2.19), which results in the following form:

(f1 ∗ f2)p,q(t) = t

∫ 1

0
rδtδ(t− qrt)ζ−1

p,q dp,qr = t
δ+ζ

∫ 1

0
rδ(1 − qr)ζ−1

p,q dp,qr = t
δ+ζBp,q(δ+ 1, ζ). (3.5)

Thus, using (2.17) and (2.20) in (3.5), we get

N1
p,q((f ∗ g)p,q;u, v)

up(ζ
2−3β−2δ)/2

=
Bp,q(δ+ 1, ζ)

∫∞
0 Ep,q

(
−qvtu

)
tδ+ζdp,qt

u2p(ζ
2−3ζ−2δ)/2

=
p(ζ−1)(2δ+ζ)/2Γp,q(δ+ 1)Γp,q(ζ)u

δ+ζ[δ+ ζ]p,q!

up(ζ
2−3ζ−2δ)/2p(

δ+ζ+1
2 )Γp,q(δ+ ζ+ 1)vδ+ζ+1

=
[δ]p,q![ζ− 1]p,q!uδ+ζ−1

p(
δ+1

2 )p(
β
2)

= N1
p,q(t

δ;u, v)N1
p,q(t

ζ−1;u, v).

Hence, we obtain

N1
p,q((f1 ∗ f2)p,q;u, v) = up(ζ

2−3ζ−2δ)/2N1
p,q(t

δ;u, v)N1
p,q(t

ζ−1;u, v).

Therefore, the proof is completed.

Theorem 3.7. If f1, f2 ∈ D are defined by f1(t) =
∑∞
i=1 ait

δi and f2(t) = tζ−1 for δ > 0 and ζ > 1, then we
have

N1
p,q((f1 ∗ f2)p,q;u, v) = up(ζ

2−3ζ−2δ)/2N1
p,q(f1;u, v)N1

p,q(f2;u, v).

Proof. By using Theorem 3.6, we obtain

N1
p,q((f1 ∗ f2)p,q;u, v) =

∞∑
i=1

aiup
(ζ2−3ζ−2δ)/2N1

p,q((t
δi ∗ tζ−1)p,q;u, v)

=

∞∑
i=1

aiup
(ζ2−3ζ−2δ)/2N1

p,q(t
δ;u, v)N1

p,q(t
ζ−1;u, v)

= up(ζ
2−3ζ−2δ)/2N1

p,q(f1;u, v)N1
p,q(f2;u, v).

Therefore, the proof is completed.

4. Solving (p,q)-IVP by the (p,q)-natural transform

In this section, we apply the (p,q)-natural transform to solve high order (p,q)-IVP with constant and
variable coefficients. Also, we apply it to obtain solutions.

4.1. Solving (p,q)-IVP with constant coefficient
Consider the (p,q)-IVP for ai ∈ R, i = 1, 2, . . . ,n and n ∈N of the form

Dnp,qy(t) + a1D
n−1
p,q y(pt) + · · ·+ any(pnt) = g(t) (4.1)

with the initial conditions

y(0) = y0,Dp,qy(0) = y1, . . . ,Dn−1
p,q y(0) = yn−1. (4.2)
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Now, we apply N1
p,q to both sides of (4.1) and use initial conditions (4.2). We divide it into two cases in

the process including following.
Case 1 (n = 1): Using Theorems 3.4 (i) and 3.3, we get

N1
p,q(Dp,qy(t) + a1y(pt);u, v) = N1

p,q(g(t);u, v),
y(0)
u

+
v

u
N1
p,q(y(t);pu, v) + a1N

1
p,q(y(pt);u, v) = N1

p,q(g(t);u, v),
y0

u
+
v

u
N1
p,q(y(t);pu, v) + a1N

1
p,q(y(t);pu, v) = N1

p,q(g(t);u, v),

−
y0

u
+
( v
u
+ a1

)
N1
p,q(y(t);pu, v) = N1

p,q(g(t);u, v).

Then, we have

N1
p,q(y(t);u, v) =

u
pN

1
p,q(g(t);

u
p , v)

v+ a1u
p

+
y0

v+ a1u
p

. (4.3)

Finally, by applying the inverse transform N1
p,q on both sides of (4.3), we obtain the exact solution which

is in the form:

y(t) = (N1
p,q)

−1

[
u
pN

1
p,q(g(t);

u
p , v)

v+ a1u
p

]
+ (N1

p,q)
−1

[
y0

v+ a1u
p

]
. (4.4)

Example 4.1. The (p,q)-Cauchy problem is in the following form:

Dp,qy(t) + a1y(pt) = 0

with the initial condition y(0) = 1.
By using (4.4), the previous equation of (4.4) equals to zero. Since g(t) = 0, we obtain

y(t) = (N1
p,q)

−1
[

p

vp+ a1u

]
.

Hence, the solution is as follows:
y(t) = ep,q(−a1t). (4.5)

In addition, if p = 1 and q → 1, then equation (4.5) reduces to y(t) = exp(−a1t), which is a solution of
y ′(t) + a1y(t) = 0 with the initial condition y(0) = 1, which appeared in [40].

Example 4.2. Consider the first order (p,q)-differential equation of the form

Dp,qy(t) + a1y(pt) = t

with the initial condition y(0) = 1.
By using (4.4), we get

y(t) = (N1
p,q)

−1

[
u
pN

1
p,q(t;

u
p , v)

v+ a1u
p

]
+ (N1

p,q)
−1

[
1

v+ a1u
p

]

= (N1
p,q)

−1
[

1
a2

1(bu+ pv)
−

1
a2

1pv
+

u

a1p2v2

]
+ (N1

p,q)
−1
[

p

vp+ a1u

]
(4.6)

=
t

a1p
−

1
a2

1p
+

(
1 +

1
a2

1

)
ep,q(−a1t).

In addition, if p = 1 and q→ 1, then (4.6) reduces to

y(t) =
t

a1
−

1
a2

1
+

(
1 +

1
a2

1

)
exp(−a1t),

which is a solution of y ′(t) + a1y(t) = t with the initial condition y(0) = 1.
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Case 2 (n > 1): Using Theorems 3.4 (iii) and 3.3, we have

N1
p,q(D

n
p,qy(t) + a1D

n−1
p,q y(pt) + a2D

n−2
p,q y(p

2t) + · · ·+ an−1Dp,qy(p
n−1t) + any(p

nt);u, v)

= N1
p,q(g(t);u, v).

Then, we have[
vn

unp(
n
2)
N1
p,q(y(t);up

n, v) −
n−3∑
k=0

vn−k−1u−n+k(Dkp,qy)(0)

p
(n−k−2)(n−k+1)

2 +1
−

n−1∑
k=n−2

vn−k−1u−n+k(Dnp,qy)(0)
pn−k−1

]

+ a1

[
vn−1N1

p,q(y(pt);upn−1, v)

un−1p(
n−1

2 )
−

n−4∑
k=0

vn−k−2u−n+k+1(Dkp,qy)(0)

p
(n−k−3)(n−k)

2 +1

−

n−2∑
k=n−3

vn−k−2u−n+k+1(Dnp,qy)(0)
pn−k−2

]
+ a2

[
vn−2N1

p,q(y(p
2t);upn−2, v)

un−2p(
n−2

2 )

−

n−5∑
k=0

vn−k−3u−n+k+2(Dkp,qy)(0)

p
(n−k−4)(n−k−1)

2 +1
−

n−4∑
k=n−5

vn−k−3u−n+k+2(Dnp,qy)(0)
pn−k−3

]

+ · · ·+ an−1

[
−
y0

u
+
vN1
p,q(y(p

n−1t);pu, v)
u

]
+ anN

1
p,q(y(p

nt);u, v) = N1
p,q(g(t);u, v).

(4.7)

After simplifying (4.7), we get

N1
p,q(y(t);u, v) =

N1
p,q(g(t);

u
pn , v)

vn

unp(
n
2)−n2 + a1vn−1

un−1p(
n−1

2 )−n2+n
+ a2vn−2

un−2p(
n−2

2 )−n2+2n
+ · · ·+ an−1v

up−n + an

−
G( upn , v)

vn

unp(
n
2)−n2 + a1vn−1

un−1p(
n−1

2 )−n2+n
+ a2vn−2

un−2p(
n−2

2 )−n2+2n
+ · · ·+ an−1v

up−n + an
,

where

G(u, v) = −

n−3∑
k=0

vn−k−1u−n+k(Dkp,qy)(0)

p
(n−k−2)(n−k+1)

2 +1
−

n−1∑
k=n−2

vn−k−1u−n+k(Dkp,qy)(0)
pn−k−1

− a1

n−4∑
k=0

vn−k−2u−n+k+1(Dkp,qy)(0)

p
(n−k−3)(n−k)

2 +1
− a1

n−2∑
k=n−3

vn−k−2u−n+k+1(Dkp,qy)(0)
pn−k−2

− a2

n−5∑
k=0

vn−k−3u−n+k+2(Dkp,qy)(0)

p
(n−k−4)(n−k−1)

2 +1
− a2

n−4∑
k=n−5

vn−k−3u−n+k+2(Dkp,qy)(0)
pn−k−3 − · · ·− an−1y(0)

u
.

Next, taking inverse transform N1
p,q on both sides of above equation, we obtain the exact solution which

is in the form:

N1
p,q(y(t);u, v)

= (N1
p,q)

−1

 N1
p,q(g(t);

u
pn , v)

vn

unp(
n
2)−n2 + a1vn−1

un−1p(
n−1

2 )−n2+n
+ a2vn−2

un−2p(
n−2

2 )−n2+2n
+ · · ·+ an−1v

up−n + an


− (N1

p,q)
−1

 G( upn , v)
vn

unp(
n
2)−n2 + a1vn−1

un−1p(
n−1

2 )−n2+n
+ a2vn−2

un−2p(
n−2

2 )−n2+2n
+ · · ·+ an−1v

up−n + an

 .

(4.8)
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Example 4.3. Consider the second order (p,q)-differential equation of the form

D2
p,qy(t) − y(p

2t) = t

with the initial conditions y(0) = Dp,qy(0) = 1. Using equation (4.8), we have

y(t) = (N1
p,q)

−1

[
N1
p,q(t;

u
p2 , v)

v2

u2p−3 − 1

]
− (N1

p,q)
−1

−y ′(0)
up−2 −

vy(0)
u2p−3

v2

u2p−3 − 1


= (N1

p,q)
−1
[

u3

p3v2(v2p3 − u2)
+

up2

v2p3 − u2 +
vp3

v2p3 − u2

]
= (N1

p,q)
−1
[

u

p3v2 − u2 −
u

p3v2 +
up2

v2p3 − u2 +
vp3

v2p3 − u2

]
= (N1

p,q)
−1
[
(1 + p2)u

p3v2 − u2 −
u

p3v2 +
vp3

v2p3 − u2

]
= −

t

p2 + coshp,q

(
t
√
p

)
+

(
1 + p2

p2

)
√
p sinhp,q

(
t
√
p

)
.

(4.9)

In addition, if p = 1 and q→ 1, then (4.9) reduces to

y(t) = −t+ cosh(t) + 2 sinh(t),

which is a solution of y ′′(t) − y(t) = t with the initial conditions y(0) = y ′(0) = 1, which appeared in
[35].

Example 4.4. Consider the second order (p,q)-differential equation of the form

D2
p,qy(t) − 4Dp,qy(pt) − 12y(p2t) = 3 exp(5t)

with the initial conditions y(0) = Dp,qy(0) = 0. Using (4.8), we have

y(t) = (N1
p,q)

−1

[
N1
p,q(3 exp(5t); u

p2 , v)
v2

u2p−3 −
4v
up−2 − 12

]
= (N1

p,q)
−1
[

3p3u2

(p3v2 − 4p2vu− 12u2)(p3v− 5u)

]
. (4.10)

In addition, if p = 1 and q→ 1, then (4.10) reduces to

y(t) = N−1
[

3u2

(v− 6u)(v+ 2u)(v− 5u)

]
= N−1

[
−

3
7(v− 5u)

+
3

56(2u+ v)
+

3
8(v− 6u)

]
= −

3 exp(5t)
7

+
3 exp(−2t)

56
+

3 exp(6t)
8

,

which is a solution of y ′′(t) − 4y ′(t) − 12y(t) = 3 exp(5t) with the initial conditions y(0) = y ′(0) = 0, see
[34] for the inverse natural transform.

Example 4.5. Consider the third order (p,q)-differential equation of the form

D3
p,qy(t) + 2D2

p,qy(pt) + 2Dp,qy(p
2t) + 3y(p3t) = sin(t) + cos(t)

with the initial conditions y(0) = D2
p,qy(0) = 0 and Dp,qy(0) = 1. Using (4.8), we have

y(t) = (N1
p,q)

−1

[
N1
p,q(sin(t); u

p3 , v) +N1
p,q(cos(t); u

p3 , v)
v3

u3p−6 +
2v2

u2p−5 +
2v
up−3 + 3

]
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−

[
−
y ′′(0)
up−3 −

vy ′(0)
u2p−5 −

v2y(0)
u3p−6 −

2y ′(0)
up−3 −

2vy(0)
u2p−5 −

2y(0)
up−3

]
(4.11)

= (N1
p,q)

−1

 up4

v2p8+u2 +
vp8

v2p8+u2 +
vp5

u2 + 2p3

u

v3p6

u3 + 2v2p5

u2 + 2vp3

u + 3


= (N1

p,q)
−1

[
p3u(p10v3 + 2p8uv2 + (p2 + 1

p)p
3u2v+ (2 + p)u3)

(p8v2 + u2)(p6v3 + 2p5uv2 + 2p3u2v+ 3u3)

]
.

In addition, if p = 1 and q→ 1, then equation (4.11) reduces to

y(t) = N−1
[

u

v2 + u2

]
= sin(t),

which is a solution of y ′′′(t) + 2y ′′(t) + 2y ′(t) + 3y(t) = sin(t) + cos(t) with the initial conditions y(0) =
y ′′(0) = 0 and y ′(0) = 1, which appeared in [29].

4.2. Solving (p,q)-IVP with variable coefficients
Consider the following (p,q)-IVP problems of the form

a1(t
n)Dnp,qy

(
t

pnqn

)
+ a2(t

n−1)Dn−1
p,q y

(
t

pn−1qn−1

)
+ · · ·+ an(t)y(t) = g(t)

with the initial conditions

y(0) = y0,Dp,qy(0) = y1, . . . ,Dn−1
p,q y(0) = yn−1,

where ai(tn) = bitn,bi ∈ R, i = 1, 2, . . . ,n and n ∈N.

Theorem 4.6 (Derivative of transforms). For n ∈N, the following formulas hold:

(i)

N1
p,q(tf(t);u, v) = −

q

u

Dp,q

Dp,q
(
v
u

) (uN1
p,q(f(t);qu, v)

)
;

(ii)

N1
p,q(t

2f(t);u, v) =
q3

u

D2
p,q

D2
p,q
(
v
u

) (uN1
p,q(f(t);q

2u, v)
)

;

(iii)

N1
p,q(t

nf(t);u, v) =
(−1)nq(

n+1
2 )

u

Dnp,q

Dnp,q
(
v
u

) (uN1
p,q(f(t);q

nu, v)
)

.

Proof. Using Definition (3.1) to prove (i), we have

N1
p,q(f(t);qu, v) =

1
qu

∫∞
0
f(t)Ep,q

(
−
vt

u

)
dp,qt. (4.12)

Taking (p,q)-derivative to both sides with respect to 1/u, we get

N1
p,q(tf(t);u, v) = −

q

u

Dp,q

Dp,q
(
v
u

) (uN1
p,q(f(t);qu, v)

)
.

From (4.12), taking the second (p,q)-derivative to both sides with respect to 1/u to prove (ii), we have

N1
p,q(t

2f(t);u, v) =
q3

u

D2
p,q

D2
p,q
(
v
u

) (uN1
p,q(f(t);q

2u, v)
)

.

Following the same procedure, we can prove (iii). Therefore, the proof is completed.
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Theorem 4.7. For n,m ∈ N, the following formulas hold:

(i)

N1
p,q(t

nDp,qf(t);u, v) =
(−1)nq(

n+1
2 )

u

Dnp,q

Dnp,q
(
v
u

) (uN1
p,q(Dp,qf(t);qnu, v)

)
;

(ii)

N1
p,q(t

nD2
p,qf(t);u, v) =

(−1)nq(
n+1

2 )

u

Dnp,q

Dnp,q
(
v
u

) (uN1
p,q(D

2
p,qf(t);q

nu, v)
)

;

(iii)

N1
p,q(t

nDmp,qf(t);u, v) =
(−1)nq(

n+1
2 )

u

Dnp,q

Dnp,q
(
v
u

) (uN1
p,q(D

m
p,qf(t);q

nu, v)
)

.

Proof. The proof is similar to Theorem 4.6.

Example 4.8. Consider the first order (p,q)-differential equation with variable coefficients of the form

b1tDp,qy

(
t

pq

)
= b2t

2 (4.13)

with the initial conditions y(0) = 0, where b1 and b2 are constants. Applying N1
p,q on both sides of (4.13),

we obtain

b1N
1
p,q

(
tDp,qy

(
t

pq

)
;u, v

)
= b2N

1
p,q(t

2;u, v).

Using Theorems 3.4, 4.6, 4.7, and (2.15), we have

b1

[
−
q

u

Dp,q

Dp,q
(
v
u

)uN1
p,q

(
Dp,qy

(
t

pq

)
;qu, v

)]
= b2N

1
p,q(t

2;u, v),

b1

[
−
q

u

Dp,q

Dp,q
(
v
u

)uN1
p,q

(
Dp,qy(t);

u

p
, v
)]

= b2N
1
p,q(t

2;u, v),

−
b1q

u

Dp,q

Dp,q
(
v
u

)u [− y(0)
up−1 +

v

up−1N
1
p,q(y(t);u, v)

]
= b2N

1
p,q(t

2;u, v). (4.14)

By substituting the initial conditions in (4.14), we have

−
b1pq

u

Dp,q

Dp,q
(
v
u

) [vN1
p,q(y(t);u, v)

]
=
b2(p+ q)u

2

v3p3 . (4.15)

Letting u = 1 in (4.15), which leads to (p,q)-Laplace transform of the first kind (see [40]), we get

−b1pq
Dp,q

Dp,qv
[vLp,q(v)] =

b2(p+ q)

v3p3 . (4.16)

Now, using (2.8) in (4.16), we obtain

vLp,q(v) = −
b2(p+ q)

b1p4q

∫
v−3dp,qv = −

b2(p
2 − q2)v

b1p4q

∞∑
j=0

qj

pj+1 f

(
qk

pk+1 v

)
=

b2q

b1p2v2 .

We obtain the solution

y(t) =
b2pt

2

b1(p+ q)
. (4.17)

In addition, if b1 = 1, b2 = 1, and q→ 1, then (4.17) reduces to y(t) = t2

2 , which is an exact solution of
ty ′(t) = t2.
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5. Discussion

We investigated the properties of the (p,q)-analogues of the natural transform that are necessary to
solve the (p,q)-differential equations in Section 4, which was divided as follows.

(i) The solutions of (p,q)-IVP with constant coefficient in Subsection 4.1 consist of two cases: for n = 1
and n > 1. For n = 1, (4.4) was used in both Examples 4.1 and 4.2. In Example 4.1, if p = 1 and
q → 1, then the solution reduces to [40, Example 1]. For n > 1, (4.8) was used in Examples 4.3,
4.4, and 4.5 as follows: Example 4.3, if p = 1 and q → 1, then the solution reduces to [35, Example
4], Example 4.5, the solution in the form of N−1 allows us to see that not every (p,q)-differential
equation can be used to find the solution with direct properties, but if p = 1 and q → 1, then the
solution reduces to [29, Example 2].

(ii) The solution of (p,q)-IVP with variable coefficients in Subsection 4.2 consists of Example 4.8, which
is used in Theorems 4.6 and 4.7. We obtained (4.15), and if u = 1 (if v = 1 in (4.15), then the equation
format will become highly complexe and difficult to use), then the best choice is to apply the (p,q)-
analogues of the Laplace transform. We get (4.17), but if p = 1 and q→ 1, then the solution reduces
to classical solution.

(iii) The (p,q)-analogues of the natural transform is a generalization of the (p,q)-analogues of the
Laplace and the Sumudu transforms.

6. Conclusion

In this work, we introduced the concept of natural transform by using (p,q)-calculus and established
the definitions, the convolution theorem, and some properties of the (p,q)-analogues of the natural trans-
form of the first and second kind. Then, the applications of the properties of (p,q)-analogues of the
natural transform of the first kind to solve higher order (p,q)-IVP with constants and coefficients are
conducted to show its performance and effectiveness of the proposed transform.
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