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Abstract

In this paper, we employ soft ω0-open sets to establish four new classes of soft functions in STSs: soft ω0 -continuity,
soft weak ω0-continuity, soft w∗ -continuity, and soft w∗-ω0-continuity. We show that soft weak ω0-continuity and soft w∗-
ω0 -continuity are distinct notions, each of which is strictly weaker than soft ω0-continuity. Furthermore, we get a soft ω0

-continuity decomposition theorem via both weak ω0-continuity and soft w∗-ω0-continuity. In addition, we demonstrate that
soft w∗-continuity is precisely between soft continuity and soft w∗-ω0-continuity. We further show that soft w∗ -continuity
and soft weak continuity are distinct concepts. In addition, we develop a soft continuity decomposition theorem via soft w∗

-continuity and soft weak continuity. Finally, we examine the connection between our new soft topological ideas and their
corresponding topological concepts. Include keywords, mathematical subject classification numbers as needed.
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1. Introduction and preliminaries

This work adheres to the principles and nomenclature presented in [8, 9]. STS and TS will be used in
this study to signify soft topological space and topological space, respectively. Molodtsov [26] developed
the concept of soft sets as a generic mathematical tool for coping with uncertainty in 1999. Let Y represent
a universal set and E represent a set of parameters. A function H : E −→ P(Y) is a soft set over Y relative
to E. SS (Y,E) denotes the family of all soft sets over Y relative to E. The null soft set and the absolute
soft set shall be represented by 0E and 1E, respectively, in this work. STS was defined as a contemporary
mathematical structure in [30] as follows: A STS is a triplet (Y, δ,E), where δ comprises 0E and 1E, and is
closed under finite soft intersection and arbitrary soft union. If (Y, δ,E) is a STS and K ∈ SS(Y,E), then
K is a soft open set in (Y, δ,E) if K ∈ δ and K is a soft closed set in (Y, δ,E) if 1E − K ∈ δ. Soft topology
principles and applications are still a hot field of research ([1–9, 12–21, 23, 27, 31]).

Generalizations of soft open sets play an effective role in soft topology through their use to improve on
some known results or to open the door to redefine and investigate some of the soft topological concepts
such as soft compactness, soft correlation, soft class axioms, soft assignments, etc. Authors in [10] defined
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and investigated ω0-open sets as a generalization of open sets, which are a strong form of ω-open sets.
The author in [3] has extended ω0-open sets to include STSs.

In this paper, we employ soft ω0-open sets to establish four new classes of soft functions in STSs:
soft ω0-continuity, soft weak ω0-continuity, soft w∗-continuity, and soft w∗-ω0-continuity. We show that
soft weak ω0-continuity and soft w∗-ω0-continuity are distinct notions, each of which is strictly weaker
than soft ω0-continuity. Furthermore, we get a soft ω0-continuity decomposition theorem via both weak
ω0-continuity and soft w∗-ω0-continuity. In addition, we demonstrate that soft w∗-continuity is precisely
between soft continuity and soft w∗-ω0-continuity. We further show that soft w∗-continuity and soft
weak continuity are distinct concepts. In addition, we develop a soft continuity decomposition theorem
via soft w∗-continuity and soft weak continuity. Finally, we examine the connection between the new soft
continuity concepts and their corresponding continuity concepts.

In the next work, we hope to find an application for our new soft topological notions in a decision-
making problem.

Let (Y, δ,E) be a STS, (Y, =) be a TS, K ∈ SS(Y,E), and W ⊆ Y. Throughout this paper, Clδ(K), Intδ(K),
Bdδ(K), Cl=(W), Int=(W), and Bd=(W) will denote the soft closure of K in (Y, δ,E), the soft interior of K
in (Y, δ,E), the soft boundary of K in (Y, δ,E), the closure of W in (Y, =), the interior of W in (Y, =), and
the boundary of W in (Y, =), respectively. Also, the family of all soft closed sets in (Y, δ,E) (resp. closed
sets in (Y, =)) will be denoted by δc (resp. =c).

The following definitions will be used in the sequel.

Definition 1.1 ([10]). Let (Y, =) be a TS and U ⊆ Y. Then

(a) U is said to be an ω0-open set in (Y, =) if for every y ∈ U, there exist V ∈ = and a countable subset
B ⊆ Y such that y ∈ V and V −B ⊆ Int= (U);

(b) U is said to be an ω0-closed subset of (Y, =) if Y −U is an ω0-open subset of (Y, =);
(c) the collection of all ω0-open subsets of (Y, =) will be denoted by =ω0 .

Definition 1.2. A function g : (Y, =) −→ (Z,ℵ) is said to be

(a) weakly continuous at y ∈ Y if for every N ∈ ℵ such that g(y) ∈ N, there exists W ∈ = such that y ∈W
and g(W) ⊆ Clℵ(N). g is said to be weakly continuous if g is weakly continuous at each y ∈ Y, [25];

(b) w∗-continuous if g−1(Bdℵ(W)) ∈ δc for each W ∈ ℵ, [25];
(c) ω-continuous at y ∈ Y if for every N ∈ ℵ such that g(y) ∈ N, there exists W ∈ =ω such that y ∈ W

and g(W) ⊆ N. g is said to be ω-continuous if g is ω-continuous at each y ∈ Y, [24];
(d) ω0-continuous at y ∈ Y if for every N ∈ ℵ such that g(y) ∈ N, there exists W ∈ =ω0 such that y ∈ W

and g(W) ⊆ N. g is said to be ω0-continuous if g is ω0-continuous at each y ∈ Y, [11];
(e) weakly ω0-continuous at y ∈ Y if for every N ∈ ℵ such that g(y) ∈ N, there exists W ∈ =ω0 such that

y ∈ W and g(W) ⊆ Clℵ(N). g is said to be weakly ω0-continuous if g is weakly ω0-continuous at
each y ∈ Y, [11];

(f) w∗-ω0-continuous if g−1(Bdℵ(W)) ∈ =c
ω0 for each W ∈ ℵ, [11].

Definition 1.3 ([22]). Let Y be a non-empty set and E be a set of parameters. A soft set F ∈ SS(Y,E) is
called a soft point over Y relative to E if there exist e ∈ E and y ∈ Y such that

F (a) =

{
{y} , if a = e,
∅, if a 6= e.

We denote F by ey. The family of all soft points over Y relative to E is denoted by SP (Y,E).

Definition 1.4 ([3]). A soft set K of a STS (Y, δ,E) is said to be a soft ω0-open set in (Y, δ,E) if for any
ey∈̃K, there exists S ∈ δ and C ∈ CSS(Y,B) such that ey∈̃S and S−C ⊆̃Intδ (K). Soft complements of soft
ω0-open sets in (Y, δ,E) are said to be soft ω0-closed sets in (Y, δ,E).

The collection of all soft ω0-open sets in (Y, δ,E) will be denoted by δω0 .
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Definition 1.5. A soft function fpu : (Y, δ,E) −→ (Z,β,D) is said to be

(a) soft weakly continuous at ey ∈ SP(Y,E) if for every S ∈ β such that fpu(ey)∈̃S, there exists K ∈ δ
such that ey∈̃K and fpu(K)⊆̃Clβ (S). fpu is said to be soft weakly continuous if fpu is soft weakly
continuous at each ey ∈ SP(Y,E), [29];

(b) soft ω-continuous at ey ∈ SP(Y,E) if for every S ∈ β such that fpu(ey)∈̃S, there exists K ∈ δω such
that ey∈̃K and fpu(K)⊆̃S. fpu is said to be soft ω-continuous if fpu is soft ω-continuous at each
ey ∈ SP(Y,E), [7].

Definition 1.6 ([28]). A STS (Y, δ,E) is said to be soft Lindelof if for every K ⊆ ◦ such that 1E = ∪̃K∈KK,
there exists a countable subfamily K1⊆ K such that 1E = ∪̃K1∈KK.

2. Soft ω0-continuity

In this section, we introduce the notion of soft ω0-continuous soft functions and establish their main
properties. We characterize them by several methods. With the help of examples, we show the re-
lationships between soft ω0-continuous functions and some types of soft functions, such as soft con-
tinuous functions and soft ω-continuous functions. Also, we examine the connection between a soft
ω0-continuous soft function and its corresponding topological concept.

Definition 2.1. A soft function fpu : (Y, δ,E) −→ (Z,β,D) is said to be soft ω0-continuous at ey ∈ SP(Y,E)
if for every S ∈ β such that fpu(ey)∈̃S, there exists K ∈ δω0 such that ey∈̃K and fpu(K)⊆̃S. fpu is said to
be soft ω0-continuous if fpu is soft ω0-continuous at each ey ∈ SP(Y,E).

Theorem 2.2. For a soft function fpu : (Y, δ,E) −→ (Z,β,D), the following conditions are equivalent:

(a) fpu is soft ω0-continuous;
(b) f−1

pu(K) ∈ δω0 for each K ∈ β;
(c) for a soft base H of (Z,β,D), f−1

pu(H) ∈ δω0 for each H ∈ H;
(d) for a soft subbase T of (Z,β,D), f−1

pu(T) ∈ δω0 for each T ∈ T;
(e) f−1

pu(R) ∈ δcω0 for each R ∈ βc;

(f) fpu(Clδ
ω0 (M))⊆̃Clβ (fpu(M)) for each M ∈ SS(Y,E);

(g) Clδ
ω0

(
f−1
pu (F)

)
⊆̃f−1
pu(Clβ (F)) for each F ∈ SS(Z,D).

Proof.

(a) =⇒ (b): Let K ∈ β. Let ey∈̃f−1
pu(K), then fpu (ey) ∈̃K. By (a), we find J ∈ δω0 such that ey∈̃J and

fpu(J)⊆̃K. Therefore, we have ey∈̃J⊆̃f−1
pu (fpu(J)) ⊆̃f−1

pu (K). Hence, f−1
pu(K) ∈ δω0 .

(b) =⇒ (c) and (c) =⇒ (d): They are clear.

(d) =⇒ (e): Let R ∈ βc. It is sufficient to show that 1E− f−1
pu(R) ∈ δω0 . Let ey∈̃1E− f−1

pu(R) = f
−1
pu(1D−R).

Then fpu (ey) ∈̃1D − R ∈ β. By (d), we find T1, T2, . . . , Tm ∈ T such that fpu (ey) ∈̃T1∩̃T2∩̃ · · · ∩̃Tm⊆̃1D − R.
Thus,

ey∈̃f−1
pu (T1) ∩̃f−1

pu (T2) ∩̃ · · · ∩̃f−1
pu (Tm) ⊆̃f−1

pu (1D − R) = 1E − f−1
pu(R).

By (d), f−1
pu (T1) ∩̃f−1

pu (T2) ∩̃ · · · ∩̃f−1
pu (Tm) ∈ δω0 and so, 1E − f−1

pu(R) ∈ δω0 .

(e) =⇒ (f): Let M ∈ SS(Y,E), then Clβ (fpu(M)) ∈ βc and by (e), f−1
pu(Clβ (fpu(K))) ∈ δc

ω0 . As
M⊆̃f−1

pu(fpu(M))⊆̃f−1
pu(Clβ (fpu(M))), then Clδ

ω0 (M) ⊆̃f−1
pu(Clβ (fpu(M))) and thus,

fpu

(
Clδ

ω0 (M)
)
⊆̃fpu

(
f−1
pu(Clβ (fpu(M)))

)
⊆̃Clβ (fpu(M)) .
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(f) =⇒ (g): Let F ∈ SS(Z,D), then by (f), fpu(Clδ
ω0

(
f−1
pu (F)

)
)⊆̃Clβ

(
fpu(f

−1
pu (F))

)
⊆̃Clβ (F). Thus,

Clδ
ω0

(
f−1
pu (F)

)
⊆̃f−1
pu

(
fpu(Clδ

ω0

(
f−1
pu (F)

)
)
)
⊆̃f−1
pu(Clβ (F)).

(g) =⇒ (a): Let ey ∈ SP(Y,E) and S ∈ β with fpu(ey) ∈ S. Then by (g),

Clδ
ω0

(
1E − f−1

pu(S)
)
= Clδ

ω0

(
f−1
pu (1D − S)

)
⊆̃f−1
pu(Clβ (1D − S)) = f−1

pu(1D − S) = 1E − f−1
pu(S).

So, 1E − f−1
pu(S) ∈ δcω0 . Thus, we have ey∈̃f−1

pu(S) ∈ δω0 and fpu(f−1
pu(S))⊆̃S. This ends the proof.

Theorem 2.3. If fpu : (Y, δ,E) −→ (Z,β,D) is soft ω0-continuous at ey, then p : (Y, δe) −→
(
Z,βu(e)

)
is

ω0-continuous at y.

Proof. Let fpu : (Y, δ,E) −→ (Z,β,D) be soft ω0-continuous at ey. Let W ∈ βu(e) with p (y) ∈ W. There
exists K ∈ β such that K (u(e)) =W. Then we have fpu(ey) = (u(e))p(y) ∈̃K ∈ β. So by soft ω0-continuity
of fpu at ey, we find M ∈ δω0 such that ey∈̃M and fpu(M)⊆̃K. Hence, we have y ∈M(e) ∈ (δω0)e. Also,
by Theorem 12 of [3], (δω0)e ⊆ (δe)ω0 and thus, M(e) ∈ (δe)ω0 . We are going to show that p(M(e)) ⊆W.
Let x ∈M (e), then ex∈̃M. As fpu(M)⊆̃K, fpu(ex) = (u (e))p(x) ∈̃K. Thus, p(x) ∈ K (u(e)) =W.

We leave the validity of the converse of Theorem 2.3 as an open question.

Corollary 2.4. If fpu : (Y, δ,E) −→ (Z,β,D) is soft ω0-continuous, then p : (Y, δe) −→
(
Z,βu(e)

)
is ω0-

continuous for every e ∈ E.

Theorem 2.5. For any function p : (Y, =) −→ (Z,ℵ) between TSs and any function u : E −→ D between sets
of parameters, p : (Y, =) −→ (Z,ℵ) is ω0-continuous at a point y ∈ Y if and only if fpu : (Y, τ (=) ,E) −→
(Z, τ (ℵ) ,D) is soft ω0-continuous at ey for each e ∈ E.

Proof.

Necessity. Let p : (Y, =) −→ (Z,ℵ) be ω0-continuous at y. Let e ∈ E and K ∈ τ (ℵ) with fpu(ey)∈̃K.
Then p(y) ∈ K(u (e)) ∈ ℵ and by ω0-continuity of p at y, we find W ∈ =ω0 such that y ∈W and p(W) ⊆
K(u (e)). Since by Corollary 4 of [3], τ (=ω0) = (τ (=))ω0 and eW ∈ τ (=ω0), then eW ∈ (τ (=))ω0 . So, we
have ey∈̃eW ∈ (τ (=))ω0 with fpu(eW) = (u(e))p(W) ⊆̃K. It follows that fpu : (Y, τ (=) ,E) −→ (Z, τ (ℵ) ,D)

is soft ω0-continuous at ey.

Sufficiency. Suppose that fpu : (Y, τ (=) ,E) −→ (Z, τ (ℵ) ,D) is soft ω0-continuous at ey for every e ∈
E. Then, according to Theorem 2.3, p : (Y, (τ (=))e) −→

(
Z, (τ (ℵ))u(e)

)
is ω0-continuous at y. Since

(τ (=))e = = and (τ (ℵ))u(e) = ℵ, we get the result.

Corollary 2.6. For any function p : (Y, =) −→ (Z,ℵ) between TSs and any function u : E −→ D between sets
of parameters, p : (Y, =) −→ (Z,ℵ) is ω0-continuous if and only if fpu : (Y, τ (=) ,E) −→ (Z, τ (ℵ) ,D) is soft
ω0-continuous.

Theorem 2.7.

(a) Every soft continuous soft function is soft ω0-continuous.
(b) Every soft ω0-continuous soft function is soft ω-continuous.

Proof. The proof of each of (a) and (b) follows from the definitions and Theorem 5 of [3].

The two examples below demonstrate that the class of soft ω0-continuous functions is strictly between
the classes of soft continuous functions and soft ω0-continuous functions.
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Example 2.8. Let Y = {1, 2}, = = {∅, Y, {1}}, ℵ = {∅, Y, {2}}, and E = Q. Consider the identities functions
p : Y −→ Y and u : E −→ E. Then fpu : (Y, τ (=) ,E) −→ (Y, τ (ℵ) ,E) is soft ω0-continuous but not soft
continuous.

Example 2.9. Let Y = R, Z = {1, 2}, = be the usual topology on Y, ℵ = {∅,Z, {1}}, and E = {a,b}. Define
p : (Y, =) −→ (Z,ℵ) as follows:

p(y) =

{
2, if y ∈ Q,
1, if y ∈ R − Q.

Let u : E −→ E be the identity function. Then fpu : (Y, τ (=) ,E) −→ (Z, τ (ℵ) ,E) is soft ω-continuous
but not soft ω0-continuous.

Theorem 2.10. If fpu : (Y, δ,E) −→ (Z,β,D) is soft ω0-continuous and fqv : (Z,β,D) −→ (W,γ,L) is soft
continuous, then f(q◦p)(v◦u) : (Y, δ,E) −→ (W,γ,L) is soft ω0-continuous.

Proof. Let G ∈ γ. By soft continuity of fqv, f−1
qv(G) ∈ β. Because of the soft ω0-continuity of fpu,

f−1
pu(f

−1
qv(G)) = f

−1
(q◦p)(v◦u)(G) ∈ δω0 . This ends the proof.

Theorem 2.11. Let fpu : (Y, δ,E) −→ (Z,β,D) be softω0-continuous and letW ⊆ Y such that CW ∈ δω0 − {0E}.
Then f(p|W )u : (W, δW ,E) −→ (Z,β,D) is soft ω0-continuous.

Proof. Let K ∈ β. Then by soft ω0-continuity of fpu, f−1
pu(K) ∈ δω0 . Thus, f−1

(p|W )u
(K) = f−1

pu(K)∩̃CW ∈

(δω0)W . Hence, by Theorem 11 of [3], f−1
(p|W )u

(K) ∈ (δW)ω0 . Therefore, f(p|W )u : (W, δW ,E) −→ (Z,β,D)

is soft ω0-continuous.

Corollary 2.12. Let fpu : (Y, δ,E) −→ (Z,β,D) be soft ω0-continuous and let W ⊆ Y such that CW ∈ δ− {0E}.
Then f(p|W )u : (W, δW ,E) −→ (Z,β,D) is soft ω0-continuous.

Theorem 2.13. Let fpu : (Y, δ,E) −→ (Z,β,D) be a soft function and let ey ∈ SP(Y,E). If there is a W ⊆ Y
such that CW ∈ δω0 , ey∈̃CW , and f(p|W )u : (W, δW ,E) −→ (Z,β,D) is soft ω0-continuous at ey, then

fpu : (Y, δ,E) −→ (Z,β,D) is soft ω0-continuous at ey.

Proof. Let K ∈ β such that fpu(ey) ∈ K. As f(p|W )u is soft ω0-continuous at ey, we find M ∈ (δW)ω0

such that ey∈̃M and f(p|W )u(M)⊆̃K. Since CW ∈ δω0 and M ∈ (δW)ω0 , then M ∈ δω0 . It follows that

fpu : (Y, δ,E) −→ (Z,β,D) is soft ω0-continuous at ey.

Corollary 2.14. Let fpu : (Y, δ,E) −→ (Z,β,D) be a soft function. Let {CYi : i ∈ I} ⊆ δω0 such that 1E =
∪̃i∈ICYi . If for each i ∈ I, f(

p|Yi

)
u

: (Yi, δYi ,E) −→ (Z,β,D) is soft ω0-continuous, then fpu : (Y, δ,E) −→

(Z,β,D) is soft ω0-continuous.

Proof. Let ey ∈ SP(Y,E). It is sufficient to see that fpu : (Y, δ,E) −→ (Z,β,D) is soft ω0-continuous
at ey. Choose j ∈ I such that ey∈̃CYJ . Then, by Theorem 2.13, fpu : (Y, δ,E) −→ (Z,β,D) is soft ω0-
continuous.

Theorem 2.15. Let fpu : (Y, δ,E) −→ (Z,β,D) be soft ω-continuous and soft surjective. If (Y, δ,E) is soft
Lindelof, then (Z,β,D) is soft Lindelof.

Proof. Let K ⊆ � such that 1D = ∪̃K∈KK. Then 1E = ∪̃K∈Kf−1
pu (K). Also, since fpu is soft ω-continuous,

then
{
f−1
pu(K) : K ∈ K

}
⊆ δω. Since (Y, δ,E) is soft Lindelof, then by Theorem 35 of [9], (Y, δω,E). Thus,

there exists a countable subset K1 ⊆ K such that 1E = ∪̃K∈K1f
−1
pu (K). Hence, 1D = fpu

(
∪̃K∈K1f

−1
pu (K)

)
=

∪̃K∈K1fpu
(
f−1
pu (K)

)
⊆̃∪̃K∈K1K. It follows that (Z,β,D) is soft Lindelof.
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Corollary 2.16. Let fpu : (Y, δ,E) −→ (Z,β,D) be soft ω0-continuous and soft surjective. If (Y, δ,E) is soft
Lindelof, then (Z,β,D) is soft Lindelof.

Proof. Follows from Theorems 2.7 (b) and 2.15.

Corollary 2.17. Let fpu : (Y, δ,E) −→ (Z,β,D) be soft continuous and soft surjective. If (Y, δ,E) is soft Lindelof,
then (Z,β,D) is soft Lindelof.

Proof. Follows from Theorems 2.7 (a) and Corollary 2.16.

3. Decomposition theorems of soft continuity and soft ω0-continuity

In this section, we offer three new forms of soft functions: soft weak ω0-continuity, soft w∗-continuity,
and soft w∗-ω0-continuity. We demonstrate that soft w∗-ω0-continuity and soft weak ω0-continuity are
separate concepts, each of which is strictly weaker than soft ω0-continuity. Furthermore, using both weak
ω0-continuity and soft w∗-ω0-continuity, we get a soft ω0-continuity decomposition theorem. Further-
more, we show that soft w∗-continuity is precisely between soft continuity and soft w∗-ω0-continuity.
Furthermore, we demonstrate that soft w∗-continuity and soft weak continuity are separate notions. Fur-
thermore, we prove a soft continuity decomposition theorem using soft w∗-continuity and soft weak
continuity. Finally, we investigate the relationship between our novel soft topological notions and their
related topological concepts.

Definition 3.1. A soft function fpu : (Y, δ,E) −→ (Z,β,D) is said to be soft weakly ω0-continuous at ey ∈
SP(Y,E) if for every S ∈ β such that fpu(ey)∈̃S, there exists K ∈ δω0 such that ey∈̃K and fpu(K)⊆̃Clβ (S).
fpu is said to be soft weakly ω0-continuous if fpu is soft weakly ω0-continuous at each ey ∈ SP(Y,E).

Theorem 3.2. For a soft function fpu : (Y, δ,E) −→ (Z,β,D), the following conditions are equivalent:

(a) fpu is soft weakly ω0-continuous;
(b) for each S ∈ β, Clδ

ω0

(
f−1
pu(S)

)
⊆̃f−1
pu(Clβ (S));

(c) for each S ∈ β, f−1
pu(S)⊆̃Intδ

ω0

(
f−1
pu(Clβ (S))

)
.

Proof.

(a) =⇒ (b): Let S ∈ β. Suppose to the contrary that there exists ey∈̃Clδ
ω0

(
f−1
pu(S)

)
− f−1

pu(Clβ (S)). Since

fpu(ey) /̃∈Clβ (S), then there exists G ∈ β such that fpu(ey) ∈ G and G∩̃S = 0D. By (a), there exists
K ∈ δω0 such that ey∈̃K and fpu(K)⊆̃Clβ (G). Since ey∈̃Clδ

ω0

(
f−1
pu(S)

)
and ey∈̃K ∈ δω0 , then K∩̃f−1

pu(S) 6=
0E. Choose bz∈̃K such that fpu(bz)∈̃S. Since bz∈̃K and fpu(K)⊆̃Clβ (G), then fpu(bz)∈̃Clβ (G). Since
fpu(bz)∈̃S ∈ β and fpu(bz)∈̃Clβ (G), then G∩̃S 6= 0D, a contradiction.

(b) =⇒ (c): Let S ∈ β. Then 1D − Clβ (S) ∈ β and by (b),

Clδ
ω0

(
f−1
pu(1D − Clβ (S))

)
⊆̃f−1
pu(Clβ

(
1D − Clβ (S)

)
),

and so
1E − f−1

pu(Clβ
(
1D − Clβ (S)

)
)⊆̃1E − Clδ

ω0

(
f−1
pu(1D − Clβ (S))

)
.

Now,
1E − f−1

pu(Clβ
(
1D − Clβ (S)

)
) = f−1

pu(1D − Clβ
(
1D − Clβ (S)

)
) = f−1

pu(Intβ(Clβ (S))).

Also, since S ∈ β, then S⊆̃Intβ(Clβ (S)) and so f−1
pu(S)⊆̃f−1

pu(Intβ(Clβ (S)). Thus, we have

f−1
pu(S)⊆̃1E − f−1

pu(Clβ
(
1D − Clβ (S)

)
)⊆̃1E − Clδ

ω0

(
f−1
pu(1D − Clβ (S))

)
= 1E − Clδ

ω0

(
(1E − f−1

pu

(
Clβ (S)

)
)
)
= Intδ

ω0

(
f−1
pu(Clβ (S))

)
.
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(c) =⇒ (a): Let ey∈SP(Y,E) and let S∈β such that fpu(ey)∈̃S. Then by (c), f−1
pu(S)⊆̃Intδ

ω0

(
f−1
pu(Clβ (S))

)
.

Put K = Intδ
ω0

(
f−1
pu(Clβ (S))

)
. Then fpu(ey)∈̃K ∈ δω0 and

fpu(K) = fpu(Intδ
ω0

(
f−1
pu(Clβ (S))

)
)⊆̃fpu(

(
f−1
pu(Clβ (S))

)
)⊆̃Clβ (S) .

This ends the proof.

Theorem 3.3. For any function p : (Y, =) −→ (Z,ℵ) between TSs and any function u : E −→ D between sets
of parameters, p : (Y, =) −→ (Z,ℵ) is weakly continuous at a point y ∈ Y if and only if fpu : (Y, τ (=) ,E) −→
(Z, τ (ℵ) ,D) is soft weakly continuous at ey for every e ∈ E.

Proof.

Necessity. Let p : (Y, =) −→ (Z,ℵ) be weakly continuous at y. Let e ∈ E and K ∈ τ (ℵ) with fpu(ey)∈̃K.
Then p(y) ∈ K(u (e)) ∈ ℵ and by weak continuity of p at y, we find W ∈ = such that y ∈ W and p(W) ⊆
Clℵ (K(u (e))). So, we have ey∈̃eW ∈ τ (=) with fpu(eW) = (u(e))p(W) ⊆̃ (u(e))Clℵ(K(u(e))) ⊆̃Clτ(ℵ) (K).
It follows that fpu : (Y, τ (=) ,E) −→ (Z, τ (ℵ) ,D) is soft weakly continuous at ey.

Sufficiency. Let fpu : (Y, τ (=) ,E) −→ (Z, τ (ℵ) ,D) be soft weakly continuous at ey for every e ∈ E. Let
W ∈ ℵ such that p(y) ∈ W. Choose e ∈ E. Then we have fpu(ey) = u (e)p(y) ∈̃ (u (e))W ∈ τ (ℵ). By
soft weak continuity of fpu at ey, there exists G ∈ τ (=) such that ey∈̃G and fpu(G)⊆̃Clτ(ℵ)((u (e))W) =

u (e)Clℵ(W). Thus, we have y ∈ G(e) ∈ = and p(G(e)) ⊆ (fpu(G)) (u (e)) ⊆
(
u (e)Clℵ(W)

)
(u (e)) =

Clℵ(W).

Corollary 3.4. For any function p : (Y, =) −→ (Z,ℵ) between TSs and any function u : E −→ D between sets of
parameters, p : (Y, =) −→ (Z,ℵ) is weakly continuous if and only if fpu : (Y, τ (=) ,E) −→ (Z, τ (ℵ) ,D) is soft
weakly continuous.

Theorem 3.5. For any function p : (Y, =) −→ (Z,ℵ) between TSs and any function u : E −→ D between sets of
parameters, p : (Y, =) −→ (Z,ℵ) is weakly ω0-continuous at a point y ∈ Y if and only if fpu : (Y, τ (=) ,E) −→
(Z, τ (ℵ) ,D) is soft weakly ω0-continuous at ey for every e ∈ E.

Proof.

Necessity. Let p : (Y, =) −→ (Z,ℵ) be weakly ω0-continuous at y. Let e ∈ E and K ∈ τ (ℵ) with fpu(ey)∈̃K.
Then p(y) ∈ K(u (e)) ∈ ℵ and by weak ω0-continuity of p at y, we find W ∈ =ω0 such that y ∈ W and
p(W) ⊆ Clℵ (K(u (e))). Since by Corollary 4 of [3], τ (=ω0) = (τ (=))ω0 and eW ∈ τ (=ω0), then eW ∈
(τ (=))ω0 . So, we have ey∈̃eW ∈ (τ (=))ω0 with fpu(eW) = (u(e))p(W) ⊆̃ (u(e))Clℵ(K(u(e))) ⊆̃Clτ(ℵ) (K). It
follows that fpu : (Y, τ (=) ,E) −→ (Z, τ (ℵ) ,D) is soft weakly ω0-continuous at ey.

Sufficiency. Let fpu : (Y, τ (=) ,E) −→ (Z, τ (ℵ) ,D) be soft weakly ω0-continuous at ey for every e ∈ E. Let
W ∈ ℵ such that p(y) ∈ W. Choose e ∈ E. Then we have fpu(ey) = u (e)p(y) ∈̃ (u (e))W ∈ τ (ℵ). By soft
weakω0-continuity of fpu at ey, there exists G∈(τ (=))ω0 such that ey∈̃G and fpu(G)⊆̃Clτ(ℵ)((u (e))W) =
u (e)Clℵ(W). Since by Corollary 4 of [3], τ (=ω0) = (τ (=))ω0 , then G ∈ τ (=ω0). Thus, we have y ∈ G(e) ∈

=ω0 and p(G(e)) ⊆ (fpu(G)) (u (e)) ⊆
(
u (e)Clℵ(W)

)
(u (e)) = Clℵ(W).

Corollary 3.6. For any function p : (Y, =) −→ (Z,ℵ) between TSs and any function u : E −→ D between sets of
parameters, (Y, =) −→ (Z,ℵ) is weakly ω0-continuous if and only if fpu : (Y, τ (=) ,E) −→ (Z, τ (ℵ) ,D) is soft
weakly ω0-continuous.

Theorem 3.7. Every soft ω0-continuous soft function is soft weakly ω0-continuous.

Proof. Straightforward.

The following example shows that the converse of Theorem 3.7 is not always true.
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Example 3.8. Let Y = R, Z = {a,b, c}, = be the co-countable topology on Y, ℵ = {∅,Z, {a} , {b} , {a,b}}, and
E = N. Define p : (Y, =) −→ (Z,ℵ) and u : E −→ E by

p(y) =

{
a, if y ∈ Q,
c, if y ∈ R − Q,

and u(e) = e for all e ∈ E. To see that p is weakly ω0-continuous, let y ∈ Y and N ∈ ℵ such that p(y) ∈ N.
If y ∈ Q, there exists R ∈ =ω0 such that y ∈ R and p(R) = {a, c} = Clℵ({a}) ⊆ Clℵ(N). If y ∈ R − Q,
then N = Z and so there exists R ∈ =ω0 such that y ∈ R and p(R) = {a, c} ⊆ Clℵ(N) = Z. On the other
hand, since {a} ∈ ℵ but p−1 ({a}) = Q /∈ =ω0 , then p is not ω0-continuous. Thus, by Corollaries 2.6 and
3.6, fpu : (Y, τ (=) ,E) −→ (Z, τ (ℵ) ,E) is soft weakly ω0-continuous but not soft ω0-continuous.

Theorem 3.9. If fpu : (Y, δ,E) −→ (Z,β,D) is soft weakly ω0-continuous such that (Z,β,D) is soft regular, then
fpu is soft ω0-continuous.

Proof. Let ey ∈ SP(Y,E) and let S ∈ β such that fpu(ey)∈̃S. Since (Z,β,D) is soft regular, then there exists
T ∈ β such that fpu(ey)∈̃T⊆̃Clβ (T) ⊆̃S. By soft weak ω0-continuity of fpu, there exists K ∈ δω0 such that
ey∈̃K and fpu(K)⊆̃Clβ (T) ⊆̃S. Therefore, fpu is soft ω0-continuous.

Theorem 3.10. Every soft weakly continuous soft function is soft weakly ω0-continuous.

Proof. Straightforward.

The following example will show that the converse of Theorem 3.10 need not to be true in general.

Example 3.11. Let Y = {a,b, c}, = = {∅, Y, {a} , {c} , {a, c}}, ℵ = {∅, Y, {a} , {b} , {a,b}}, and E = N. Let p : Y −→
Y and u : E −→ E be the identities functions. Since =ω0 is the discrete topology on Y, then p : (Y, =) −→
(Y,ℵ) is ω0-continuous and by Theorem 3.7 it is weakly ω0-continuous. Suppose that p : (Y, =) −→ (Y,ℵ)
is weakly continuous, then it is weakly continuous at b. Since p(b) = b ∈ {b} ∈ ℵ, then there exists U ∈ =

such that b ∈ U and p(U) = U = Y ⊆ Clℵ({b}) = {b, c} which is not true. Hence, p : (Y, =) −→ (Y,ℵ) is not
weakly continuous. Therefore, by Corollaries 3.4 and 3.6, fpu : (Y, τ (=) ,E) −→ (Z, τ (ℵ) ,E) is soft weakly
ω0-continuous but not soft weakly ω0-continuous.

Definition 3.12. A soft function fpu : (Y, δ,E)−→(Z,β,D) is said to be softw∗-continuous if f−1
pu(Bdβ(K))∈

δc for each K ∈ β.

Theorem 3.13. For any function p : (Y, =) −→ (Z,ℵ) between TSs and any function u : E −→ D between sets
of parameters, p : (Y, =) −→ (Z,ℵ) is w∗-continuous if and only if fpu : (Y, τ (=) ,E) −→ (Z, τ (ℵ) ,D) is soft
w∗-continuous.

Proof.

Necessity. Let p : (Y, =) −→ (Z,ℵ) be w∗-continuous. Let K ∈ τ (ℵ). Then for every e ∈ E, K(u (e)) ∈ ℵ

and by w∗-continuity of p, p−1(Bdℵ (K(u (e)))) ∈ =c. Now, for every e ∈ E we have

f−1
pu(Bdτ(ℵ) (K))(e) = p

−1 ((Bdτ(ℵ) (K)
)
(u(e))

)
= p−1 ((Clτ(ℵ) (K) −K)(u(e))

)
= p−1 (((Clτ(ℵ) (K)

)
(u(e)) −K(u(e))

)
= p−1(Clℵ (K (u(e))) −K(u(e)))

= p−1(BdℵK (u(e))) ∈ =c.

Therefore, f−1
pu(Bdτ(ℵ) (K)) ∈ (τ (=))c. Hence, fpu : (Y, τ (=) ,E) −→ (Z, τ (ℵ) ,D) is soft w∗-continuous.
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Sufficiency. Suppose that fpu : (Y, τ (=) ,E) −→ (Z, τ (ℵ) ,D) is soft w∗-continuous. Let V ∈ ℵ. Choose
e ∈ E. Then we have (u (e))V ∈ τ (ℵ) and so, f−1

pu

(
Bdτ(ℵ)((u (e))V

)
∈ (τ (=))c. Thus,(

f−1
pu

(
Bdτ(ℵ)((u (e))V

))
(e) =

(
f−1
pu

(
Clτ(ℵ) (((u (e))V) − (u (e))V

))
(e)

=
(
f−1
pu

(
((u (e))Clℵ(V) − (u (e))V

))
(e)

=
(
f−1
pu

(
((u (e))Clℵ(V)−V

))
(e)

= p−1
((

((u (e))Clℵ(V)−V

)
(u(e))

)
= p−1 (Clℵ (V) − V)

= p−1 (Bdℵ (V)) ∈ =c.

Therefore, p : (Y, =) −→ (Z,ℵ) is w∗-continuous.

The following two examples will show that soft weak continuity and soft w∗-continuity are indepen-
dent concepts.

Example 3.14. Let Y = {1, 2}, = = {∅, Y, {1}}, ℵ = {∅, Y, {2}}, and E = N. Consider the identities functions
p : Y −→ Y and u : E −→ E. Then clearly that p : (Y, =) −→ (Y,ℵ) is weakly continuous. On the
other hand, since {2} ∈ ℵ, while p−1 (Bdℵ ({2})) = p−1 ({1}) = {1} /∈ =c, then p : (Y, =) −→ (Y,ℵ) is not
w∗-continuous. Therefore, by Corollary 3.4 and Theorem 3.13, fpu : (Y, τ (=) ,E) −→ (Y, τ (ℵ) ,E) is soft
weakly continuous but not soft w∗-continuous.

Example 3.15. Let Y = {1, 2}, = = {∅, Y}, ℵ = {∅, Y, {1} , {2}}, and E = N. Consider the identities functions
p : Y −→ Y and u : E −→ E. Since for each V ∈ ℵ, p−1 (Bdℵ (V)) = p−1 (∅) = ∅ ∈ =c, then p :
(Y, =) −→ (Y,ℵ) is w∗-continuous. Suppose that p : (Y, =) −→ (Y,ℵ) is weakly continuous. Since p(2) =
2 ∈ {2} ∈ ℵ, then there exists U ∈ = such that p(U) = p(Y) = Y ⊆ Clℵ ({2}) = {2} which is impossible.
Thus, p : (Y, =) −→ (Y,ℵ) is not weakly continuous. Therefore, by Corollary 3.4 and Theorem 3.13,
fpu : (Y, τ (=) ,E) −→ (Y, τ (ℵ) ,E) is soft w∗-continuous but not soft weakly continuous.

Theorem 3.16. Every soft continuous soft function is soft w∗-continuous.

Proof. Let fpu : (Y, δ,E) −→ (Z,β,D) be soft continuous and let K ∈ β. Since fpu is soft continuous and
Bdβ(K) ∈ βc, then f−1

pu(Bdβ(K)) ∈ δc. Therefore, fpu is soft w∗-continuous.

Since every soft continuous function is soft weakly continuous, then Example 3.15 shows that the
converse of Theorem 3.16 need not to be true in general.

The following theorem is a decomposition of soft continuity.

Theorem 3.17. A soft function fpu : (Y, δ,E) −→ (Z,β,D) is soft continuous if and only if it is both soft weakly
continuous and soft w∗-continuous.

Proof.

Necessity. Suppose that fpu : (Y, δ,E) −→ (Z,β,D) is soft continuous. Then by Proposition 5.3 of [11], fpu
is soft weakly continuous. Also, by Theorem 3.16, fpu is soft w∗-continuous.

Sufficiency. Suppose that fpu : (Y, δ,E)−→(Z,β,D) is both soft weakly continuous and softw∗-continuous.
Let ey ∈ SP(Y,E) and let S ∈ β such that fpu(ey)∈̃S. Since fpu is soft weakly continuous, there exists K ∈ δ
such that ey∈̃K and fpu(K)⊆̃Clβ (S). Since fpu(ey)∈̃S and Bdβ (S) = Clβ (S) − S, then fpu(ey) /̃∈Bdβ (S)

and so ey /̃∈f−1
pu

(
Bdβ (S)

)
. Also, since Since fpu is soft w∗-continuous, then f−1

pu

(
Bdβ (S)

)
∈ δc. Therefore,

we have ey∈̃K− f−1
pu

(
Bdβ (S)

)
∈ δ.

Claim. fpu(K− f−1
pu

(
Bdβ (S)

)
) ⊆ S, which ends the proof.
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Proof of claim. Suppose to the contrary that there exists dz∈̃fpu(K− f−1
pu

(
Bdβ (S)

)
) − S. Choose bt∈̃K−

f−1
pu

(
Bdβ (S)

)
such that dz = fpu(bt). Since bt∈̃K and fpu(K)⊆̃Clβ (S), then dz = fpu(bt)∈̃Clβ (S)

and so bt∈̃f−1
pu

(
Clβ (S)

)
. Since bt /̃∈f−1

pu

(
Bdβ (S)

)
= f−1

pu

(
Clβ (S) − S

)
= f−1

pu

(
Clβ (S)

)
− f−1

pu (S) and
bt∈̃f−1

pu

(
Clβ (S)

)
, then bt∈̃f−1

pu (S). But since fpu(bt) = dz /̃∈S, then bt /̃∈f−1
pu (S). This is a contradiction.

Definition 3.18. A soft function fpu : (Y, δ,E) −→ (Z,β,D) is said to be soft w∗-ω0-continuous if
f−1
pu(Bdβ(K)) ∈ δcω0 for each K ∈ β.

Theorem 3.19. For any function p : (Y, =) −→ (Z,ℵ) between TSs and any function u : E −→ D between sets of
parameters, p : (Y, =) −→ (Z,ℵ) is w∗-ω0-continuous if and only if fpu : (Y, τ (=) ,E) −→ (Z, τ (ℵ) ,D) is soft
w∗-ω0-continuous.

Proof.

Necessity. Let p : (Y, =) −→ (Z,ℵ) be w∗-ω0-continuous. Let K ∈ τ (ℵ). Then for every e ∈ E, K(u (e)) ∈ ℵ

and by w∗-ω0-continuity of p, p−1(Bdℵ (K(u (e)))) ∈ =c
ω0 . Now, for every e ∈ E we have

f−1
pu(Bdτ(ℵ) (K))(e) = p

−1 ((Bdτ(ℵ) (K)
)
(u(e))

)
= p−1 ((Clτ(ℵ) (K) −K)(u(e))

)
= p−1 (((Clτ(ℵ) (K)

)
(u(e)) −K(u(e))

)
= p−1 ((Clℵ (K (u(e))) −K(u(e))))

= p−1(Bdℵ (K (u(e))) ∈ =cω0 .

Therefore, f−1
pu(Bdτ(ℵ) (K)) ∈ τ

(
=c
ω0

)
. Hence, by Corollary 4 of [3], f−1

pu(Bdτ(ℵ) (K)) ∈ (τ (=))cω0 . It follows
that fpu : (Y, τ (=) ,E) −→ (Z, τ (ℵ) ,D) is soft w∗-ω0-continuous.

Sufficiency. Suppose that fpu : (Y, τ (=) ,E) −→ (Z, τ (ℵ) ,D) is soft w∗-ω0-continuous. Let V ∈ ℵ. Choose
e ∈ E. Then we have (u (e))V ∈ τ (ℵ) and so, f−1

pu

(
Bdτ(ℵ)((u (e))V

)
∈ (τ (=))cω0 . Thus, by [3, Corollary 4],

f−1
pu

(
Bdτ(ℵ)((u (e))V

)
∈ τ

(
=c
ω0

)
and(

f−1
pu

(
Bdτ(ℵ)((u (e))V

))
(e) =

(
f−1
pu

(
Clτ(ℵ) (((u (e))V) − (u (e))V

))
(e)

=
(
f−1
pu

(
((u (e))Clℵ(V) − (u (e))V

))
(e)

=
(
f−1
pu

(
((u (e))Clℵ(V)−V

))
(e)

= p−1
((

((u (e))Clℵ(V)−V

)
((u(e)))

)
= p−1 (Clℵ (V) − V)

= p−1 (Bdℵ (V)) ∈ =cω0 .

Therefore, p : (Y, =) −→ (Z,ℵ) is w∗-ω0-continuous.

The following two examples will show that soft weak ω0-continuity and soft w∗-ω0-continuity are
independent concepts:

Example 3.20. Let Y = R, = be the usual topology on Y, ℵ be the discrete topology on Y, and E = Z.
Consider the identities functions p : Y −→ Y and u : E −→ E. Since for each V ∈ ℵ, p−1 (Bdℵ (V)) =
p−1 (∅) = ∅ ∈ =c

ω0 , then p : (Y, =) −→ (Y,ℵ) is w∗-ω0-continuous. To see that p is not weakly ω0-
continuous, suppose to the contrary that p is weakly ω0-continuous. Since 1 ∈ p ({1}) = {1}, then there
exists U ∈ =ω0 such that 1 ∈ U and p(U) = U ⊆ Clℵ({1}) = {1}. Thus, U = {1} ∈ =ω0 . Thus, there
exists S ∈ = and a countable set C ⊆ Y such that 1 ∈ S and S−C ⊆ Int=({1}) = ∅. Hence S is countable
which is a contradiction. Hence, p : (Y, =) −→ (Y,ℵ) is not weakly ω0-continuous. Therefore, by Theorem
3.19 and Corollary 3.6, fpu : (Y, τ (=) ,E) −→ (Y, τ (ℵ) ,E) is soft w∗-ω0-continuous but not soft weakly
ω0-continuous.
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Example 3.21. Let Y = R, Z = {1, 2}, = be the co-countable topology on Y, ℵ = {∅,Z, {1}}, and E = Z.
Define p : (Y, =) −→ (Z,ℵ) as follows:

p(y) =

{
1, if y ∈ Q,
2, if y ∈ R − Q.

Let u : E −→ E be the identity function. Then fpu : (Y, τ (=) ,E) −→ (Z, τ (ℵ) ,E) is soft weakly ω0-
continuous but not soft w∗-ω0-continuous.

Theorem 3.22. Every soft ω0-continuous soft function is soft w∗-ω0-continuous.

Proof. Let fpu : (Y, δ,E) −→ (Z,β,D) be soft ω0-continuous and let K ∈ β. Since fpu is soft ω0-continuous
and Bdβ(K) ∈ βc, then by Theorem 2.2 (e), f−1

pu(Bdβ(K)) ∈ δcω0 . Therefore, fpu is soft w∗-ω0-continuous.

Example 3.20 and Theorem 3.7 shows that the converse of Theorem 3.22 need not to be true in general.
The following theorem is a decomposition of soft ω0-continuity.

Theorem 3.23. A soft function fpu : (Y, δ,E) −→ (Z,β,D) is soft ω0-continuous if and only if it is both soft
weakly ω0-continuous and soft w∗-ω0-continuous.

Proof.

Necessity. Suppose that fpu : (Y, δ,E) −→ (Z,β,D) is soft ω0-continuous. Then by Theorems 3.7 and 3.22,
fpu is both soft weakly ω0-continuous and soft w∗-ω0-continuous.

Sufficiency. Suppose that fpu : (Y, δ,E) −→ (Z,β,D) is both soft weakly ω0-continuous and soft w∗-ω0-
continuous. Let ey ∈ SP(Y,E) and let S ∈ β such that fpu(ey)∈̃S. Since fpu is soft weakly ω0-continuous,
there exists K ∈ δω0 such that ey∈̃K and fpu(K)⊆̃Clβ (S). Since fpu(ey)∈̃S and Bdβ (S) = Clβ (S)−S, then
fpu(ey) /̃∈Bdβ (S) and so ey /̃∈f−1

pu

(
Bdβ (S)

)
. Also, since fpu is softw∗-ω0-continuous, then f−1

pu

(
Bdβ (S)

)
∈

δc
ω0 . Therefore, we have ey∈̃K− f−1

pu

(
Bdβ (S)

)
∈ δω0 .

Claim. fpu(K− f−1
pu

(
Bdβ (S)

)
) ⊆ S which ends the proof.

Proof of claim. Suppose to the contrary that there exists dz∈̃fpu(K− f−1
pu

(
Bdβ (S)

)
) − S. Choose bt∈̃K−

f−1
pu

(
Bdβ (S)

)
such that dz = fpu(bt). Since bt∈̃K and fpu(K)⊆̃Clβ (S), then dz = fpu(bt)∈̃Clβ (S)

and so bt∈̃f−1
pu

(
Clβ (S)

)
. Since bt /̃∈f−1

pu

(
Bdβ (S)

)
= f−1

pu

(
Clβ (S) − S

)
= f−1

pu

(
Clβ (S)

)
− f−1

pu (S) and
bt∈̃f−1

pu

(
Clβ (S)

)
, then bt∈̃f−1

pu (S). But since fpu(bt) = dz /̃∈S, then bt /̃∈f−1
pu (S). This is a contradiction.

4. Conclusion

The continual supply of topological space classes, instances, characteristics, and relationships has
aided topology’s progress. As a result, it is critical to increase the structure of soft topological spaces in
the same way.

The goals of this study are to examine the behaviors of soft ω0-open via soft topological spaces, to
introduce new classes of soft functions, and to pave the way for the definition and investigation of certain
new soft topological notions in the future.

In this paper, four new classes of soft functions are introduced. Several characterizations, relationships,
and examples are given. Also, two decomposition theorems via them are obtained. The following topics
could be considered in future studies:

1) to define soft ω0- homomorphisms;
2) to define weaker and stronger forms of soft ω0-continuous functions.
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