

Multiplication mappings on a new stochastic space of a sequence of fuzzy functions

Meshayil M. Alsolmi ${ }^{\text {a }}$, Awad A. Bakery ${ }^{\text {a,b,* }}$
${ }^{a}$ Department of Mathematics, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia.
${ }^{b}$ Department of Mathematics, Faculty of Science, Ain Shams University, P.O. Box 1156, Cairo, 11566, Abbassia, Egypt.

Abstract

A number of topological and geometrical properties of the weighted Gamma matrix of order r in Nakano sequence space for fuzzy functions equipped with definite pre-modular functions are defined and investigated in this paper. We begin by defining the necessary conditions for the formation of pre-modular Banach in this space. Second, we specify the conditions under which the multiplication operator defined on this pre-modular space is bounded, approximable, invertible, Fredholm, and closed on the basis of this space.

Keywords: Gamma matrix, Nakano sequence space, Fredholm mapping, multiplication mapping, approximable mapping. 2020 MSC: 46B10, 46C05, 46E30.
©2023 All rights reserved.

1. Introduction

In the study of uncertainty, probability theory, fuzzy set theory, soft sets, and rough sets have all had a significant impact. However, there are certain downsides to these hypotheses. Please see $[1,2,7,9,11,17$, $19,21,31,32$] for additional details and real-world examples. Suppose that \mathcal{R} is the set of real numbers and \mathbb{N}_{0} is the set of nonnegative integers. Given that the proof of many fixed point theorems in a given space requires either growing the space itself or expanding the self-operator that acts on $i t$, both of these options are viable, we have constructed the space, $\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\mathfrak{\infty}^{\prime}}$, which is the domain of weighted Gamma matrix of order p in Nakano fuzzy sequence space since it is constructed by the domain of weighted Gamma matrix of order p defined in $\ell_{\left(\left(y_{m}\right)\right)}^{\mathrm{F}}$, where the weighted Gamma matrix of order $p, W_{p}=\left(\gamma_{\mathrm{ba}}^{\mathrm{p}}(x)\right)$ is defined as:

$$
\gamma_{b a}^{p}(x)= \begin{cases}\frac{\left[p^{p+a-1}\right]_{a}}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}, & 0 \leqslant a \leqslant b \\
0, & a>b\end{cases}
$$

where p is a positive integer, $x_{a} \in(0, \infty)$, for all $a \in \mathbb{N}_{0}$, and $\left[\begin{array}{c}p+a-1 \\ a\end{array}\right]=\frac{(p+a-1)!}{a!(p-1)!}$.

[^0]In [30], Roopaei and Başar studied the Gamma spaces, including the spaces of absolutely p-summable, null, convergent, and bounded sequences. By c_{0}, ℓ_{∞} and ℓ_{q}, we indicate the space of null, bounded and $q-a b s o l u t e l y$ summable sequences of reals. We mark the space of all bounded, finite rank linear operators from an infinite-dimensional Banach space \mathcal{O} into an infinite-dimensional Banach space \mathcal{M} by $\mathcal{L}(\mathcal{O}, \mathcal{M})$, and $\mathbb{I}(\mathcal{O}, \mathcal{M})$ and when $\mathcal{O}=\mathcal{M}$, we put $\mathcal{L}(\mathcal{O})$ and $\mathbb{I}(\mathcal{O})$. The space of approximable and compact bounded linear operators from \mathcal{O} into \mathcal{M} will be represented by $\mathfrak{P}(\mathcal{O}, \mathcal{M})$, and $\mathcal{C}(\mathcal{O}, \mathcal{M})$, respectively. The ideal of bounded, approximable and compact operators between every two infinite-dimensional Banach spaces will be denoted by $\mathcal{L}, \mathfrak{P}$ and \mathcal{C}, respectively.

Definition 1.1 ([29]). An s-number is a function $s: \mathcal{L}(\mathcal{O}, \mathcal{M}) \rightarrow \mathcal{R}^{+\mathbb{N}_{0}}$ that sorts all $A \in \mathcal{L}(\mathcal{O}, \mathcal{M})$ and $\left(s_{\mathrm{q}}(\mathcal{A})\right)_{\mathrm{q}=0}^{\infty}$ satisfies the next setups:
(1) $\|A\|=s_{0}(A) \geqslant s_{1}(A) \geqslant s_{2}(A) \geqslant \cdots \geqslant 0$, for all $A \in \mathcal{L}(\mathcal{O}, \mathcal{M})$;
(2) $s_{q}(A B G) \leqslant\|A\| s_{q}(B)\|G\|$, for every $G \in \mathcal{L}\left(\mathcal{O}_{0}, \mathcal{O}\right), B \in \mathcal{L}(\mathcal{O}, \mathcal{M})$ and $A \in \mathcal{L}\left(\mathcal{M}, \mathcal{M}_{0}\right)$, where \mathcal{O}_{0} and \mathcal{M}_{0} are arbitrary Banach spaces;
(3) $s_{k+m-1}\left(G_{1}+G_{2}\right) \leqslant s_{k}\left(G_{1}\right)+s_{m}\left(G_{2}\right)$, for every $G_{1}, G_{2} \in \mathcal{L}(\mathcal{O}, \mathcal{M})$ and $k, m \in \mathbb{N}_{0}$;
(4) if $A \in \mathcal{L}(\mathcal{O}, \mathcal{M})$ and $\zeta \in \mathcal{R}$, then $s_{q}(\zeta A)=|\zeta| s_{q}(A)$;
(5) suppose $\operatorname{rank}(A) \leqslant \mathrm{q}$, then $\mathrm{s}_{\mathrm{q}}(A)=0$, for all $A \in \mathcal{L}(0, \mathcal{M})$;
(6) $s_{p \geqslant q}\left(I_{q}\right)=0$ or $s_{p<q}\left(I_{q}\right)=1$, where I_{q} marks the unit operator on the q-dimensional Hilbert space ℓ_{2}^{q}.
Some examples of s-numbers are as
(a) the p-th approximation number defined as $\alpha_{p}(T)=\inf \{\|T-V\|: V \in \mathcal{L}(\mathcal{O}, \mathcal{M})$ and $\operatorname{rank}(V) \leqslant p\}$;
(b) the p-th Kolmogorov number defined as $d_{p}(T)=\inf _{\operatorname{dim}(B) \leqslant p} \sup \|i\| \leqslant 1 \inf _{k \in B}\|T i-k\|$.

Notations 1.2 ([5]). Assume \mathcal{E} is a linear space of sequences of real numbers.

$$
\begin{aligned}
& \mathcal{L}_{\mathcal{E}}^{s}:=\left\{\mathcal{L}_{\mathcal{E}}^{s}(\mathcal{O}, \mathcal{M})\right\}, \text { where } \mathcal{L}_{\mathcal{E}}^{s}(\mathcal{O}, \mathcal{M}):=\left\{B \in \mathcal{L}(\mathcal{O}, \mathcal{M}):\left(\left(s_{\mathrm{q}}(B)\right)_{\mathrm{q}=0}^{\infty} \in \mathcal{E}\right\},\right. \\
& \mathcal{L}_{\mathcal{E}}^{\alpha}:=\left\{\mathcal{L}_{\mathcal{E}}^{\alpha}(\mathcal{O}, \mathcal{M})\right\}, \text { where } \mathcal{L}_{\mathcal{E}}^{\alpha}(\mathcal{O}, \mathcal{M}):=\left\{B \in \mathcal{L}(\mathcal{O}, \mathcal{M}):\left(\left(\alpha_{\mathrm{q}}(B)\right)_{\mathrm{q}=0}^{\infty} \in \mathcal{E}\right\},\right. \\
& \mathcal{L}_{\mathcal{E}}^{\mathrm{d}}:=\left\{\mathcal{L}_{\mathcal{E}}^{\mathrm{d}}(\mathcal{O}, \mathcal{M})\right\}, \text { where } \mathcal{L}_{\mathcal{E}}^{\mathrm{d}}(\mathcal{O}, \mathcal{M}):=\left\{B \in \mathcal{L}(\mathcal{O}, \mathcal{M}):\left(\left(\mathrm{d}_{\mathrm{q}}(B)\right)_{\mathrm{q}=0}^{\infty} \in \mathcal{E}\right\}\right.
\end{aligned}
$$

The multiplication operators have a wide field of mathematics in functional analysis, for instance, in eigenvalue distributions theorem, geometric structure of Banach spaces, theory of fixed point, and so forth. A few of operator ideals in the class of Hilbert spaces or Banach spaces are defined by distinct scalar sequence spaces. Such as the ideal of compact operators \mathcal{C} formed by $\left(d_{q}(B)\right.$ and c_{0}. Pietsch [28], studied the quasi-ideals $\mathcal{L}_{\ell_{q}}^{\alpha}$ for $q>0$, the ideals of Hilbert Schmidt operators between Hilbert spaces constructed by ℓ_{2} and the ideals of nuclear operators generated by ℓ_{1}. He explained that the closure of $\mathbb{I}=\mathcal{L}_{\ell_{q}}^{\alpha}$ for $\mathrm{q} \geqslant 1$, and the class $\mathcal{L}_{\ell_{\mathrm{q}}}^{\alpha}$ became simple Banach and small [27]. The strictly inclusion $\mathcal{L}_{\ell_{p}}^{\alpha}(\mathcal{O}, \mathcal{M}) \varsubsetneqq \mathcal{L}_{\ell_{q}}^{\alpha}(\mathcal{O}, \mathcal{M}) \varsubsetneqq \mathcal{L}(\mathcal{O}, \mathcal{M})$, if $q>p>0$, investigated through Makarov and Faried [18]. Faried and Bakery [10], gave a generalization of the class of quasi operator ideal which is the pre-quasi operator ideal, they examined several geometric and topological structure of $\mathcal{L}_{\ell_{M}}^{s}$ and $\mathcal{L}_{\operatorname{ces}(r)}^{s}$. On sequence spaces, Mursaleen and Noman ($[23,24]$) investigated the Compact operators on some difference sequence spaces. For more updates on sequence spaces and their applications see [13-15]. The multiplication operators on (ces(r), \|.\|) with the Luxemburg norm $\|$.$\| elaborated by Komal et al. [16]. Bakery et al. [6] studied the$ multiplication Operators acting on weighted Nakano sequence space. The aim of this article to define and offer some geometric and topological structures of the weighted Gamma matrix of order r in Nakano sequence space of fuzzy functions, $\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\mathfrak{\varpi}^{\prime}}$, equipped with the pre-modular function. First, we give the sufficient conditions on this space to form pre-modular Banach. Second, we give the necessity and sufficient conditions on this pre-modular space such that the multiplication operator defined on it is bounded, approximable, invertible, Fredholm and closed range operator.

2. Preliminaries and definitions

Let Φ be the set of all closed and bounded intervals on \mathcal{R}. If $h=\left[h_{1}, h_{2}\right]$ and $j=\left[j_{1}, j_{2}\right]$ in Φ, assume

$$
h \leqslant j \text { if and only if } h_{1} \leqslant j_{1} \text { and } h_{2} \leqslant j_{2} .
$$

Define a metric τ on Φ by

$$
\tau(h, j)=\max \left\{\left|h_{1}-\mathfrak{j}_{1}\right|,\left|h_{2}-\mathfrak{j}_{2}\right|\right\} .
$$

Matloka [20] showed that τ is a metric on Φ and (Φ, τ) is a complete metric space. The relation \leqslant is a partial order on Φ.
Definition 2.1. A fuzzy number h is an operator $h: \mathcal{R} \rightarrow[0,1]$ that satisfies the next setups:
(a) h is fuzzy convex, i.e., for $p, q \in \mathcal{R}$ and $\lambda \in[0,1], h(\lambda p+(1-\lambda) q) \geqslant \min \{h(p), h(q)\}$;
(b) h is normal, i.e., there is $p_{0} \in \mathcal{R}$ such that $h\left(p_{0}\right)=1$;
(c) h is an upper-semi continuous, i.e., for all $\lambda>0, h^{-1}([0, p+\lambda))$ for all $p \in[0,1]$ is open in the usual topology of \mathcal{R};
(d) the closure of $h^{0}:=\{p \in \mathcal{R}: h(p)>0\}$ is compact.

The λ-level set of a fuzzy real number $h, 0<\lambda<1$, denoted by h^{λ}, is defined as

$$
h^{\lambda}=\{p \in \mathcal{R}: h(p) \geqslant \lambda\} .
$$

The set of all upper semi-continuous, normal, convex fuzzy number, and h^{λ} is compact, is denoted by $\mathcal{R}([0,1])$. The set \mathcal{R} can be embedded in $\mathcal{R}([0,1])$, if we define $t \in \mathcal{R}([0,1])$ by

$$
\overline{\mathrm{t}}(\mathrm{y})= \begin{cases}1, & \mathrm{y}=\mathrm{t}, \\ 0, & \mathrm{y} \neq \mathrm{t}\end{cases}
$$

The additive identity and multiplicative identity in $\mathcal{R}[0,1]$ are denoted by $\overline{0}$ and $\overline{1}$, respectively. Assume $h, j \in \mathcal{R}[0,1]$ and the λ-level sets are $[h]^{\lambda}=\left[h_{1}^{\lambda}, h_{2}^{\lambda}\right],[j]^{\lambda}=\left[j_{1}^{\lambda}, j_{2}^{\lambda}\right], \lambda \in[0,1]$. A partial ordering for any $h, j \in \mathcal{R}[0,1]$ is as follows: $h \preceq j$ if and only if $h^{\lambda} \leqslant j^{\lambda}$, for all $\lambda \in[0,1]$.

If $\bar{\tau}: \mathcal{R}[0,1] \times \mathcal{R}[0,1] \rightarrow \mathcal{R}^{+} \cup\{0\}$ is defined by $\bar{\tau}(h, j)=\sup _{0 \leqslant \lambda \leqslant 1} \tau\left(h^{\lambda}, j^{\lambda}\right)$, then the following are verified:

1. $(\mathcal{R}[0,1], \bar{\tau})$ is a complete metric space;
2. $\bar{\tau}(h+t, j+t)=\bar{\tau}(h, j)$ for all $h, j, t \in \mathcal{R}[0,1]$;
3. $\bar{\tau}(h+t, j+m) \leqslant \bar{\tau}(h, j)+\bar{\tau}(t, m)$;
4. $\bar{\tau}(\zeta \mathrm{h}, \zeta \mathrm{j})=|\zeta| \bar{\tau}(\mathrm{h}, \mathrm{j})$, for all $\zeta \in \mathcal{R}$.

For more details on fuzzy functions and their properties, see $[4,8,12,25,26]$.
Definition 2.2 ([28]). An operator $A \in \mathcal{L}(\mathcal{M})$ is said to be approximable if there are $D_{r} \in \mathbb{I}(\mathcal{M})$, for every $r \in \mathbb{N}$ and $\lim _{r \rightarrow \infty}\left\|A-D_{r}\right\|=0$.
Theorem 2.3 ([28]). If \mathcal{M} is Banach space with $\operatorname{dim}(\mathcal{M})=\infty$, then

$$
\mathbb{I}(\mathcal{M}) \varsubsetneqq \mathfrak{P}(\mathcal{M}) \varsubsetneqq \mathcal{C}(\mathcal{M}) \varsubsetneqq \mathcal{L}(\mathcal{M}) .
$$

Definition 2.4 ([22]). An operator $B \in \mathcal{L}(\mathcal{E})$ is called Fredholm if $\operatorname{dim}(\operatorname{Range}(B))^{c}<\infty$, Range(B) is closed and $\operatorname{dim}(\operatorname{ker}(\mathrm{B}))<\infty$.

3. Properties of $\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\mathfrak{\infty}}$

We have discussed in this section some geometric and topological properties of the fuzzy functions space, $\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\boldsymbol{\omega}}$ equipped with the pre-modular function. Suppose ω^{F} is the space of all sequences of fuzzy reals.

Definition 3.1. If $\left(y_{\mathfrak{b}}\right) \in \mathcal{R}^{+\mathbb{N}_{0}}$, where $\mathcal{R}^{+\mathbb{N}_{0}}$ is the space of all sequences of positive reals, the sequence space $\left(\Gamma_{p}^{\mathcal{F}}(x, y)\right)_{\boldsymbol{\infty}}$ equipped with the function ϖ is defined as:

$$
\left(\Gamma_{\mathfrak{p}}^{\mathcal{F}}(x, y)\right)_{\varpi}=\left\{\bar{j}=\left(\overline{j_{\mathfrak{b}}}\right) \in \omega^{F}: \varpi(\bar{\eta} \bar{j})<\infty, \text { for some } \eta>0\right\},
$$

where

$$
\varpi(\bar{j})=\sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{a=0}^{b}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a} \overline{j_{a}}, \overline{0}\right)}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}} .
$$

Lemma 3.2 ([3]). If $y_{a}>0$ and $x_{a}, z_{a} \in \mathcal{R}$, for all $a \in \mathbb{N}_{0}$, and $\hbar=\max \left\{1, \sup _{a} y_{a}\right\}$, then

$$
\left|x_{a}+z_{a}\right|^{y_{a}} \leqslant 2^{\hbar-1}\left(\left|x_{a}\right|^{y_{a}}+\left|z_{a}\right|^{y_{a}}\right) .
$$

Theorem 3.3. Suppose $\left(\mathrm{y}_{\mathrm{a}}\right) \in \ell_{\infty} \cap \mathcal{R}^{+\mathbb{N}_{0}}$, then

$$
\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\boldsymbol{\omega}}=\left\{\overline{\mathfrak{j}}=\left(\overline{j_{a}}\right) \in \omega^{\mathrm{F}}: \bowtie(\bar{\eta})<\infty, \text { for all } \eta>0\right\} .
$$

Proof. Obviously, as $\left(y_{a}\right)$ is bounded.
Theorem 3.4. Suppose $\left(\mathrm{y}_{\mathrm{a}}\right) \in[1, \infty)^{\mathbb{N}_{0}} \cap \ell_{\infty}$, then the space $\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(\mathrm{x}, \mathrm{y})\right)_{\infty}$ is a non-absolute type.
Proof. Clearly, since

$$
\begin{aligned}
\varpi(\overline{1},-\overline{1}, \overline{0}, \overline{0}, \overline{0}, \ldots) & =\left(x_{0}\right)^{y_{0}}+\left(\frac{\left|x_{0}-p x_{1}\right|}{1+p}\right)^{y_{1}}+\left(\frac{\left|x_{0}-p x_{1}\right|}{\left[\begin{array}{c}
p+2 \\
2
\end{array}\right]}\right)^{y_{2}}+\cdots \\
& \neq\left(x_{0}\right)^{y_{0}}+\left(\frac{x_{0}+p x_{1}}{1+p}\right)^{y_{1}}+\left(\frac{x_{0}+p x_{1}}{\left[\begin{array}{c}
p+2 \\
2
\end{array}\right]}\right)^{y_{2}}+\cdots=\omega(\overline{1}, \overline{1}, \overline{0}, \overline{0}, \overline{0}, \ldots) .
\end{aligned}
$$

Definition 3.5. Assume $\left(y_{a}\right) \in \mathcal{R}^{+\mathbb{N}_{0}}$ and $y_{a} \geqslant 1$, for all $a \in \mathbb{N}_{0}$.

$$
\left(\left|\Gamma_{\mathfrak{p}}^{\mathrm{F}}\right|(x, y)\right)_{\wp}:=\left\{\overline{\mathfrak{j}}=\left(\overline{\boldsymbol{j}_{a}}\right) \in \omega^{\mathrm{F}}: \wp(\eta \overline{\mathfrak{j}})<\infty, \text { for some } \eta>0\right\},
$$

where

Proof. Assume $\bar{j} \in\left(\left|\Gamma_{\mathfrak{p}}^{\mathcal{F}}\right|(x, y)\right)_{\mathfrak{Q}^{\prime}}$ as

$$
\sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{\substack{b \\
a}}^{\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a} \overline{j_{a}}, \overline{0}}\right)}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}} \leqslant \sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{\substack{b \\
a}}^{\left.\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a}\left|\overline{j_{a}}\right|, \overline{0}\right)}\right.}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}}<\infty .
$$

Therefore, $\overline{\mathfrak{j}} \in\left(\Gamma_{\mathfrak{p}}^{\mathcal{F}}(x, y)\right)_{\boldsymbol{\omega}}$. Take $\left.\overline{\mathfrak{i}}=\left(\frac{(-\overline{1})^{a}}{\substack{a+\boldsymbol{p}-1 \\ \mathfrak{a}}}\right)_{x_{a}}\right)_{a \in \mathbb{N}_{0}}$, one has $\bar{i} \in\left(\Gamma_{\mathfrak{p}}^{\mathcal{F}}(x, y)\right)_{\boldsymbol{\omega}}$ and $\overline{\mathfrak{i}} \notin\left(\left|\Gamma_{\mathfrak{p}}^{\mathcal{F}}\right|(x, y)\right)_{\mathscr{Q}}$.
Consider ε^{F} is a linear space of sequences of fuzzy functions, and $[b]$ indicates an integral part of the real number b.

Definition 3.7. The space ε^{F} is said to be a private sequence space of fuzzy functions ($\mathfrak{p s s f f}$), when the next setups are satisfied:
(a1) for all $\mathrm{d} \in \mathbb{N}_{0}$, then $\overline{e_{\mathrm{d}}} \in \mathcal{E}^{\mathrm{F}}$, where $\overline{e_{\mathrm{d}}}=(\overline{0}, \overline{0}, \ldots, \overline{1}, \overline{0}, \overline{0}, \cdots)$, while $\overline{1}$ displays at the $\mathrm{d}^{\text {th }}$ place;
(a2) assume $\bar{i}=\left(\overline{i_{a}}\right) \in \omega^{F},|\bar{j}|=\left(\left|\overline{j_{a}}\right|\right) \in \mathcal{E}^{\mathrm{F}}$ and $\left|\overline{i_{a}}\right| \leqslant\left|\overline{j_{a}}\right|$, with $a \in \mathbb{N}_{0}$, then $\left|\overline{i_{i}}\right| \in \mathcal{E}^{F}$;
(a3) $\left(\left|\overline{k_{\left[\frac{a}{2}\right]}}\right|\right)_{a=0}^{\infty} \in \mathcal{E}^{F}$, if $\left(\left|\overline{k_{a}}\right|\right)_{a=0}^{\infty} \in \mathcal{E}^{F}$.
Assume $\bar{\theta}=(\overline{0}, \overline{0}, \overline{0}, \ldots)$ and \mathcal{F} is the space of finite sequences of fuzzy numbers.
Definition 3.8. A subspace of the $\mathfrak{p s s f f}$ is called a pre-modular $\mathfrak{p s s f f}$, if there is a function $\mathfrak{\infty}: \mathcal{E}^{\mathrm{F}} \rightarrow[0, \infty)$ that satisfies the next setups:
(i) if $\overline{\mathfrak{i}} \in \mathcal{E}^{\mathrm{F}}, \overline{\mathrm{i}}=\bar{\theta} \Longleftrightarrow \varpi(\overline{\mathrm{i}} \mid)=0$, and $\omega(\overline{\mathrm{i}}) \geqslant 0$;
(ii) assume $\bar{i} \in \mathcal{E}^{F}$ and $\sigma \in \mathcal{R}$, one has $E_{0} \geqslant 1$ so that $\varpi(\sigma \bar{i}) \leqslant|\sigma| E_{0} \varpi(\bar{i})$;
(iii) one has $G_{0} \geqslant 1$ with $\varpi(\overline{\mathfrak{i}}+\overline{\mathfrak{j}}) \leqslant \mathrm{G}_{0}(\varpi(\overline{\mathrm{i}})+\varpi(\overline{\mathrm{j}}))$, for all $\overline{\mathrm{i}}, \overline{\mathrm{j}} \in \mathcal{E}^{\mathrm{F}}$;
(iv) suppose $\left|\overline{i_{q}}\right| \leqslant\left|\overline{\bar{j}_{q}}\right|$, for all $q \in \mathbb{N}_{0}$, then $\Phi\left(\left|\overline{\bar{q}_{q}}\right|\right) \leqslant \Phi\left(\left|\overline{\boldsymbol{j}_{q}}\right|\right)$;
(v) we have $D_{0} \geqslant 1$ such that $\varpi(|\bar{i}|) \leqslant \boldsymbol{\omega}\left(\left|\overline{i_{[.]}}\right|\right) \leqslant D_{0} \Phi(|\bar{i}|)$,
(vi) the closure of $\mathcal{F}=\mathcal{E}_{\boldsymbol{\omega}}^{\mathrm{F}}$;
(vii) one has $\lambda>0$ with $\oplus(\bar{\gamma}, \overline{0}, \overline{0} ; \overline{0}, \ldots) \geqslant \lambda|\gamma| \oplus(\overline{1}, \overline{0}, \overline{0}, \overline{0}, \ldots)$.

The space $\varepsilon_{\dot{\omega}}^{\mathrm{F}}$ is called a pre-modular Banach $\mathfrak{p s s f f}$, if \mathcal{E}^{F} is complete under \oplus.
Definition 3.9. The $\mathfrak{p s s f f} \varepsilon_{\boldsymbol{a}}^{\mathcal{F}}$ is said to be a pre-quasi normed $\mathfrak{p s s f f}$, if ω verifies the setups (i)-(iii) of Definition 3.8.
Theorem 3.10. The space $\varepsilon^{\boldsymbol{\omega}} \underset{\text { F }}{\mathrm{F}}$ is a pre-quasi normed $\mathfrak{p s s f f}$, whenever it is pre-modular $\mathfrak{p s s f f}$.
By \uparrow and \downarrow, we mark the space of all monotonic increasing and decreasing sequences of positive reals, respectively.

Theorem 3.11. Suppose

(f1) $\left(y_{a}\right) \in \uparrow \cap \ell_{\infty}$ with $y_{0}>\frac{1}{p}$;
(f2) $\left(\left[\begin{array}{c}a+p-1 \\ \mathfrak{a}\end{array}\right] x_{a}\right)_{a=0}^{\infty} \in \downarrow$ or, $\left(\left[\begin{array}{c}a+p-1 \\ a\end{array}\right] x_{a}\right)_{a=0}^{\infty} \in \uparrow \cap \ell_{\infty}$ and there exists $C \geqslant 1$ so that

$$
\left[\begin{array}{l}
2 a+p \\
2 a+1
\end{array}\right] x_{2 a+1} \leqslant C\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a}
$$

then $\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(\mathrm{x}, \mathrm{y})\right)_{\boldsymbol{\infty}}$ is a pre-modular Banach $\mathfrak{p s s f f}$.
Proof.
(i). Evidently, $\varpi(\overline{\bar{i}})=0 \Leftrightarrow \overline{\mathfrak{i}}=\bar{\theta}$ and $\varpi(\bar{i}) \geqslant 0$.
(a1) and (iii). If $\bar{i}, \bar{j} \in\left(\Gamma_{p}^{F}(x, y)\right)_{\infty}$, then

$$
\begin{aligned}
& \omega(\overline{\mathrm{i}}+\overline{\mathrm{j}})=\sum_{\mathrm{b}=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{\mathrm{a}=0}^{\mathrm{b}}\left[\begin{array}{c}
a+\mathrm{p}-1 \\
\mathrm{a}
\end{array}\right] \mathrm{x}_{\mathrm{a}}\left(\overline{\mathfrak{i}_{a}}+\overline{\mathfrak{j}_{a}}\right), \overline{0}\right)}{\left[\begin{array}{c}
p+\mathrm{b} \\
\mathrm{~b}
\end{array}\right]}\right)^{y_{b}} \\
& \leqslant 2^{\hbar-1}\left(\sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{a=0}^{b}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a} \overline{i_{a}}, \overline{0}\right)}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}}+\sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{a=0}^{b}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a} \overline{j_{a}}, \overline{0}\right)}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}}\right) \\
& =2^{\hbar-1}(\varpi(\overline{\mathfrak{i}})+\varpi(\overline{\mathfrak{j}}))<\infty \text {, }
\end{aligned}
$$

so $\bar{f}+\bar{g} \in\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\boldsymbol{\omega}}$.
(ii). Suppose $\zeta \in \mathcal{R}, \bar{j} \in\left(\Gamma_{\mathfrak{p}}^{\mathcal{F}}(x, y)\right)_{\infty}$ and as $\left(y_{\mathrm{b}}\right) \in \uparrow \cap \ell_{\infty}$, we have

$$
\begin{aligned}
& \left.\leqslant \sup _{m}|\zeta|^{\left|y_{m}\right|}\left|\sum_{m=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{a=0}^{m}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a} \overline{j_{a}}, \overline{0}\right)}{\left[\begin{array}{c}
p+m \\
m
\end{array}\right]}\right)^{y_{m}} \leqslant E_{0}\right| \zeta \right\rvert\, \varpi(\overline{\mathfrak{j}})<\infty,
\end{aligned}
$$

where $E_{0}=\max \left\{1, \sup _{\mathfrak{b}}|\zeta|^{y_{b}-1}\right\} \geqslant 1$. Hence $\zeta \bar{j} \in\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\boldsymbol{a}}$. As $\left(y_{\mathfrak{b}}\right) \in \uparrow \cap \ell_{\infty}$ and $y_{0}>\frac{1}{\mathfrak{p}}$, one obtains

$$
\begin{aligned}
& \left|\sum_{m=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{a=0}^{m}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a} \overline{\left(e_{b}\right)_{a}}, \overline{0}\right)}{\left[\begin{array}{c}
p+m \\
m
\end{array}\right]}\right)^{y_{m}}=\right| \sum_{m=b}^{\infty}\left(\frac{\left[\begin{array}{c}
b+\mathfrak{p}-1 \\
b
\end{array}\right] x_{b}}{\left[\begin{array}{c}
\left.p_{m}^{p+m}\right] \\
m
\end{array}\right]}\right)^{y_{m}} \\
& \leqslant \sup _{m=b}^{\infty}\left(\left[\begin{array}{c}
b+p-1 \\
b
\end{array}\right] x_{b}\right)^{y_{m}} \sum_{m=b}^{\infty}\left(\frac{1}{\left[\begin{array}{c}
p+m \\
m
\end{array}\right]}\right)^{y_{m}} \\
& \leqslant \left\lvert\, \sup _{m=b}^{\infty}\left(p!\left[\begin{array}{c}
b+p-1 \\
b
\end{array}\right] x_{b}\right)^{y_{m}} \sum_{m=0}^{\infty}\left(\frac{1}{m+1}\right)^{y_{0} p}<\infty\right. \text {. }
\end{aligned}
$$

Hence $\overline{\boldsymbol{e}_{\mathrm{b}}} \in\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\boldsymbol{a}}$, for every $\mathrm{b} \in \mathbb{N}_{0}$.
(a2) and (iv). Suppose $\left|\overline{i_{a}}\right| \leqslant\left|\overline{j_{a}}\right|$, for all $a \in \mathbb{N}_{0}$ and $|\bar{j}| \in\left(\Gamma_{p}^{F}(x, y)\right)_{\infty}$, then
so $|\bar{i}| \in\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\infty}$.
(a3) and (v). Suppose $\left(\left|\overline{j_{a}}\right|\right) \in\left(\Gamma_{p}^{F}(x, y)\right)_{\boldsymbol{a}}$, under $\left(y_{b}\right) \in \uparrow \cap \ell_{\infty}$ and $\left(\left[\begin{array}{c}a+p-1 \\ a\end{array}\right] x_{a}\right)_{a=0}^{\infty} \in \downarrow$, we get

$$
\begin{aligned}
& \leqslant\left|\sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{a=0}^{2 b}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a} \overline{j_{\left[\frac{a}{2}\right]}}, \overline{0}\right)}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}}+\right| \sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{a=0}^{2 b+1}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a} \overline{j_{\left[\frac{a}{2}\right]}}, \overline{0}\right)}{\left[\begin{array}{c}
\text { b } \\
b
\end{array}\right]}\right)^{y_{b}}
\end{aligned}
$$

$$
\begin{aligned}
& +\left\lvert\, \sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{\substack{b \\
b}}\left(\left[\begin{array}{c}
2 a+\mathfrak{p}-1 \\
a
\end{array}\right] x_{2 a}+\left[\begin{array}{c}
2 a+p \\
2 a+1
\end{array}\right] x_{2 a+1}\right)\left|\overline{\overline{j a}_{a}}\right|, \overline{0}\right)}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y b}\right. \\
& \leqslant 2^{\hbar-1}\left(\left|\sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{\substack{b \\
b}}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a}\left|\overline{j_{a}}\right|, \overline{0}\right)}{\left[\begin{array}{c}
\text { b } \\
b
\end{array}\right]}\right)^{y_{b}}+\right| \sum_{b=0}^{\infty}\left(\frac{2 \bar{\tau}\left(\sum_{a=0}^{b}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a}\left|\overline{j_{a}}\right|, \overline{0}\right)}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}}\right)
\end{aligned}
$$

where $D_{0} \geqslant\left(2^{2 \hbar-1}+2^{\hbar-1}+2^{\hbar}\right) \geqslant 1$. Hence $\left.\left(\overline{\left.j_{\left[\frac{a}{2}\right.}\right]}\right)\right) \in\left(\Gamma_{\mathfrak{p}}^{\mathcal{F}}(x, y)\right)_{\boldsymbol{\infty}}$.
(vi). Obviously, the closure of $\mathcal{F}=\Gamma_{p}^{F}(x, y)$.
(vii). We have $0<\gamma \leqslant \sup _{\imath}|\beta|^{y_{b}-1}$ so that $\Phi(\bar{\beta}, \overline{0}, \overline{0}, \overline{0}, \ldots) \geqslant \gamma|\beta| ळ(\overline{1}, \overline{0}, \overline{0}, \overline{0}, \ldots)$, for all $\beta \neq 0$ and $\gamma>0$, when $\beta=0$. Hence $\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(\mathrm{x}, \mathrm{y})\right)_{\boldsymbol{\infty}}$ is a pre-modular $\mathfrak{p s s f f}$. To show that $\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\boldsymbol{\infty}}$ is a Banach space, suppose $\overline{\mathcal{A}^{\mathfrak{m}}}=\left(\overline{\mathcal{A}_{\mathfrak{a}}^{m}}\right)_{\mathfrak{a}=0}^{\infty}$ is a Cauchy sequence in $\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\mathfrak{\infty}}$, then for every $\gamma \in(0,1)$, one has $m_{0} \in \mathbb{N}_{0}$ with $m, n \geqslant m_{0}$, then

$$
\varpi\left(\overline{\mathcal{A}^{m}}-\overline{\mathcal{A}^{\mathfrak{n}}}\right)=\left\lvert\, \sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{a=0}^{b}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a}\left(\overline{\mathcal{A}_{a}^{\mathfrak{m}}}-\overline{\mathcal{A}_{a}^{\mathfrak{n}}}\right), \overline{0}\right)}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}}<\gamma^{\hbar} .\right.
$$

Therefore, $\bar{\tau}\left(\sum_{a=0}^{b}\left[\begin{array}{c}a+p-1 \\ a\end{array}\right] x_{a}\left(\overline{\mathcal{A}_{\mathfrak{a}}}-\overline{\mathcal{A}_{\mathfrak{a}}^{n}}\right), \overline{0}\right)<\gamma$. As $(\mathcal{R}([0,1]), \bar{\tau})$ is a complete metric space, hence $\left(\overline{\mathcal{A}_{\mathfrak{a}}}\right)$ is a Cauchy sequence in $\mathcal{R}([0,1])$, for constant $a \in \mathbb{N}_{0}$. Therefore, it is convergent to $\overline{\mathcal{A}_{a}^{0}} \in \mathcal{R}([0,1])$. So $\varpi\left(\overline{A^{m}}-\overline{A^{0}}\right)<\gamma^{\hbar}$, for every $m \geqslant m_{0}$. Clearly, By part (iii) that $\overline{A^{0}} \in\left(\Gamma_{p}^{F}(x, y)\right)_{\infty}$.

4. Multiplication operators on $\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\boldsymbol{\omega}}$

In this section, we present some properties of the multiplication operator acting on $\left(\Gamma_{p}^{F}(x, y)\right)_{\boldsymbol{a}}$, supposing that the conditions of Theorem 3.11 are confirmed. Assume (Range (B)) ${ }^{\mathrm{c}}$ is the complement of Range (B) and \mathfrak{I} is the space of all sets with finite number of elements and ℓ_{∞}^{F} is the space of bounded sequences of fuzzy functions.
Definition 4.1. If $\varepsilon_{\boldsymbol{\omega}}^{F}$ is a pre-quasi normed $\mathfrak{p s s f f}$ and $\psi=\left(\psi_{k}\right) \in \mathcal{R}^{\mathbb{N}_{0}}$, the operator $G_{\psi}: \varepsilon_{\omega}^{F} \rightarrow \varepsilon_{\omega}^{F}$ is
 operator is called generated by ψ, when $G_{\psi} \in \mathcal{L}\left(\mathcal{E}_{\mathrm{a}}^{\mathrm{F}}\right)$.

Theorem 4.2.

(1) $\psi \in \ell_{\infty} \Longleftrightarrow G_{\psi} \in \mathcal{L}\left(\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\mathfrak{\infty}}\right)$.
(2) $\left|\psi_{\mathrm{a}}\right|=1$, for every $\mathrm{a} \in \mathbb{N}_{0}$, if and only if, G_{ψ} is an isometry.
(3) $\mathrm{G}_{\psi} \in \mathfrak{P}\left(\left(\Gamma_{\mathrm{p}}^{\mathrm{F}}(\mathrm{x}, \mathrm{y})\right)_{\boldsymbol{\infty}}\right) \Longleftrightarrow\left(\psi_{\mathrm{a}}\right)_{\mathrm{a}=0}^{\infty} \in \mathrm{c}_{0}$.
(4) $\mathrm{G}_{\psi} \in \mathcal{C}\left(\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(\mathrm{x}, \mathrm{y})\right)_{\mathfrak{\infty}}\right) \Longleftrightarrow\left(\psi_{\mathfrak{b}}\right)_{\mathrm{b}=0}^{\infty} \in \mathrm{c}_{0}$.
(5) $\mathcal{C}\left(\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\mathfrak{\infty}}\right) \varsubsetneqq \mathcal{L}\left(\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\mathfrak{\infty}}\right)$.
(6) $0<\alpha<\left|\psi_{\mathrm{a}}\right|<\eta$, for all $\mathrm{a} \in(\operatorname{ker}(\psi))^{\mathrm{c}}$, if and only if, Range $\left(\mathrm{G}_{\psi}\right)$ is closed.
(7) $0<\alpha<\left|\psi_{\mathrm{a}}\right|<\eta$, for every $\mathrm{a} \in \mathbb{N}_{0}$, if and only if, $\mathrm{G}_{\psi} \in \mathcal{L}\left(\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(\mathrm{x}, \mathrm{y})\right)_{\boldsymbol{\infty}}\right)$ is invertible.
(8) G_{ψ} is Fredholm operator, if and only if,
(g1) $\operatorname{ker}(\psi) \varsubsetneqq \mathbb{N}_{0} \cap \Im$;
(g2) $\left|\psi_{a}\right| \geqslant \stackrel{p}{\rho}$, for every $a \in(\operatorname{ker}(\psi))^{c}$.
Proof.
(1). Assume $\psi \in \ell_{\infty}$, we have $v>0$ so that $\left|\psi_{a}\right| \leqslant v$, for every $a \in \mathbb{N}_{0}$. Suppose $\bar{j} \in\left(\Gamma_{\mathfrak{p}}^{F}(x, y)\right)_{\boldsymbol{q}}$, one has

$$
\begin{aligned}
& \varpi\left(G_{\psi} \bar{j}\right)=\varpi(\psi \bar{j})=\left\lvert\, \sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{\substack{b \\
a}} \psi_{a}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a} \overline{j_{a}}, \overline{0}\right)}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}}\right.
\end{aligned}
$$

Hence $G_{\psi} \in \mathcal{L}\left(\left(\Gamma_{\mathfrak{p}}^{\mathcal{F}}(x, y)\right)_{\boldsymbol{\omega}}\right)$.

Next, assume $G_{\psi} \in \mathcal{L}\left(\left(\Gamma_{\mathfrak{p}}^{\mathcal{F}}(x, y)\right)_{\boldsymbol{\infty}}\right)$ and $\psi \notin \ell_{\infty}$. We have $\mathrm{q}_{\mathrm{d}} \in \mathbb{N}_{0}$, for all $\mathrm{d} \in \mathbb{N}_{0}$ so that $\psi_{\mathrm{q}_{\mathrm{d}}}>\mathrm{d}$. Hence

$$
\begin{aligned}
& =\left|\sum_{b=q_{d}}^{\infty}\left(\frac{\psi_{\left(q_{d}\right)}\left[\begin{array}{c}
q_{d}+\mathfrak{p}-1 \\
q_{d}
\end{array}\right] \chi_{q_{d}}}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}}>\right| \sum_{b=q_{d}}^{\infty}\left(\frac{d\left[\begin{array}{c}
q_{d}+\mathfrak{p}-1 \\
q_{d}
\end{array}\right] \chi_{q_{d}}}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}}>d^{y_{0}} \oplus\left(\overline{e_{q_{d}}}\right) .
\end{aligned}
$$

So $\mathrm{G}_{\psi} \notin \mathcal{L}\left(\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\mathfrak{\infty}}\right)$. So $\psi \in \ell_{\infty}$.
(2). Suppose $\bar{j} \in\left(\Gamma_{p}^{F}(x, y)\right)_{\infty}$ and $\left|\psi_{b}\right|=1$, for all $b \in \mathbb{N}_{0}$. We have

$$
\begin{aligned}
\varpi\left(G_{\psi} \overline{\mathfrak{j}}\right)=\varpi(\psi \bar{j}) & =\left\lvert\, \sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{\substack{b \\
a \\
b}}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a} \psi_{a} \overline{j_{a}}, \overline{0}\right)}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}}\right. \\
& =\left\lvert\, \sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{\substack{b \\
a}}^{\left.\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a} \overline{j_{a}}, \overline{0}\right)}\right.}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}}=\varpi(\overline{\mathfrak{j}})\right.,
\end{aligned}
$$

hence G_{ψ} is an isometry.
Next assume for some $d=d_{0}$ that $\left|\psi_{d}\right|<1$, we have

$$
\begin{aligned}
& \left.=\left|\sum_{\mathrm{b}=\mathrm{d}_{0}}^{\infty}\left(\frac{\left|\psi_{\mathrm{d}_{0}}\right|\left[\begin{array}{c}
\mathrm{d}_{0}+\mathfrak{p}-1
\end{array} \mathrm{~d}_{0} \mathrm{x}_{\mathrm{d}_{0}}\right.}{\left[\begin{array}{c}
\mathrm{p}+\mathrm{b} \\
\mathrm{~b}
\end{array}\right]}\right)^{\mathrm{y}_{\mathrm{b}}}<\right| \sum_{\mathrm{b}=\mathrm{d}_{0}}^{\infty}\left(\frac{\left[\begin{array}{c}
\mathrm{d}_{0}+\mathfrak{p}-1 \\
\mathrm{~d}_{0}
\end{array}\right] \mathrm{x}_{\mathrm{d}_{0}}}{\left[\begin{array}{c}
\mathrm{p}+\mathrm{b} \\
\mathrm{~b}
\end{array}\right]}\right)^{\mathrm{y}_{\mathrm{b}}}=\boldsymbol{(\overline { \mathrm { e } _ { 0 } }}\right) .
\end{aligned}
$$

If $\left|\psi_{\mathrm{d}_{0}}\right|>1$, so $\varpi\left(\mathrm{G}_{\psi} \overline{\boldsymbol{e}_{\mathrm{d}_{0}}}\right)>\boldsymbol{\Phi}\left(\overline{{\mathrm{e}_{0}}_{0}}\right)$. Hence $\left|\psi_{\mathrm{a}}\right|=1$, for every $a \in \mathbb{N}_{0}$.
(3). Let $\mathrm{G}_{\psi} \in \mathfrak{P}\left(\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\mathfrak{w}}\right)$, hence $\mathrm{G}_{\psi} \in \mathcal{C}\left(\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\mathfrak{a}}\right)$. Assume $\lim _{\mathfrak{b} \rightarrow \infty} \psi_{\mathfrak{b}} \neq 0$. We get $\rho>0$ so that $K_{\rho}=\left\{a \in \mathbb{N}_{0}:\left|\psi_{\mathrm{a}}\right| \geqslant \rho\right\} \nsubseteq \mathfrak{I}$. If $\left\{\lambda_{q}\right\}_{q \in \mathbb{N}_{0}} \subset K_{\rho}$, one has $\left\{\overline{\bar{e}_{\lambda_{q}}}: \lambda_{q} \in K_{\rho}\right\} \in \ell_{\infty}^{F}$ is an infinite set in $\left(\Gamma_{p}^{F}(x, y)\right)_{\boldsymbol{\omega}}$. For every $\lambda_{q}, \lambda_{r} \in K_{\rho}$, we have

$$
\begin{aligned}
& \varpi\left(\mathrm{G}_{\psi} \overline{\bar{e}_{\lambda_{\mathrm{q}}}}-\mathrm{G}_{\psi} \overline{\bar{e}_{\lambda_{\mathrm{r}}}}\right)=\boldsymbol{\omega}\left(\psi \overline{{\overline{\lambda_{\mathrm{q}}}}}-\psi \overline{\boldsymbol{e}_{\lambda_{\mathrm{r}}}}\right) \\
& =\left\lvert\, \sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{a=0}^{b}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a} \psi_{a}\left(\overline{\left(e_{\lambda_{q}}\right)_{a}}-\overline{\left(e_{\lambda_{r}}\right)_{a}}\right), \overline{0}\right)}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}}\right. \\
& \geqslant 1 \sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{\substack{b \\
b}}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a} \rho\left(\overline{\left(e_{\lambda_{q}}\right)_{a}}-\overline{\left(e_{\lambda_{r}}\right)_{a}}\right), \overline{0}\right)}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}} \geqslant \inf _{b} \rho^{y_{b}} \varpi\left(\overline{e_{\lambda_{q}}}-\overline{e_{\lambda_{r}}}\right) .
\end{aligned}
$$

Therefore, $\left\{\overline{e_{\lambda_{r}}}: \lambda_{r} \in K_{\rho}\right\} \in \ell_{\infty}^{F}$ has not a convergent subsequence under G_{ψ}. Hence $G_{\psi} \notin \mathcal{C}\left(\left(\Gamma_{\rho}^{F}(x, y)\right)_{\infty}\right)$. So $G_{\psi} \notin \mathfrak{P}\left(\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\infty}\right)$, this is a contradiction. Hence $\lim _{b \rightarrow \infty} \psi_{\mathfrak{b}}=0$. Next, assume $\lim _{a \rightarrow \infty} \psi_{\mathfrak{a}}=0$. Therefore for all $\rho>0$, one has $K_{\rho}=\left\{b \in \mathbb{N}_{0}:\left|\psi_{b}\right| \geqslant \rho\right\} \subset \mathfrak{I}$. Hence for every $\rho>0$, we have $\operatorname{dim}\left(\left(\left(\Gamma_{\mathfrak{p}}^{\mathcal{F}}(x, y)\right)_{\boldsymbol{\infty}}\right)_{{K_{\rho}}^{\prime}}\right)=\operatorname{dim}\left(\mathcal{R}^{K_{\rho}}\right)<\infty$. Then $G_{\psi} \in \mathbb{I}\left(\left(\left(\Gamma_{\mathfrak{p}}^{\mathcal{F}}(x, y)\right)_{\boldsymbol{\infty}}\right)_{K_{\rho}}\right)$, if $\psi_{q} \in \mathcal{R}^{\mathbb{N}_{0}}$, for every $\mathrm{q} \in \mathbb{N}_{0}$, where

$$
\left(\psi_{q}\right)_{r}= \begin{cases}\psi_{r}, & r \in K_{\frac{1}{q+1}}, \\ 0, & \text { otherwise }\end{cases}
$$

Clearly, $G_{\psi_{a}} \in \mathbb{I}\left(\left(\left(\Gamma_{\mathfrak{p}}^{F}(x, y)\right)_{\varpi}\right)_{K_{\frac{1}{q}}^{q+1}}\right)$, as $\operatorname{dim}\left(\left(\left(\Gamma_{\mathfrak{p}}^{F}(x, y)\right)_{\omega}\right)_{K_{\frac{1}{d}}^{q+1}}\right)<\infty$, for all $q \in \mathbb{N}_{0}$. Since $\left(y_{b}\right) \in \uparrow$ $\cap \ell_{\infty}$ so that $y_{0}>\frac{1}{p}$, one has

$$
\begin{aligned}
& \boldsymbol{\omega}\left(\left(G_{\psi}-G_{\psi_{q}}\right) \bar{j}\right) \\
& =\omega\left(\left(\left(\psi_{r}-\left(\psi_{q}\right)_{r}\right) \overline{j_{r}}\right)_{r=0}^{\infty}\right) \\
& =\left\lvert\, \sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{a=0}^{b}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a}\left(\psi_{a}-\left(\psi_{q}\right)_{a}\right) \overline{\dot{a}_{a}}, \overline{0}\right)}{\left[{ }_{b}^{p+b}\right]}\right)^{y_{b}}\right. \\
& =\left\lvert\, \sum_{b=0, b \in K_{\frac{1}{q}+1}}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{a=0}^{b}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a}\left(\psi_{a}-\left(\psi_{q}\right)_{a}\right) \overline{j_{a}}, \overline{0}\right)}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y b}+\sum_{b=0, b \notin K_{\frac{1}{a}+1}}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{a=0}^{b}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a}\left(\psi_{a}-\left(\psi_{q}\right)_{a}\right) \overline{j_{a}}, \overline{0}\right)}{\left[\begin{array}{l}
p+b \\
b
\end{array}\right]}\right)^{y b}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant 2 \left\lvert\, \sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\left\lvert\, \sum_{a=0, a \notin K_{\frac{1}{a+1}}^{b}}\left[\begin{array}{c}
a+p-1 \\
a \\
b
\end{array}\right]\right.\right.}{\left[\begin{array}{c}
p+1
\end{array} x_{a} \psi_{a} \overline{j_{a}}, \overline{0}\right)}\right)^{y b}\right. \\
& <\frac{2}{(q+1)^{y_{0}}} \left\lvert\, \sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{a=0}^{b} \sum_{\substack{a+p-1 \\
a}}^{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]} x_{a} \overline{j_{a}}, \overline{0}\right)}{y_{b}}\right)^{y_{b}}=\frac{2}{(q+1)^{y_{0}}} \varpi(\bar{j})\right. \text {. }
\end{aligned}
$$

Hence $\left\|G_{\psi}-G_{\psi_{q}}\right\| \leqslant \frac{2}{(q+1)^{y_{0}}}$. We get G_{ψ} is a limit of finite rank operators.
(4). Since $\mathfrak{P}\left(\left(\Gamma_{\mathfrak{p}}^{\mathcal{F}}(x, y)\right)_{\mathfrak{w}}\right) \varsubsetneqq \mathcal{C}\left(\left(\Gamma_{\mathfrak{p}}^{\mathcal{F}}(x, y)\right)_{\mathfrak{w}}\right)$, the proof follows.
(5). As $I=I_{\psi}$, where $\psi=(1,1, \ldots)$, one has $I \notin \mathcal{C}\left(\left(\Gamma_{p}^{F}(x, y)\right)_{\infty}\right)$ and $I \in \mathcal{L}\left(\left(\Gamma_{p}^{F}(x, y)\right)_{\infty}\right)$.
(6). If the sufficient setups are verified, we have $\rho>0$ so that $\left|\psi_{a}\right| \geqslant \rho$, for all $a \in(\operatorname{ker}(\psi))^{c}$. To prove that $\operatorname{Range}\left(G_{\psi}\right)$ is closed, when \bar{g} is a limit point of $\operatorname{Range}\left(G_{\psi}\right)$, we have $G_{\psi} \overline{\bar{j}_{\mathfrak{b}}} \in\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\boldsymbol{\infty}}$, for every $\mathrm{b} \in \mathbb{N}_{0}$ so that $\lim _{\mathrm{b} \rightarrow \infty} \mathrm{G}_{\psi} \overline{\boldsymbol{j}_{\mathrm{b}}}=\overline{\mathrm{g}}$. Obviously, $\mathrm{G}_{\psi} \overline{)_{\mathrm{b}}}$ is a Cauchy sequence. As $\left(y_{\mathrm{b}}\right) \in \uparrow \cap \ell_{\infty}$, one can find c >0 such that

$$
\begin{aligned}
& \varpi\left(G_{\psi} \overline{\bar{j}_{q}}-G_{\psi} \overline{\bar{j}_{r}}\right)=\left\lvert\, \sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{a=0}^{b}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a}\left(\psi_{a} \overline{\left(j_{q}\right)_{a}}-\psi_{a} \overline{\left.\left(j_{r}\right)_{a}\right)}, \overline{0}\right)\right.}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}}\right. \\
& =\left\lvert\, \sum_{b=0, b \in(\operatorname{ker}(\psi))^{c}}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{a=0}^{b}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a}\left(\psi_{a} \overline{\left(j_{q}\right)_{a}}-\psi_{a} \overline{\left.\left(j_{r}\right)_{a}\right)}, \overline{0}\right)\right.}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}}\right. \\
& +1 \sum_{b=0, b \notin(\operatorname{ker}(\psi))^{c}}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{a=0}^{b}\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right] x_{a}\left(\psi_{a} \overline{\left(j_{\mathfrak{q}}\right)_{a}}-\psi_{a} \overline{\left.\left.\mathfrak{j}_{r}\right)_{a}\right)}, \overline{0}\right)\right.}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}}
\end{aligned}
$$

$$
\begin{aligned}
& >c \left\lvert\, \sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\rho \sum_{\substack{b \\
b}}^{\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right]} x_{a}\left(\overline{\left(u_{q}\right)_{a}}-\overline{\left.\left(u_{r}\right)_{a}\right)}, \overline{0}\right)\right.}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}} \geqslant \inf _{b} c \rho^{y_{b}} \varpi\left(\overline{u_{q}}-\overline{u_{r}}\right)\right. \text {, }
\end{aligned}
$$

where

$$
\overline{\left(u_{q}\right)_{k}}= \begin{cases}\overline{\left(\mathfrak{j}_{\mathfrak{q}}\right)_{k}}, & k \in(\operatorname{ker}(\psi))^{c}, \\ 0, & k \notin(\operatorname{ker}(\psi))^{c} .\end{cases}
$$

Hence $\left\{\overline{u_{q}}\right\}$ is a Cauchy sequence in $\left(\Gamma_{\mathfrak{p}}^{\mathcal{F}}(x, y)\right)_{\boldsymbol{\omega}}$. As $\left(\Gamma_{\mathfrak{p}}^{\mathcal{F}}(x, y)\right)_{\boldsymbol{\propto}}$ is complete, one has $\bar{j} \in\left(\Gamma_{\mathfrak{p}}^{\mathcal{F}}(x, y)\right)_{\boldsymbol{\propto}}$ with $\lim _{\mathfrak{b} \rightarrow \infty} \overline{\bar{u}_{\mathfrak{b}}}=\overline{\mathfrak{j}}$. Since $G_{\psi} \in \mathcal{L}\left(\left(\Gamma_{\mathfrak{p}}^{\mathrm{F}}(x, y)\right)_{\mathfrak{a}}\right)$, one has $\lim _{\mathfrak{b} \rightarrow \infty} G_{\psi} \overline{\bar{u}_{\mathfrak{b}}}=G_{\psi} \overline{\mathfrak{j}}$. Since $\lim _{\mathfrak{b} \rightarrow \infty} \mathrm{G}_{\psi} \overline{\bar{u}_{\mathrm{b}}}=$ $\lim _{b \rightarrow \infty} G_{\psi} \overline{j_{b}}=\bar{g}$, therefore, $G_{\psi} \bar{j}=\bar{g}$. So $\bar{g} \in \operatorname{Range}\left(G_{\psi}\right)$, i.e., Range $\left(G_{\psi}\right)$ is closed. Next, assume the necessity condition is satisfied. We have $\rho>0$ with $\boldsymbol{\varpi}\left(G_{\psi} \overline{\mathfrak{j}}\right) \geqslant \rho \boldsymbol{\varpi}(\overline{\mathfrak{j}})$ and $\overline{\mathfrak{j}} \in\left(\left(\Gamma_{\mathfrak{p}}^{\mathcal{F}}(x, y)\right)_{\boldsymbol{\infty}}\right)_{(\operatorname{ker}(\psi))^{c}}$. Let $K=\left\{b \in(\operatorname{ker}(\psi))^{c}:\left|\psi_{b}\right|<\rho\right\} \neq \emptyset$, then for $q_{0} \in K$, one gets

$$
\begin{aligned}
& \left.\varpi\left(\mathrm{G}_{\psi} \overline{\boldsymbol{e}_{0}}\right)=\varpi\left(\left(\psi_{\mathrm{b}} \overline{\left(e_{\mathbf{q}_{0}}\right)_{\mathrm{b}}}\right)\right)_{\mathrm{b}=0}^{\infty}\right)=\left\lvert\, \sum_{\mathrm{b}=0}^{\infty}\left(\frac{\bar{\tau}\left(\sum_{\mathrm{a}=0}^{\mathrm{b}}\left[\begin{array}{c}
\mathrm{a}+\mathrm{p}-1 \\
\mathrm{a}
\end{array}\right] \mathrm{x}_{\mathrm{a}} \psi_{\mathrm{a}} \overline{\left(e_{\mathrm{q}_{0}}\right)_{\mathrm{a}}}, \overline{0}\right)}{\left[\begin{array}{c}
\mathrm{p}+\mathrm{b} \\
\mathrm{~b}
\end{array}\right]}\right)^{\mathrm{yb}_{\mathrm{b}}}\right. \\
& <1 \sum_{b=0}^{\infty}\left(\frac{\bar{\tau}\left(\rho \sum_{\substack{b \\
a}}^{\left[\begin{array}{c}
a+p-1 \\
a
\end{array}\right]} x_{a} \overline{\left(e_{q_{0}}\right)_{a}}, \overline{0}\right)}{\left[\begin{array}{c}
p+b \\
b
\end{array}\right]}\right)^{y_{b}} \leqslant \sup _{\mathrm{l}} \rho^{y_{b}} \varpi\left(\overline{e_{q_{0}}}\right),
\end{aligned}
$$

this gives a contradiction. Hence $K=\phi$, then $\left|\psi_{a}\right| \geqslant \rho$, for every $a \in(\operatorname{ker}(\psi))^{c}$.
(7). First, if $\beta \in \mathcal{R}^{\mathbb{N}_{0}}$ with $\beta_{a}=\frac{1}{\psi_{a}}$, from Theorem 4.2 part (1), one has $G_{\psi}, G_{\beta} \in \mathcal{L}\left(\left(\Gamma_{p}^{F}(x, y)\right)_{\boldsymbol{\omega}}\right)$. We get $G_{\psi} \cdot G_{\beta}=G_{\beta} \cdot G_{\psi}=I$. So $G_{\beta}=G_{\psi}^{-1}$. Second, assume G_{ψ} is invertible. Then Range $\left(G_{\psi}\right)=$ $\left(\left(\Gamma_{\mathfrak{p}}^{\mathcal{F}}(x, y)\right)_{\boldsymbol{a}}\right)_{\mathbb{N}_{0}}$. Hence Range $\left(\mathrm{G}_{\psi}\right)$ is closed. From Theorem 4.2 part (5), we have $\alpha>0$ so that $\left|\psi_{\mathfrak{a}}\right| \geqslant \alpha$, for every $a \in(\operatorname{ker}(\psi))^{\text {c }}$. Hence $\operatorname{ker}(\psi)=\emptyset$, if $\psi_{a_{0}}=0$, where $a_{0} \in \mathbb{N}_{0}$, so $e_{a_{0}} \in \operatorname{ker}\left(G_{\psi}\right)$, which is a contradiction, as $\operatorname{ker}\left(G_{\psi}\right)$ is trivial. Therefore, $\left|\psi_{a}\right| \geqslant \alpha$, for every $a \in \mathbb{N}_{0}$. Since $G_{\psi} \in \ell_{\infty}$, by Theorem 4.2 part (1), we have $\eta>0$ with $\left|\psi_{a}\right| \leqslant \eta$, for every $a \in \mathbb{N}_{0}$. Hence $\alpha \leqslant\left|\psi_{a}\right| \leqslant \eta$, for every $a \in \mathbb{N}_{0}$.
(8). First, assume $\operatorname{ker}(\psi) \varsubsetneqq \mathbb{N}_{0}$ and $\operatorname{ker}(\psi) \notin \mathfrak{I}$, we obtain $\overline{e_{a}} \in \operatorname{ker}\left(\mathrm{G}_{\psi}\right)$, for every $a \in \operatorname{ker}(\psi)$. Since $\overline{e_{\mathrm{a}}}$'s are linearly independent, one gets $\operatorname{dim}\left(\operatorname{ker}\left(\mathrm{G}_{\psi}\right)\right)=\infty$, this is a contradiction. So $\operatorname{ker}(\psi) \varsubsetneqq \mathbb{N}_{0} \in$ I. The setup (g2) comes from Theorem 4.2 part (6). Next, if the setups (g1) and (g2) are confirmed, by Theorem 4.2 part (6), the setup (g2) implies that $\operatorname{Range}\left(\mathrm{G}_{\psi}\right)$ is closed. The setup (g1) gives that $\operatorname{dim}\left(\left(\operatorname{Range}\left(\mathrm{G}_{\psi}\right)\right)^{\mathrm{c}}\right)<\infty$ and $\operatorname{dim}\left(\operatorname{ker}\left(\mathrm{G}_{\psi}\right)\right)<\infty$. Hence G_{ψ} is Fredholm.

5. Conclusion

A new general solution space for numerous stochastic nonlinear dynamical systems are presented. We have defined and examined some topological, geometric properties of $\left(\Gamma_{p}^{F}(x, y)\right)_{\boldsymbol{a}}$ and the multiplication operators acting on it.

References

[1] M. Abbas, G. Murtaza, S. Romaguera, Soft contraction theorem, J. Nonlinear Convex Anal., 16 (2015), 423-435. 1
[2] H. Ahmad, M. Younis, M. E. Köksal, Double controlled partial metric type spaces and convergence results, J. Math., 2021 (2021), 11 pages. 1
[3] B. Altay, F. Başar, Generalization of the sequence space $\ell(p)$ derived by weighted means, J. Math. Anal. Appl., 330 (2007), 147-185. 3.2
[4] H. Altinok, R. Colak, M. Et, 入-difference sequence spaces of fuzzy numbers, Fuzzy Sets Systems, 160 (2009), 3128-3139. 2
[5] A. A. Bakery, A. R. A. Elmatty, A note on Nakano generalized difference sequence space, Adv. Difference Equ., 2020 (2020), 17 pages. 1.2
[6] A. A. Bakery, A. R. A. Elmatty, O. K. S. K. Mohamed, Multiplication Operators on Weighted Nakano (sss), J. Math., 2020 (2020), 7 pages. 1
[7] C.-M. Chen, I.-J. Lin, Fixed point theory of the soft Meir-Keeler type contractive mappings on a complete soft metric space, J. Inequal. Appl., 2015 (2015), 9 pages. 1
[8] R. Colak, H. Altinok, M. Et, Generalized difference sequences of fuzzy numbers, Chaos Solitons Fractals, 40 (2009), 1106-1117. 2
[9] D. Dubois, H. Prade, Possibility theory: An approach to computerized processing of uncertainty, Plenum, New York, (1998). 1
[10] N. Faried, A. A. Bakery, Small operator ideals formed by s numbers on generalized Cesáro and Orlicz sequence spaces, J. Inequal. Appl., 2018 (2018), 14 pages. 1
[11] L. F. Guo, Q. X. Zhu, Stability analysis for stochastic Volterra-Levin equations with Poisson jumps: Fixed point approach, J. Math. Phys., 52 (2011), 15 pages. 1
[12] B. Hazarika, E. Savas, Some I-convergent lambda-summable difference sequence spaces of fuzzy real numbers defined by a sequence of Orlicz functions, Math. Comput. Modelling, 54 (2011), 2986-2998. 2
[13] V. A. Khan, R. K. A. Rababah, M. Ahmad, A. Esi, M. I. Idrisi, I-Convergent difference sequence spaces defined by compact operator and sequence of moduli, ICIC Express Letters, 13 (2019), 907-912. 1
[14] V. A. Khan, R. K. A. Rababah, A. Esi, S. A. A. Abdullah, K. M. A. S. Aslhlool, Some new spaces of ideal convergent double sequences by using compact operator, J. Appl. Sci., 9 (2017), 467-474.
[15] V. A. Khan, Yasmeen, A. Esi, H. Fatima, M. Ahmad, A Stduy of intuitionistic fuzzy I-convergent double sequence spaces defined by compact operator, Elec. J. Math. Anal. Appl., 7 (2019), 331-340. 1
[16] B. S. Komal, S. Pandoh, K. Raj, Multiplication operators on Cesáro sequence spaces, Demonstr. Math., 49 (2016), 430-436. 1
[17] P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077-1083. 1
[18] B. M. Makarov, N. Faried, Some properties of operator ideals constructed by s numbers, (In Russian), Academy of Science, Siberian section, Novosibirsk, Russia, 1977 (1977), 206-211. 1
[19] W. Mao, Q. X. Zhu, X. R. Mao, Existence, uniqueness and almost surely asymptotic estimations of the solutions to neutral stochastic functional differential equations driven by pure jumps, Appl. Math. Comput., 254 (2015), 252-265. 1
[20] M. Matloka, Sequences of fuzzy numbers, Fuzzy Sets and Systems, 28 (1986), 28-37. 2
[21] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19-31. 1
[22] T. Mrowka, A Brief Introduction to Linear Analysis: Fredholm Operators, Geometry of Manifolds, Massachusetts Institute of Technology: MIT Open Couse Ware (Fall 2004), (2004). 2.4
[23] M. Mursaleen, A. K. Noman, Compactness by the Hausdorff measure of noncompactness, Nonlinear Anal., 73 (2010), 2541-2557. 1
[24] M. Mursaleen, A. K. Noman, Compactness of matrix operators on some new difference sequence spaces, Linear Algebra Appl., 436 (2012), 41-52. 1
[25] S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33 (1989), 123-126. 2
[26] F. Nuray, E. Savaş, Statistical convergence of sequences of fuzzy numbers, Math. Slovaca, 45 (1995), 269-273. 2
[27] A. Pietsch, Small ideals of operators, Studia Math., 51 (1974), 265-267. 1
[28] A. Pietsch, Operator Ideals, VEB Deutscher Verlag der Wissenschaften, Berlin, (1978). 1, 2.2, 2.3
[29] A. Pietsch, Eigenvalues and s-numbers, Cambridge University Press, Cambridge, (1986). 1.1
[30] H. Roopaei, F. Başar, On the Gamma Spaces Including the Spaces of Absolutely p-Summable, Null, Convergent and Bounded Sequences, Numer. Funct. Anal. Optim., 43 (2022), 723-754. 1
[31] X. T. Yang, Q. X. Zhu, Existence, uniqueness, and stability of stochastic neutral functional differential equations of Sobolevtype, J. Math. Phys., 56 (2015), 16 pages. 1
[32] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338-353. 1

[^0]: *Corresponding author
 Email addresses: mmralsulami@uj.edu.sa (Meshayil M. Alsolmi), awad_bakery@yahoo.com (Awad A. Bakery) doi: 10.22436/jmcs.029.04.01
 Received: 2022-07-23 Revised: 2022-08-29 Accepted: 2022-08-31

