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Abstract

A number of topological and geometrical properties of the weighted Gamma matrix of order r in Nakano sequence space for
fuzzy functions equipped with definite pre-modular functions are defined and investigated in this paper. We begin by defining
the necessary conditions for the formation of pre-modular Banach in this space. Second, we specify the conditions under which

the multiplication operator defined on this pre-modular space is bounded, approximable, invertible, Fredholm, and closed on
the basis of this space.
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1. Introduction

In the study of uncertainty, probability theory, fuzzy set theory, soft sets, and rough sets have all had a
significant impact. However, there are certain downsides to these hypotheses. Please see [1, 2,7, 9, 11, 17,
19,21, 31, 32] for additional details and real-world examples. Suppose that R is the set of real numbers and
INj is the set of nonnegative integers. Given that the proof of many fixed point theorems in a given space
requires either growing the space itself or expanding the self-operator that acts on it, both of these options
are viable, we have constructed the space, (F]'; (x,y)) o’ which is the domain of weighted Gamma matrix
of order p in Nakano fuzzy sequence space since it is constructed by the domain of weighted Gamma
matrix of order p defined in EF( ym)) where the weighted Gamma matrix of order p, W, = (VE (X)) is

defined as:
[p+ afl] Xa

[gjtib]r Ogagb/
b

0, a>b,

Yho(x) =

where p is a positive integer, xq € (0,00), for all a € Ny, and [‘H;‘*l] = %.
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In [30], Roopaei and Basar studied the Gamma spaces, including the spaces of absolutely p-summable,
null, convergent, and bounded sequences. By cy, {s and £, we indicate the space of null, bounded and
g-absolutely summable sequences of reals. We mark the space of all bounded, finite rank linear operators
from an infinite-dimensional Banach space O into an infinite-dimensional Banach space M by £(0, M),
and I(O, M) and when O = M, we put £(0O) and I(O). The space of approximable and compact bounded
linear operators from O into M will be represented by B(O, M), and €(O, M), respectively. The ideal of
bounded, approximable and compact operators between every two infinite-dimensional Banach spaces
will be denoted by £, B and C, respectively.

Definition 1.1 ([29]). An s-number is a function s : £(O,M) — RN that sorts all A € L£(0,M) and
(sq (A))‘C’IOZO satisfies the next setups:

) [|A] =s0(A) = s1(A) = s2(A) = -+ >0, forall A € L(O,M);

(2) sq(ABG) < ||Al[sq(B) |G|, for every G € £(0Op,0), B € £L(O,M) and A € L£L(M,Mp), where Og and
My are arbltrary Banach spaces;

(3) sk+m—1(G1+ G2) < 5x(G1) + sm(Gz), for every Gy, G, € £(0,M) and k, m € Ny;

(4) if A € £L(O,M) and C € R, then s4(CA) = |([sq(A);

5) suppose rank( ) < q, then sq(A) =0, forall A € £L(O, M);

(6) sp>q =0 or sp<q(Iq) = 1, where I marks the unit operator on the g-dimensional Hilbert space

0.
Some examples of s-numbers are as

(a) the p-th approximation number defined as o, (T) = inf{ ||T — V|| : V € £(0,M) and rank(V) < p};
(b) the p-th Kolmogorov number defined as dp, (T) = infyim(g)<p SUp lill<1 infyep || TL—K|.

Notations 1.2 ([5]). Assume € is a linear space of sequences of real numbers.
L3 = {L;(@,M)}, where £3 (0, M) := {B € L(0,M): ((sq(B)T € a},
L8 = {L?(O,M)}, where £&(0, M) := {B € L(0,M): ((0q(B))g € 8},
cd = {Lg(o,.M)}, where £4(0,M) := {B € £{0,M): ((dq(B))Tg € 8}.

The multiplication operators have a wide field of mathematics in functional analysis, for instance, in
eigenvalue distributions theorem, geometric structure of Banach spaces, theory of fixed point, and so
forth. A few of operator ideals in the class of Hilbert spaces or Banach spaces are defined by distinct
scalar sequence spaces. Such as the ideal of compact operators C formed by (dq(B) and cg. Pietsch [28],
studied the quasi-ideals £ iy for ¢ > 0, the ideals of Hilbert Schmidt operators between Hilbert spaces
constructed by {, and the ideals of nuclear operators generated by {;. He explained that the closure
of I = LE, for ¢ > 1, and the class L{, became simple Banach and small [27]. The strictly inclusion
L‘X (O,M) & L"‘ (O,M) & C L(O,M), if q > p > 0, investigated through Makarov and Faried [18]. Faried
and Bakery [10] gave a generahzat1on of the class of quasi operator ideal which is the pre-quasi operator
ideal, they examined several geometric and topological structure of £ and £Z ). On sequence spaces,
Mursaleen and Noman ([23, 24]) investigated the Compact operators on some dlfference sequence spaces.
For more updates on sequence spaces and their applications see [13-15]. The multiplication operators on
(ces(r), ||.]|) with the Luxemburg norm ||.|| elaborated by Komal et al. [16]. Bakery et al. [6] studied the
multiplication Operators acting on weighted Nakano sequence space. The aim of this article to define
and offer some geometric and topological structures of the weighted Gamma matrix of order r in Nakano
sequence space of fuzzy functions, (l}f (x,y)) o’ equipped with the pre-modular function. First, we give
the sufficient conditions on this space to form pre-modular Banach. Second, we give the necessity and
sufficient conditions on this pre-modular space such that the multiplication operator defined on it is
bounded, approximable, invertible, Fredholm and closed range operator.
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2. Preliminaries and definitions
Let @ be the set of all closed and bounded intervals on R. If h = [hq, hy] and j = [ji, j2] in @, assume
h <jif and only if hy <j; and hy <jo.

Define a metric T on ® by

t(h,j) = max{|hy —j1|, [ha —jal}
Matloka [20] showed that T is a metric on @ and (®,T) is a complete metric space. The relation < is a
partial order on @.

Definition 2.1. A fuzzy number h is an operator h : R — [0, 1] that satisfies the next setups:

(@) his fuzzy convex, ie., for p,q € Rand A € [0,1], h(Ap + (1 —A)q) = min{h(p), h(q)};

(b) his normal, i.e., there is pg € R such that h(pg) =1;

(c) his an upper-semi continuous, i.e., for all A > 0, h=1([0,p +A)) for all p € [0,1] is open in the usual
topology of R;

(d) the closure of h? :={p € R: h(p) > 0} is compact.

The A-level set of a fuzzy real number h, 0 < A <1, denoted by h?, is defined as
h ={p e R: h(p) > Al

The set of all upper semi-continuous, normal, convex fuzzy number, and h” is compact, is denoted by
R([0,1]). The set R can be embedded in R([0, 1]), if we define t € R([0,1]) by

_ B 1, y=t,
t(y)_{o, y£t

The additive identity and multiplicative identity in R[0,1] are denoted by 0 and 1, respectively. Assume
h,j € R[0,1] and the A-level sets are [h]* = [hi‘,h;‘], G1A = [ji‘,j;‘], A € [0,1]. A partial ordering for any
h,j € R[0,1] is as follows: h < j if and only if h* < j?, for all A € [0, 1].

If T: R0,1] x R[0,1] — Rt U{0} is defined by T(h,j) = SUPp<a<i t(h?*,j?), then the following are
verified:

1. (R[0,1],7) is a complete metric space;

2. T(h+1t,j+t) =7(h,j) for all h,j,t € R[0,1];
3. T(h+t,j+m) <T(hj) +7T(t, m);
4. T(Ch, §j) = |C[t(h,j), for all C € R.
For more details on fuzzy functions and their properties, see [4, 8, 12, 25, 26].

Definition 2.2 ([28]). An operator A € £(M) is said to be approximable if there are D, € I(M), for every
re N and lim,_, [|[A —D.| =0.

Theorem 2.3 ([28]). If M is Banach space with dim(M) = oo, then

I(M) & PM) & €(M) & L(MW).

Definition 2.4 ([22]). An operator B € £(€) is called Fredholm if dim(Range(B))¢ < oo, Range(B) is
closed and dim(ker(B)) < oo.

3. Properties of (I"g (x,y))

@

We have discussed in this section some geometric and topological properties of the fuzzy functions
space, (l“]l,E (x,y)) - equipped with the pre-modular function. Suppose wt is the space of all sequences of
fuzzy reals.
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Definition 3.1. If (y,) € R+*™°, where R+™N is the space of all sequences of positive reals, the sequence
space (Fg (x,y)) - equipped with the function @ is defined as:

(Fg(x,y))m = {j = (jp) € w" : @(nj) < oo, for some 1 > 0},

where

17— =)\ Yb
B} 00 T (Zgzo [a+g 1] Xajas 0)
() =) G .
b=0 b
Lemma 3.2 ([3]). If ya > 0and xq,zq € R, for all a € Ny, and h = max{1, sup  yq}, then
IXa +Za|ya < zhil (|Xa|ya + |Za|yu) .
Theorem 3.3. Suppose (yq) € oo N RN, then

(I‘If(x,y))(D = {j = (Ja) € 0" @(Mj) < 00, foralln > 0}.
Proof. Obviously, as (yq) is bounded. O

Theorem 3.4. Suppose (yq) € [1,00)No N L, then the space (I}f (x,y)) -, is a non-absolute type.

Proof. Clearly, since

o xo —pxq|\ ¥' xo—pxal\
a><1,—1,0,0,0,...)=(xo)y°+<|0pl|> +<|°p+‘§”> T

1+ [P27]
Yo X0 +pX1 vl X0 +pX1 s o T T 6 6 6
A+ () | e +-=o(110,00,...).

Definition 3.5. Assume (yq) € R+No and Ya = 1, for all a € Ny.

(M0 y) = {5 = (ja) € w" : p(nj) < 0o, for somen > 0},

where

b

o= (7 (20 [P Y xalial,0)
p(j)Z(( 0[[p+b]] >> :
b=0

Theorem 3.6. If (ya) € (1, 00)No N €y, with < atl ) & Ly, then (H“Ifl(x,y))zp - (Frf(x,y))a).

[Pre]
Proof. Assumej € (IFgl(x,y))p, as

S [Hgl]"“jafo))yb ~ (T(Z‘éo [“*El]xaja,O))yb

[P5’] [75°]

Therefore, j € (Frf(x,y))w . Take i = <[a(+;13]ax) ,one has i € (Fg(x,y))w and i ¢ (IFEI(x,y))p. O
@ acNy

a

Consider " is a linear space of sequences of fuzzy functions, and [b] indicates an integral part of the
real number b.
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Definition 3.7. The space &' is said to be a private sequence space of fuzzy functions (pssff), when the
next setups are satisfied:

(al) for all d € Ny, then eg € £F, where g = (0,0,...,1,0,0,- - - ), while 1 displays at the d'" place;

(a2) assume i = (iq) € wF, [j| = (ljal) € €F and [ia| < [ja], with a € Ny, then [i] € €F;

@3) ([kigr]) €& if ([kal)g € €7

Assume 0 = (0,0,0,...) and J is the space of finite sequences of fuzzy numbers.

Definition 3.8. A subspace of the pssff is called a pre-modular pssfj, if there is a function @ : €T — [0, 00)
that satisfies the next setups:
() ifiecéf,i=0«<= @(|i]) =0, and @(i) > 0;
(i) assumei € EF and o € R, one has Eg > 1 so that @(oi) < |o|Eg@(1);
(iii) one has Go = 1 with @(1+7j) < Go(@(1) + @(j)), for all i,j € EF;
(iv) suppose [igql < [jql, for all g € Ny, then @([iql) < @([jql);
(v) we have Dy > 1 such that @([il) < @([ig)]) < Do@([il),
(vi) the closure of F = EF;
(vii) one has A > 0 with @(¥,0,0;0,...) > Aly|l®(1,0,0,0,...).

The space €L is called a pre-modular Banach pssfj, if €T is complete under ®.
P @ p p

Definition 3.9. The pssff £F is said to be a pre-quasi normed pssff, if @ verifies the setups (i)-(iii) of
Definition 3.8.

Theorem 3.10. The space £L is a pre-quasi normed pssff, whenever it is pre-modular pssff.

By 1 and |, we mark the space of all monotonic increasing and decreasing sequences of positive reals,
respectively.

Theorem 3.11. Suppose

(f1) (ya) €1 Nl with yo > %;

(f2) ([‘”p*l]x )00 €lor ([C‘er*l}x )oo €1 Nl and there exists C > 1 so that
a a=0 7 a a:0 o0

a a

2a+ +p—1
E PR L e P
then (I}f (x,Y)) o 1s a pre-modular Banach pssff.
Proof.
(i). Evidently, @([il) =0« i=0and ®(i) > 0.
(al) and (iii). If i,j € (I} (x,y))w, then
= (R (S T xa (e +a)0) )
@(i+j) = Z p+b
b=0 5]
N =Ny (Zg:o [Hgil]xaa/ﬁ) T (7 (ZE:O [Hgil]xarﬂ/ﬁ) ’
<2 Z [p+b] + Z [p+b]
b=0 b b=0 b



M. M. Alsolmi, A. A. Bakery, ]. Math. Computer Sci., 29 (2023), 306-316 311

(ii). Suppose C € R, ] € (Fg(x,y))@ and as (Yp) €T N, we have

. o — Zgn: a+g—1 xaéz,ﬁ Ym
@(Cj)=|Z(T< O[F,M]] : >)

— _\\ Ym
Za— [CH_g_l]Xaja'O <
< sup [V Z ( ( P ) < EolCl@(j) < oo,

where Eg = max {1,supb ICI‘—’b*l} > 1. Hence (j € (Fg(x,y))@. As (yp) €T Ny and yo > %, one obtains

ad ?(Z?:O [Q+E_1]Xa(ebTﬁ) ym_ 00 |:b+571:|xb Ym
£ - 5 ()

m

Hence ¢ € (Fg(x,y))@, for every b € Nj.
(a2) and (iv). Suppose [iq| < [jql, for all a € Ny and [j| € (l“][‘,E (x,4)) @, then

o (I [ kel 0)\ T e (A (T T xalal0)
wmz( (Eeo 0] >) <Z( (0] ) ~ @) < o0
m=0 0

P P

so [il € (M (x,y))a
(a3) and (v). Suppose ([jql) € () "(x,Y)) o, under (yp) € Nly and ([a+ap_1}xa>oo €l, we get

00 — Zb a+g Xa| g|O
% Z( ( [[erb]] ! ))

b

- (T(ZE o[a;ibl]xaig 0)) ( aibfxa” 0)) b

b=0,24,--

Yy
f( ﬁbzo [a+g l Xa|) % Yoo 00 Z 1 a+g ]Xab ]‘ 0) 2b+1
[P32°] +1y P

|
M

2b+1

00 2b—|(—)1 [a+gfl]xa|@|16) Yo
ROt Pe

b=0

[en
I
=)

a=0

—(<2b [at+p— 1
T( [ a 2

/ﬁ
M8

[erb

[on
Il
<)

o0
<)

75"

o'
o

Yy
(PP Pxauliol + Z oo (P2 Txoa + Bt8 %0011 ) Fal, )) ’

5"

1 (| i (T (Zzzo [(E:Eb]l}xahaho) ) Yb N i (ZT (ZEZO [;:E)]l]xajalﬂ) ) yb)

b=0 b=0

oy (T(Zgo (P xaa + B 001 ) |ja|,o)>”"
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o (22 (28 [P Nxaffal,0) ) )
+|Z( (Zoa 8] ) < Do (fjl) < oo,

s

where Dy > (221 4271 4 21) > 1. Hence (fjja] 0

ey
(vi). Obviously, the closure of I = FF(X y).

(vii). We have 0 <y < supy Bl so that ®(B,0,0,0,...) > v|Bl®@(1,0,0,0,...), forall B # 0 and y > 0,
when 3 = 0. Hence (FF(X Y))o is a pre-modular pssff To show that (FF(X Y))o is a Banach space,

suppose A™ = (Am) "o is a Cauchy sequence in (FF(X Y))w, then for every y € (0,1), one has my € INy
with m,n > my, then

b

e (2 [P e (AT - AT),0)\
w(AmAn)Z( (2ol [3+b]( ) )) <™
b=0

Therefore, T (Y °_, [*"P1xq (A —AT),0) <. As (R([0,1]),7) is a complete metric space, hence (AT)
a=0 a a p p

a
is a Caucg sequence in R([0,1]), for constant a € Ny. Theref(le, it is convergent to /\7(21 € R([0,1]). So
@(A™ — A%) < y", for every m > my. Clearly, By part (iii) that A? € (Fg xY))e- O

4. Multiplication operators on (F}F, (x,Y)) o

In this section, we present some properties of the multiplication operator acting on (Frf (x,Y)) o, sup-
posing that the conditions of Theorem 3.11 are confirmed. Assume (Range(B))¢ is the complement of
Range(B) and J is the space of all sets with finite number of elements and ¢ is the space of bounded
sequences of fuzzy functions.

Definition 4.1. If £ is a pre-quasi normed pssff and ¥ = (Yi) € RNo, the operator G, : EF — €L is
called a multiplication operator on €5, when Gj = (1]) a]:) € EF, for every j € €L, The multiplication
operator is called generated by 1\, when Gy, € L(Eg ).
Theorem 4.2.
(1) ¥ €l <= Gy, € L((T (%, Y)) )
(2) Mol =1, for every a € Ny, if and only if, Gy, is an isometry.
(3) Gy € B (x,y)a) < (ba)y € co.
4) Gy € G((FF(X Yllo) < (bblg- € co-
(5) e y)a) & LM X Y)a)-
6) 0 < x<Pq \ < n,for all a € (ker())€, if and only if, Range( Gq,) is closed.
(7) 0 < & < [Pql <, for every a € Ny, zfand only if, Gy, € L((F (x,Y)) ) is invertible.
(8) Gy, is Fredholm operator, if and only if,
(g1) ker(p) S NoN7J;
(82) Wal > p,for every a € (ker())°.
Proof.

(1). Assume P € (., we have v > 0 so that (4| < v, for every a € INy. Suppose je (Frf(x,y))@, one has

(G¢] |Z ( ( Oljr’a[}Eib? ]Xaja,0>>

b

— \\ Y

o (2 (20 [0 xaja0) |
Csuper Y-
v b=0 [ ]

=sup v @(j).

b l

Hence Gy, € £((I} (%, y)) o).
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Next, assume Gy, € L((F]f(x,y))@) and P ¢ {,. We have qq € INy, for all d € INg so that {4, > d.
Hence

© [T ZEZ ﬂ)a[a_'_g_l]xa(e d)(116 o
m(Gweqd)w(weqd)Z( (T oo

[p“’]
b=0 b
00 VP da+p—17y d[da+p—1]y Yo
—| Z ( (Qd)[[pfl;i] ] da >| Z [ p+b]] da S dy()@(m).
b=qq b b=qa b

So Gy ¢ L((Fg(x,y))@). SoP € {y.
(2). Suppose j € (Fg(x,y))a, and Pp| =1, for all b € INy. We have
o (780 [ xatbaia0) |
(Glb) = 2 ( [p+b]

b

o (7 (20 [ e 0)\
:|Z ( ( O[[erb] | >) =(j),
b=0

b

hence G, is an isometry.
Next assume for some d = dg that 4| < 1, we have

o (7 (X0 [P xatalea)a0) )
@(ewedo)w(wedo)z< (Zeal ] : ))

Ba
< a [, e\
:'bzd< T ) 'bzd g ) e

If gl > 1, 50 @(Gyeq,) > @(egq,). Hence ol =1, for every a € INy.

(3). Let Gy, € ‘B((Fg(x,y))@), hence Gy, € G((Fg(x,y))@). Assume limp_, o Pp # 0. We get p > 0 so
that K, ={a € No : (pq| > p} € 7. If {Aqlqen, C Ko, one has {ex; : Aq € Ko} € ¢" is an infinite set in
(F}f(x,y))@. For every Aq, A+ € Ky, we have

®(Gyer, — Gyen,) = @(ex, —bex,)

=| i (T (Zg:o [aﬂ:—l]xall)a ((exq)a _ (ekr)a> ,6) ) Yo

P3°]

b=0 b
o (7(T0 o [P xap ((erg)a —(enJa).0)\

EZ( ( d | [pg(b]}\ . ) >) >mfpyb@( ex, —Ex,)-
b=0

Therefore, {€x, : A+ € Ky} € " has not a convergent subsequence under G,,. Hence Gy, ¢ C ((F]f xY))e)-
So Gy, ¢ ‘B((l}f(x,y))@), this is a contradiction. Hence limy,_,, Vp = 0. Next, assume limg_ o Pq = 0.
Therefore for all p > 0, one has K, = {b € Ny : [p| > p} € J. Hence for every p > 0, we have

dim(((rg(x,y))@)K ) = dim (R¥¢) < co. Then Gy, € T <((rg(x,y))@)K > if Yg € RN, for every

q € Np, where
11)1“/ reK ’
(ll)q)‘r = { a+l

P P

0, otherwise.
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Clearly, Gy,, €1 (((F;(x,y))a,)]( ) , as dim (((Fg(x,y))w)]( ) < oo, for all g € INp. Since (yp) €7
1 1

q+1 q+1

Moo so that yg > %, one has

@((Gy — Gy, )j)

=o(((Wr— o))" )
—lf( T(Zh [a+g1}xa(¢a—(¢q)am,o))“"

[P6°]

b=0

0 (28 0 [* P xa(Wa — (bg)a)ia,0) )
o << oy " o

o0
Z
b=0,beK ; bz K

q-+1 CEEl

(T(ZE_O [0 M xalba — (Wq)a)ia, ))“"

76"

— \\ Yv
('Za =0,aeK_; [a+g_1]Xa(¢a7(wq) ]ﬂ‘HZa 0,a¢K 1 [a+g_1]xa(‘ba*(1\bq)a)ja/0>

q+1 q+T1

[P35
b=0,beK b

[e9) T(|Zg=0,aek 1 [aJrEil]Xa(lba_(wq)a]jia"“zgzo,aQK# [aJrgil]Xa(ll’a_(lbq)a)jiara)

b=0bgK_; 5]
q-+1
1 Je 1 Yo
00 T <|Za:0 agK 1 [a+}1)7 ]Xall)a]a 0) o T ('Za:O agK 1 [a+g }Xall)aja O)
=l Z ] [p+b} + Z qu[p+b]
b=0,beK _; b b=0,b¢K ; b
q-+1 q+1
Yo
o [T \Zgzo agk 1 [a+p 1]X01|)aja 0>
<2 Z qu[p+b]
b=0 b
( b [“*E*}xa) 0) Yo ) )
(q+1) m'z [PTE] CESIIC
Hence [|Gy, — Gy, || < m We get Gy, is a limit of finite rank operators.
(4). Since ‘B((FF (xy))e) & C( o), the proof follows.

(5). As I =1y, where{ = (1, ,...), one has [ ¢ G((Fg(x,y))a)) and I € L((Frf(x,y))a,).

(6). If the sufficient setups are verified, we have p > 0 so that 4| > p, for all a € (ker(y))°. To prove
that Range(Gy,) is closed, when g is a limit point of Range(Gy,), we have Gy,jp € (I“]f (x,Y)) o, for every
b € Ny so that limy_, o Gw)T; =g. Obviously, Gq,jT, is a Cauchy sequence. As (yp) €T Nls, One can find
¢ > 0 such that

= (7 (2 [P Y xaWalg)a —ValGrla)0) )
@(quemr)z( (Zia e ‘ )
b=0

b

s %<Zg:o [a+g_1]xa(¢a(jq)a_d’a(jr)a)zo) o
e e
b=0,be(ker())¢ b
(T (2520 %2 Txa(alg)a —balrla),0) ) .
(Wp)N*©

[P5’]
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oo (X0 [P xaWalqla —PalGria)0) )
> | Z ( < [p+b] )

b=0,be (ker(1))® b

(T (| Y o—oactkerw)e [0 xa(Walig)a —d)a(jr)a)ﬁ) ) v

[75°]

?<ZE:O [(H_E_l]xa(lpa(uq)a_wa(ur)a)16> o
P57
b=0 b
o (7 (p X5y [ xallig)a — (ura),0) "
> ¢| Z (T (p > 0 [ []:+b]uq u ) > ilgfcpybw<q_a)/
b=0 b

where

o (jq)kz k€ (ker(tl)))c,
(uq)k = c
0, k & (ker(y))".
Hence {iig} is a Cauchy sequence in (Fg (x,Y))w. As (F]f (x,y))o is complete, one has j € (F]f xY))e
with limp 00 Up = j. Since Gy, € L((Fg(x,y))@), one has limy_,« Gy = Gy,j. Since limy 0 Gy =
limp 500 Gq,jib = g, therefore, wa =19. So g € Range(Gy,), i.e.,, Range(Gy,) is closed. Next, assume the

necessity condition is satisfied. We have p > 0 with ®(Gj) > p@(j) and j € ((Fg(x,y))@) ()" Let

K= {b € (ker(P))€ : Wy < p} # (), then for qo € K, one gets

o [T b a+p—1 — 2\ \ Yb
2(Gyeq,) = @ (Wuleq)o)). ) =13 <T(Zao[ Epj:awa(eqo)a,o))
b=0

[P5]
(T (p Zgzo [aJﬁgil]Xai(eqo)q,ﬁ) ) Yb

[P5"]

M2

N

<sup pY*@(eq,),

b L

0

C

this gives a contradiction. Hence K = ¢, then {p4| > p, for every a € (ker())".

(7). First, if B € RNo with p, = ﬁ, from Theorem 4.2 part (1), one has Gy, Gg € L((Fg(x,y))a)).

We get Gy,.Gg = Gg.Gy = L. So Gg = G;l. Second, assume G, is invertible. Then Range(Gy,) =

((Fg(x,y))@)N . Hence Range(Gy,) is closed. From Theorem 4.2 part (5), we have o« > 0 so that (pq| > «,
0

for every a € (ker())°. Hence ker(}) = 0, if Yo, = 0, where ag € Ny, so eq, € ker(Gy,), which is a
contradiction, as ker(Gy,) is trivial. Therefore, o] > «, for every a € INp. Since Gy, € {, by Theorem
4.2 part (1), we have 1 > 0 with (4| < n, for every a € INy. Hence o« < (| < m, for every a € INj.

(8). First, assume ker(\) ; INo and ker() ¢ J, we obtain €4 € ker(Gy,), for every a € ker(1). Since
€q’s are linearly independent, one gets dim(ker(G,,)) = oo, this is a contradiction. So ker(1p) ;Cé Ny €
J. The setup (g2) comes from Theorem 4.2 part (6). Next, if the setups (gl) and (g2) are confirmed,
by Theorem 4.2 part (6), the setup (g2) implies that Range(Gy,) is closed. The setup (gl) gives that
dim((Range(Gy,))¢) < oo and dim(ker(Gy,)) < co. Hence Gy, is Fredholm. O

5. Conclusion

A new general solution space for numerous stochastic nonlinear dynamical systems are presented. We
have defined and examined some topological, geometric properties of (Frf (x,y)) - and the multiplication
operators acting on it.



M. M. Alsolmi, A. A. Bakery, ]. Math. Computer Sci., 29 (2023), 306-316 316

References

(1]

[29
[30

[31]

(32]

M. Abbas, G. Murtaza, S. Romaguera, Soft contraction theorem, J. Nonlinear Convex Anal., 16 (2015), 423-435. 1
H. Ahmad, M. Younis, M. E. Koksal, Double controlled partial metric type spaces and convergence results, J. Math., 2021
(2021), 11 pages. 1

B. Altay, F. Basar, Generalization of the sequence space {(p) derived by weighted means, ]. Math. Anal. Appl., 330 (2007),
147-185. 3.2

H. Altinok, R. Colak, M. Et, A-difference sequence spaces of fuzzy numbers, Fuzzy Sets Systems, 160 (2009), 3128-3139.
2

A. A. Bakery, A. R. A. Elmatty, A note on Nakano generalized difference sequence space, Adv. Difference Equ., 2020
(2020), 17 pages. 1.2

A. A. Bakery, A. R. A. Elmatty, O. K. S. K. Mohamed, Multiplication Operators on Weighted Nakano (sss), ]. Math.,
2020 (2020), 7 pages. 1

C.-M. Chen, I.-]. Lin, Fixed point theory of the soft Meir-Keeler type contractive mappings on a complete soft metric space,
J. Inequal. Appl., 2015 (2015), 9 pages. 1

R. Colak, H. Altinok, M. Et, Generalized difference sequences of fuzzy numbers, Chaos Solitons Fractals, 40 (2009),
1106-1117. 2

D. Dubois, H. Prade, Possibility theory: An approach to computerized processing of uncertainty, Plenum, New York,
(1998). 1

N. Faried, A. A. Bakery, Small operator ideals formed by s numbers on generalized Cesdro and Orlicz sequence spaces, .
Inequal. Appl., 2018 (2018), 14 pages. 1

L. E. Guo, Q. X. Zhu, Stability analysis for stochastic Volterra-Levin equations with Poisson jumps: Fixed point approach,
J. Math. Phys., 52 (2011), 15 pages. 1

B. Hazarika, E. Savas, Some I-convergent lambda-summable difference sequence spaces of fuzzy real numbers defined by a
sequence of Orlicz functions, Math. Comput. Modelling, 54 (2011), 2986-2998. 2

V. A. Khan, R. K. A. Rababah, M. Ahmad, A. Esi, M. L Idrisi, I-Convergent difference sequence spaces defined by
compact operator and sequence of moduli, ICIC Express Letters, 13 (2019), 907-912. 1

V. A. Khan, R. K. A. Rababah, A. Esi, S. A. A. Abdullah, K. M. A. S. Aslhlool, Some new spaces of ideal convergent
double sequences by using compact operator, J. Appl. Sci., 9 (2017), 467-474.

V. A. Khan, Yasmeen, A. Esi, H. Fatima, M. Ahmad, A Stduy of intuitionistic fuzzy I-convergent double sequence spaces
defined by compact operator, Elec. J. Math. Anal. Appl., 7 (2019), 331-340. 1

B. S. Komal, S. Pandoh, K. Raj, Multiplication operators on Cesdro sequence spaces, Demonstr. Math., 49 (2016),
430-436. 1

P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44
(2002), 1077-1083. 1

B. M. Makarov, N. Faried, Some properties of operator ideals constructed by s numbers, (In Russian), Academy of
Science, Siberian section, Novosibirsk, Russia, 1977 (1977), 206-211. 1

W. Mao, Q. X. Zhu, X. R. Mao, Existence, uniqueness and almost surely asymptotic estimations of the solutions to neutral
stochastic functional differential equations driven by pure jumps, Appl. Math. Comput., 254 (2015), 252-265. 1

M. Matloka, Sequences of fuzzy numbers, Fuzzy Sets and Systems, 28 (1986), 28-37. 2

D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19-31. 1

T. Mrowka, A Brief Introduction to Linear Analysis: Fredholm Operators, Geometry of Manifolds, Massachusetts Institute
of Technology: MIT Open Couse Ware (Fall 2004), (2004). 2.4

M. Mursaleen, A. K. Noman, Compactness by the Hausdorff measure of noncompactness, Nonlinear Anal., 73 (2010),
2541-2557. 1

M. Mursaleen, A. K. Noman, Compactness of matrix operators on some new difference sequence spaces, Linear Algebra
Appl., 436 (2012), 41-52. 1

S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33 (1989), 123-126. 2

F. Nuray, E. Savas, Statistical convergence of sequences of fuzzy numbers, Math. Slovaca, 45 (1995), 269-273. 2

A. Pietsch, Small ideals of operators, Studia Math., 51 (1974), 265-267. 1

A. Pietsch, Operator Ideals, VEB Deutscher Verlag der Wissenschaften, Berlin, (1978). 1, 2.2, 2.3

A. Pietsch, Eigenvalues and s-numbers, Cambridge University Press, Cambridge, (1986). 1.1

H. Roopaei, F. Basar, On the Gamma Spaces Including the Spaces of Absolutely p-Summable, Null, Convergent and
Bounded Sequences, Numer. Funct. Anal. Optim., 43 (2022), 723-754. 1

X. T. Yang, Q. X. Zhu, Existence, uniqueness, and stability of stochastic neutral functional differential equations of Sobolev-
type, J. Math. Phys., 56 (2015), 16 pages. 1

L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338-353. 1


https://riunet.upv.es/handle/10251/80035
https://doi.org/10.1155/2021/7008737
https://doi.org/10.1155/2021/7008737
https://www.sciencedirect.com/science/article/pii/S0022247X06007621
https://www.sciencedirect.com/science/article/pii/S0022247X06007621
https://doi.org/10.1016/j.fss.2009.06.002
https://doi.org/10.1186/s13662-020-03082-1
https://doi.org/10.1186/s13662-020-03082-1
https://doi.org/10.1155/2020/1608631
https://doi.org/10.1155/2020/1608631
https://link.springer.com/article/10.1186/s13660-015-0711-7
https://link.springer.com/article/10.1186/s13660-015-0711-7
https://www.sciencedirect.com/science/article/pii/S096007790700700X
https://www.sciencedirect.com/science/article/pii/S096007790700700X
https://link.springer.com/book/9780306425202
https://link.springer.com/book/9780306425202
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-018-1945-y
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-018-1945-y
https://aip.scitation.org/doi/abs/10.1063/1.3573598
https://aip.scitation.org/doi/abs/10.1063/1.3573598
https://www.sciencedirect.com/science/article/pii/S0895717711004523
https://www.sciencedirect.com/science/article/pii/S0895717711004523
https://scholar.archive.org/work/j6ahp52sbrctzf26dmghbtrvfe/access/wayback/http://www.icicel.org/ell/contents/2019/10/el-13-10-05.pdf
https://scholar.archive.org/work/j6ahp52sbrctzf26dmghbtrvfe/access/wayback/http://www.icicel.org/ell/contents/2019/10/el-13-10-05.pdf
https://ui.adsabs.harvard.edu/abs/2017JApSc..17..467K/abstract
https://ui.adsabs.harvard.edu/abs/2017JApSc..17..467K/abstract
http://math-frac.org/Journals/EJMAA/Vol7(1)_Jan_2019/Vol7(1)_Papers/26_EJMAA_Vol7(1)_Jan_2019_pp_331-340.pdf
http://math-frac.org/Journals/EJMAA/Vol7(1)_Jan_2019/Vol7(1)_Papers/26_EJMAA_Vol7(1)_Jan_2019_pp_331-340.pdf
https://www.degruyter.com/document/doi/10.1515/dema-2016-0037/html
https://www.degruyter.com/document/doi/10.1515/dema-2016-0037/html
https://doi.org/10.1016/S0898-1221(02)00216-X
https://doi.org/10.1016/S0898-1221(02)00216-X
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Some+properties+of+operator+ideals+constructed+by+%24s%24+numbers&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Some+properties+of+operator+ideals+constructed+by+%24s%24+numbers&btnG=
https://www.sciencedirect.com/science/article/pii/S0096300314017871
https://www.sciencedirect.com/science/article/pii/S0096300314017871
https://scholar.google.com/scholar?as_q=&as_epq=Sequences+of+fuzzy+numbers&as_oq=&as_eq=&as_occt=title&as_sauthors=Matloka&as_publication=&as_ylo=&as_yhi=&hl=en&as_sdt=0%2C5
https://doi.org/10.1016/S0898-1221(99)00056-5
https://ocw.mit.edu/courses/mathematics/18-965-geometry-of-manifolds-fall-2004/
https://ocw.mit.edu/courses/mathematics/18-965-geometry-of-manifolds-fall-2004/
https://www.sciencedirect.com/science/article/pii/S0362546X10004050
https://www.sciencedirect.com/science/article/pii/S0362546X10004050
https://www.sciencedirect.com/science/article/pii/S0024379511004630
https://www.sciencedirect.com/science/article/pii/S0024379511004630
https://doi.org/10.1016/0165-0114(89)90222-4
https://dml.cz/bitstream/handle/10338.dmlcz/129143/MathSlov_45-1995-3_8.pdf
https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia-mathematica/all/51/3/100347/small-ideals-of-operators
https://scholar.google.com/scholar?as_q=&as_epq=operator+ideals&as_oq=&as_eq=&as_occt=title&as_sauthors=Pietsch&as_publication=&as_ylo=1978&as_yhi=1978&hl=en&as_sdt=0%2C5
https://dl.acm.org/doi/abs/10.5555/21700
https://doi.org/10.1080/01630563.2022.2056200
https://doi.org/10.1080/01630563.2022.2056200
https://aip.scitation.org/doi/abs/10.1063/1.4936647
https://aip.scitation.org/doi/abs/10.1063/1.4936647
https://doi.org/10.1016/S0019-9958(65)90241-X

	Introduction
	Preliminaries and definitions
	Properties of (pF(x,y))
	Multiplication operators on (pF(x,y))
	Conclusion

