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Abstract
In this paper, we develop a business cycle model with general investment, variable depreciation rate of capital stock and

two delays. The first delay describes the time lag between the decision of investment and its implementation, while the second
one models the time lag for investment to be produced. The well-posedness and the existence of economic equilibrium are
carefully investigated. Moreover, the stability of the economic equilibrium and the existence of Hopf bifurcation are established.
The case when the two delays are equal is rigourously studied.
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1. Introduction

Business cycles are recurrent economic phenomena often called economic cycles and which are defined
as a type of fluctuations in macroeconomic variables caused by the instability of endogenous economic
factors. In the literature, several mathematical models have been proposed to understand these business
cycles. In 1940, Kaldor [5] demonstrated that fluctuations mainly due to investment. Kalecki [6] intro-
duced the idea of the existence of a delay between the investment decision and its implementation. In
1999, Krawiec and Sydlowski [7] incorporated Kalecki’s idea into Kaldor’s model presented in [5]. In
2017, Hattaf et al. [4] introduced a second delay in the model of [7] in order to describe the time for the
investment to be productive. Then they proposed the following business cycle model:{

dY
dt = α[I(Y(t),K(t)) − γY(t)],
dK
dt = I(Y(t− τ1),K(t− τ2)) − δK(t),

where Y(t) and K(t) denote the gross product and capital stock at time t, respectively. The first delay τ1
is the time lag between the decision of investment and its implementation. The second delay τ2 is the

∗Corresponding author
Email address: sara.lasfar1995@gmail.com (Sara Lasfar)

doi: 10.22436/jmcs.029.03.05

Received: 2022-05-08 Revised: 2022-08-05 Accepted: 2022-08-18

http://dx.doi.org/10.22436/jmcs.029.03.05
http://dx.doi.org/10.22436/jmcs.029.03.05
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.029.03.05&domain=pdf


S. Lasfar, E. M. Warrak, K. Hattaf, N. Yousfi, J. Math. Computer Sci., 29 (2023), 264–271 265

time lag for the investment to be productive. Moreover, the coefficient γ ∈ (0, 1) is a saving constant.
The investment function is represented by I(Y,K) and it is assumed to be continuously differentiable in
R2 with ∂I

∂Y > 0 and ∂I
∂K < 0. Finally, the positive parameters α and δ are, respectively, the adjustment

coefficient in the goods market and the depreciation rate of the capital stock.
On the other hand, economists have noticed that people gain experience when they are working,

which leads to improve work efficiency. Therefore, the rate of depreciation of stock capital is not constant,
but will decrease as people’s experience increases. In addition, Chatterjee [1] remarked that the rate of
depreciation depends on the degree of the capital stock use. He assumed that the rate of depreciation
of capital is an increasing function of the rate of utilization. Further, a higher utilization rate causes a
faster depreciation of the capital stock, either because wear and tear increase with use or because less
time can devoted to maintenance [2]. In 2020, Mao and Liu [8] investigated the dynamics of a Kaldor
business cycle model by assuming that the depreciation rate of the capital stock δ is a decreasing convex
function of capital stock, where 0 < lim

K→+∞ δ(K) = δ1 < δ0 = δ(0) < 1. For simplicity, they assumed that

the depreciation rate of the capital stock has the form of δ(K) = δ1 +
δ0−δ1
1+K .

Based on the above mathematical and economical considerations, we propose the following model:{
dY
dt = α[I(Y(t),K(t)) − γY(t)],
dK
dt = I(Y(t− τ1),K(t− τ2)) − δ(K(t))K(t),

(1.1)

where δ(K) is the depreciation rate function depending on K.
The rest of this paper is outlined as follows. In Section 2, we present some preliminary results includ-

ing the existence, the uniqueness and the uniform boundedness of solutions of our model (1.1), as well
as the existence of economic equilibrium. Section 3 deals with the stability analysis and Hopf bifurcation.
Finally, the paper ends with a conclusion given in Section 4.

2. Preliminary results

Let τ = max{τ1, τ2} and C = C([−τ, 0], R2) be the Banach space of continuous functions mapping the
interval [−τ, 0] into R2 equipped with the sup-norm ‖ϕ‖ = sup

−τ6θ60
|ϕ(θ)| for ϕ ∈ C. As in [4], we assume

that the general investment function I(Y,K) satisfies the following hypotheses.

(H1) There exist two constants L > 0 and q̄ > 0 such that |I(Y,K) + q̄K| 6 L for all Y,K ∈ R.

(H2) There exists a δ1 > 0 such that δ(K) > δ1 for all K ∈ R.

First, we have the following result.

Theorem 2.1. Assume (H1) and (H2) hold. For any initial condition (φ1,φ2) ∈ C, there exists a unique solution
of system (1.1) defined on [0,+∞) and this solution is uniformly bounded.

Proof. By the standard theory of functional differential equations [3], we know that for any initial con-
dition (φ1,φ2) ∈ C, there exists a unique local solution of system (1.1) on [0, Tmax), where Tmax is the
maximal existence time for solution of system (1.1).

From the second equation of system (1.1), we have

dK

dt
+ (δ(K(t)) + q̄)K(t) = I(Y(t− τ1),K(t− τ2)) + q̄K(t).

Then
d

dt

(
K(t)e

∫t
0 δ(K(s))ds+q̄t

)
= [I(Y(t− τ1),K(t− τ2)) + q̄K(t)] e

∫t
0 δ(K(s))ds+q̄t.
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By integrating the above formula from 0 to t, we get

K(t)e
∫t

0 δ(K(s))ds+q̄t −K(0) =
∫t

0
[I(Y(ξ− τ1),K(ξ− τ2)) + q̄K(ξ)] e

∫ξ
0 δ(K(s))ds+q̄ξdξ.

Hence,

K(t) = e−(
∫t

0 δ(K(s))ds+q̄t)φ2(0) +
∫t

0
e−
∫t
ξ δ(K(s))ds−q̄(t−ξ)[I(Y(ξ− τ1),K(ξ− τ2)) + q̄K(ξ)]dξ.

From the assumptions (H1) and (H2), we deduce that

|K(t)| 6 e−(δ1+q̄)t|φ2(0)|+ L
∫t

0
e−(δ1+q̄)(t−ξ)dξ 6 e−(δ1+q̄)t|φ2(0)|+

L

δ1 + q̄
.

As lim
t→+∞ e−(δ1+q̄)t|φ2(0)| = 0, then there exists a t0 > 0 such that e−(δ1+q̄)t|φ2(0)| 6 1 for all t ∈ [t0, Tmax).

Thus, |K(t)| 6 1 + L
δ1+q̄

, which means that K(t) is uniformly bounded for bound A1 = 1 + L
δ1+q̄

.
Now, we show the uniform boundedness of Y. Based on the first equation of system (1.1), we obtain

Y(t) = Y(t0)e
−αγ(t−t0) +α

∫t
t0

e−αγ(t−ξ)I(Y(ξ),K(ξ))dξ, t > t0.

Hence,

|Y(t)| 6 |Y(t0)|e
−αγ(t−t0) +α

∫t
t0

e−αγ(t−ξ)
(
L+ q̄|K(ξ)|

)
dξ 6 |Y(t0)|e

−αγ(t−t0) +
L+ q̄A1

γ
.

In the same way, this implies that the function Y(t) is uniformly bounded for bound A2 = 1 + L+q̄A1
γ .

Based on the above and the continuity of the functions Y(t) and K(t), we deduce that Y(t) and K(t) are
uniformly bounded [0, Tmax). Therefore, Tmax = +∞.

To study the existence of equilibria of (1.1), we need the following hypotheses.

(H3) I(0, 0) > 0.

(H4) δ ′(K)K+δ(K)
γ

∂I
∂Y (Y,K) − δ ′(K)K− δ(K) + ∂I

∂K(Y,K) < 0 for all (Y,K) ∈ R2.

Then, we get following result.

Theorem 2.2. If (H1)-(H4) hold, then system (1.1) has a unique economic equilibrium of the form E∗(
δ(K∗)K∗

γ ,K∗),

where K∗ is the unique positive solution of the equation I
(
δ(K)K
γ ,K

)
− δ(K)K = 0.

Proof. Economic equilibrium is the solution of the following system:{
α[I(Y,K) − γY] = 0,
I(Y,K) − δ(K)K = 0. (2.1)

Then

Y =
δ(K)K

γ
. (2.2)

Replacing (2.2) into the first equation of (2.1), we find

I

(
δ(K)K

γ
,K
)
− δ(K)K = 0.
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Let V be the function defined on the interval [0,+∞) by

V(K) = I

(
δ(K)K

γ
,K
)
− δ(K)K.

Using assumptions (H1)-(H4), we have V(0) = I(0, 0) > 0, lim
K→+∞V(K) = −∞, and

V ′(K) =
δ ′(K)K+ δ(K)

γ

∂I

∂Y
− δ ′(K)K− δ(K) +

∂I

∂K
< 0.

Therefore, there is a unique economic equilibrium E∗(Y∗,K∗), where K* is the solution of the equation
V(K) = 0 and Y∗ = δ(K∗)K∗

γ .

3. Stability analysis and Hopf bifurcation

In this section, we focus on the local stability of the economic equilibrium E∗(Y∗,K∗) and the existence
of Hopf bifurcation. Let y = Y − Y∗ and k = K − K∗. By substituting y and k into system (1.1) and
linearizing of the system in a neighbourhood of the equilibrium E∗(Y∗,K∗), we obtain{

dy
dt = α[ay(t) +βk(t) − γy(t)],
dk
dt = ay(t− τ1) +βk(t− τ2) − δ̄k(t),

where a = ∂I
∂Y (Y

∗,K∗) > 0 , β = ∂I
∂K(Y

∗,K∗) < 0, and δ̄ = K∗δ ′(K∗) + δ(K∗) > 0. Then, we can know that
the characteristic equation at E∗ is

λ2 −
[
α(a− γ) − δ̄

]
λ−αβae−λτ1 +β

[
α(a− γ) − λ

]
e−λτ2 −αδ̄(a− γ) = 0. (3.1)

Similarly to the works presented in [4, 11], we distinguish three cases.

3.1. The case τ1 = τ2 = 0
When τ1 = τ2 = 0, Eq. (3.1) becomes

λ2 − λ[α(a− γ) +β− δ̄] +α(a− γ)(β− δ̄) −αβa = 0. (3.2)

Hence, all roots of Eq. (3.2) have negative real parts if and only if α(a− γ) + β− δ̄ < 0 and (a− γ)(β−
δ̄) −βa > 0. This is equivalent to

a− γ < min
{
δ̄−β

α
,
−aβ

δ̄−β

}
. (3.3)

Thus, the economic equilibrium E∗ is locally asymptotically stable when (3.3) holds.

3.2. The case τ1 6= 0, τ2 = 0
In this case, Eq. (3.1) takes the following form

λ2 −
[
α(a− γ) +β− δ̄

]
λ+α(a− γ)(β− δ̄) −αβae−λτ1 = 0. (3.4)

Let iω (ω > 0) be a root of (3.4). Then{
−ω2 +α(a− γ)(β− δ̄) = αaβ cos(ωτ1),
ω[α(a− γ) +β− δ̄] = αaβ sin(ωτ1),

which implies that

ω4 + [α2(a− γ)2 + (β− δ̄)2]ω2 +α2[(a− γ)2(β− δ̄)2 − a2β2] = 0. (3.5)

Let u = ω2. So, Eq. (3.5) becomes

F(u) = u2 + [α2(a− γ)2 + (β− δ̄)2]u+α2[(a− γ)2(β− δ̄)2 − a2β2] = 0.

As α2(a− γ)2 + (β− δ̄)2 > 0, we get the following result.
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Lemma 3.1.

(i) If |a− γ|(δ̄−β) > −aβ, then Eq. (3.5) has no positive root.
(ii) If |a− γ|(δ̄−β) < −aβ, then Eq. (3.5) has a unique positive root given by

ω0 =

√
2

2

(√
∆−α2(a− γ)2 − (β− δ̄)2

) 1
2

,

where ∆ = [α2(a− γ)2 + (β− δ̄)2]2 − 4α2[(a− γ)2(β− δ̄)2 − a2β2].

According to above analysis and [9], we obtain the following results.

Theorem 3.2. For τ2 = 0, we deduce the following conclusions.

(i) If (a− γ)(δ̄−β) < aβ, then the economic equilibrium E∗ is locally asymptotically stable for all τ1 > 0.
(ii) If (a− γ)(δ̄−β) > −aβ , then E∗ is unstable for all τ1 > 0.

(iii) If aβ
δ̄−β

< a− γ < min
{
δ̄−β

α
,
−aβ

δ̄−β

}
, then system (1.1) undergoes Hopf bifurcation at E∗ when τ1 = τ1,j,

j ∈N. In addition, the economic equilibrium E∗ is locally asymptotically stable for τ1 < τ1,0 and unstable for
τ1 > τ1,0, where

τ1,j =
1
ω0

arccos
(
−ω2

0 +α(a− γ)(β− δ̄)

αaβ

)
+

2jπ
ω0

.

3.3. The case τ1 6= 0, τ2 6= 0
Here, we study Eq. (3.1) with τ2 > 0 and τ1 in the stable regions. We consider τ2 as a parameter of

bifurcation. According to Ruan and Wei [10], we get the following lemma.

Lemma 3.3. If all roots of equation (3.4) have negative real parts for τ1 > 0, then there exists a τ∗2(τ1) > 0, such
that when 0 6 τ2 < τ

∗
2(τ1) all roots of equation (3.1) have negative real parts.

Proof. The left hand side of Eq. (3.1) is analytic in λ and τ2. It follows from [10] that when τ2 varies, the
sum of the multiplicities of zeros of the left hand side of Eq. (3.1) in the open right half-plane can change
only if a zero on or cross the imaginary axis.

Theorem 3.4. For τ1 in the stable regions and τ2 > 0, we have

(i) if (a−γ)(δ̄−β) < aβ, then for τ1 > 0, there exists a τ∗2(τ1) such that the economic equilibrium E∗ is locally
asymptotically stable, when τ2 ∈ [0, τ∗2(τ1));

(ii) if
aβ

δ̄−β
< a− γ < min

{
δ̄−β

α
,
−aβ

δ̄−β

}
, then for any τ1 ∈ [0, τ1,0), there exists a τ∗2(τ1) such that the

economic equilibrium E∗ is locally asymptotically stable, when τ2 ∈ [0, τ∗2(τ1)).

Proof. The proof of (i) follows immediately from Lemma 3.1 (i), Lemma 3.3, and Theorem 3.2.

Assume that
aβ

δ̄−β
< a− γ < min

{
δ̄−β

α
,
−aβ

δ̄−β

}
. Based on Theorem 3.2, we deduce that the eco-

nomic equilibrium is locally asymptotically stable for τ1 ∈ [0, τ1,0). Therefore, all roots of Eq. (3.4)
have negative real parts. It follows from Lemma 3.3, that there exists a τ∗2(τ1) > 0, such that when
0 6 τ2 < τ

∗
2(τ1) all roots of equation (3.1) have negative real parts. Thus, the economic equilibrium E∗ is

locally asymptotically stable if τ2 ∈ [0, τ∗2(τ1)).

3.4. Study of special case
When the two delays are equal, system (1.1) becomes:{

dY
dt = α[I(Y(t),K(t)) − γY(t)],
dK
dt = I(Y(t− τ),K(t− τ)) − δ(K(t))K(t).

(3.6)

According to Theorems 2.1 and 2.2, we get the following results.
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Corollary 3.5.

(i) For any initial condition (φ1,φ2) ∈ C, there exists a unique solution of system (3.6) defined on [0,+∞) and
this solution is uniformly bounded if (H1) holds.

(ii) The system (3.6) has a unique economic equilibrium of the form E∗(
δ(K∗)K∗

γ ,K∗), where K∗ is the unique

positive solution of the equation I
(
δ(K)K
γ ,K

)
− δ(K)K = 0, if (H1)-(H4) hold.

On the other hand, Eq. (3.1) becomes

λ2 − λ
[
α(a− γ) − δ̄

]
−αδ̄(a− γ) −

(
αγ+ λ

)
βe−λτ = 0. (3.7)

When τ = 0, all roots of Eq. (3.7) have negative real parts if the condition (3.3) holds. Thus, E∗ is locally
asymptotically stable.

For τ > 0, let iω (ω > 0) is a root of (3.7), then we get{
−ω2 −αδ̄(a− γ) = αβγ cos(ωτ) +βω sin(ωτ),
ω[α(a− γ) − δ̄] = αβγ sin(ωτ) −βω cos(ωτ),

which implies that

ω4 +
[
α2(a− γ)2 + δ̄2 −β2]ω2 +α2[δ̄2(a− γ)2 −β2γ2] = 0. (3.8)

Let A = α2(a− γ)2 + δ̄2 −β2, B = α2
[
δ̄2(a− γ)2 −β2γ2

]
and ∆ = A2 − 4B. As in [4], we easily get the

following lemma.

Lemma 3.6.

(i) If A > 0 and B > 0, then Eq. (3.8) has no positive roots. All roots of Eq. (3.7) have negative real part for
τ > 0.

(ii) If B < 0, then Eq. (3.8) has a unique positive root ω0 and there exists one sequence of critical values of τ given
by

τ0
j =

1
ω0

arccos
(
ω2

0(δ̄−αa) −α
2γδ̄(a− γ)

β(ω2
0 +α

2γ2)

)
+

2jπ
ω0

, where j ∈N.

(iii) If A < 0, B > 0 and ∆ > 0, then Eq. (3.8) has two positive roots ω± and there exist two sequences of critical
values of τ given by

τ±j =
1
ω±

arccos
(
ω2
±(δ̄−αa) −α

2γδ̄(a− γ)

β(ω2
± +α2γ2)

)
+

2jπ
ω±

, where j ∈N.

We take λ(τ) = σ(τ) + iω(τ) as the root of Eq. (3.7) satisfying σ(τ±j ) = 0 and ω(τ±j ) = ω±. Differenti-
ating Eq. (3.7) with respect to τ, we obtain(

dλ

dτ

)−1

=
2λ−α(a− γ) + δ̄−βe−λτ

−(λ+αγ)βλe−λτ
−
τ

λ
.

It is not hard to have that

Re
(
dλ

dτ

)−1∣∣∣∣
τ=τ±j

=
2ω2
± +α2(a− γ)2 + δ̄2 −β2

β2(ω2
± +α2γ2)

=
±∆

β2(ω2
± +α2γ2)

.

As ∆ > 0, we get

Re
(
dλ

dτ

)−1∣∣∣∣
τ=τ+j

> 0, Re
(
dλ

dτ

)−1∣∣∣∣
τ=τ−j

< 0.

In the same way, we have Re
(
dλ

dτ

)−1∣∣∣∣
τ=τ0

j

> 0. Thus, the transversally condition is satisfied. According

to Lemma 3.6, we have the following results.
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Theorem 3.7. Suppose that δ̄ > −β. We have

(i) if a−γ <
γβ

δ̄
, then the economic equilibrium E∗ is locally asymptotically stable for all τ > 0 and it is unstable

for all τ > 0, when a− γ >
−γβ

δ̄
;

(ii) if
γβ

δ̄
< a− γ < min

{
−γβ

δ̄
,
δ̄−β

α

}
, then system (3.6) undergoes a Hopf bifurcation at E∗, when τ = τ0

j ,

j ∈ . In addition, E∗ is locally asymptotically stable for all τ < τ0
0 and unstable for all τ > τ0

0.

Theorem 3.8. Suppose that δ̄ < −β. We have

(i) if a− γ < min
{
γβ

δ̄
,
−
√
β2 − δ̄2

α

}
, then the economic equilibrium E∗ is locally asymptotically stable for all

τ > 0, and it is unstable for all τ > 0, when a− γ >
−γβ

δ̄
;

(ii) if
γβ

δ̄
< a− γ < min

{
−γβ

δ̄
,
δ̄−β

α

}
, then system (3.6) undergoes a Hopf bifurcation at E∗, when τ = τ0

j ,

j ∈ , further, E∗ is locally asymptotically stable for all τ < τ0
0 and unstable for all τ > τ0

0;

(iii) if
−
√
β2 − δ̄2

α
< a−γ <

γβ

δ̄
and ∆ > 0, then there is a positive integer n such that the economic equilibrium

E∗ is locally asymptotically stable, when τ ∈ [0, τ+0 ) ∪ (τ−0 , τ+1 ) ∪ · · · ∪ (τ−n−1, τ+n), and it is unstable when
τ ∈ [τ+0 , τ−0 )∪ (τ+1 , τ−1 )∪ · · · ∪ (τ+n , τ−n)∪ (τ+n ,+∞), furthermore, system (3.6) undergoes a Hopf bifurcation
at E∗, when τ = τ±j , j ∈N.

4. Conclusion

In this work, we have proposed and analyzed the dynamics of a business cycle model with general
investment and variable depreciation rate of capital stock. We have firstly proved that the proposed model
is mathematically and economically well-posed. Moreover, we have established the local stability of the
economic equilibrium and the existence of Hopf bifurcation. On the other hand, the recent business cycle
models presented in [4, 8] are improved and generalized.
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