
J. Math. Computer Sci., 29 (2023), 203–213

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

Properties of Muckenhoupt and Gehring classes via con-
formable calculus

Samir H. Sakerb,a, Mohamed Abdalla Darwishc, Hamdi Ali Elshamyc,∗

aDepartment of Mathematics, Faculty of Science, New Mansoura University, New Mansoura City, Egypt.
bDepartment of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
cDepartment of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt.

Abstract
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1. Introduction

We fix an interval I0 ⊂ R+ = [0,∞), and consider the subinterval I of I0 of the form [0, s], for
0 < s <∞ and donate by |I| the Lebesgue measure of I. The nonnegative weight v is said to belong to the
Muckenhoupt class Ap(C) on the interval I0 for p > 1 and C > 1 (independent of p) if the inequality

1
|I|

∫
I

v(x)dx 6 C

(
1
|I|

∫
I

v
1

1−p (x)dx

)1−p

, (1.1)

holds for every subinterval I ⊂ I0. For p > 1, we define the Ap-norm of the weight v by

[Ap(v)] := sup
I⊂I0

(
1
|I|

∫
I

v(x)dx

)(
1
|I|

∫
I

v
−1
p−1 (x)dx

)p−1

.

The weight v is said to belong to the Muckenhoupt class A1(C) on the interval I0, if the inequality

1
|I|

∫
I

v(x)dx 6 Cv(x), for C > 1, (1.2)
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holds for every subinterval I ⊂ I0, and we define the A1-norm by

[A1(v)] := sup
I⊂I0

1
|I|

(
1

inf v

∫
I

v(x)dx

)
.

In [20], Muckenhoupt proved that if v is a nonincreasing weight satisfying condition (1.2), then there
exists p ∈ [1,C/(C− 1)] such that

1
|I|

∫
I

vp(x)dx 6
C

C− p(C− 1)

(
1
|I|

∫
I

v(x)dx

)p
.

The authors in [7] improved the Muckenhoupt result by excluding the property of monotonicity on the
weight v by using a rearrangement v∗ of the function v over the interval I and established the best constant.
In particular, they proved that if v is a nonincreasing weight satisfying condition (1.2) with C > 1, then
there exists p ∈ [1,C/(C− 1)] such that

1
|I|

∫
I

vp(x)dx 6
C1−p

C− p(C− 1)

(
1
|I|

∫
I

v(x)dx

)p
.

Further in [20], Muckenhoupt proved the following result. If 1 < p < ∞ and v satisfies the Ap-condition
(1.1) on the interval I, with constant C, then there exist constants q and C1 depending on p and C such
that 1 < q < p and v satisfies the Aq-condition(

1
|I|

∫
I

v(x)dx

)(
1
|I|

∫
I

v−
1
q−1 (x)dx

)q−1

6 C1,

for every subinterval I ⊂ I0. On other words, Muckenhoupt’s result for self-improving property states that:
if v ∈ Ap(C), then there exists a constant ε > 0 and a positive constant C1 such that v ∈ Ap−ε(C1), and
then Ap(C) ⊂ Ap−ε(C1). Despite of a variety of ideas related to weighted inequalities appeared with the
birth of singular integrals, it was only in the 1970s that a better understanding of the subject was obtained
and the full characterization of the weights v for which the Hardy-Littlewood maximal operator

Mv(x) := sup
x∈I

1
|I|

∫
I

v(y)dy,

is bounded on Lpw(R) by means of the so-calledAp-condition was achieved by Muckenhoupt and published
in 1972 (see[20]). Muckenhoupt’s result became a landmark in the theory of weighted inequalities because
most of the previously known results for classical operators had been obtained for special classes of
weights (like power weights) and has been extended to cover several operators like Hardy operator,
Hilbert operator, Calderón-Zygmund singular integral operators, fractional integral operators, etc.

The weight v is said to belong to the Gehring class Gq(K), 1 < q <∞ for the interval I0, if there exists
a constant K > 1 such that the inequality(

1
|I|

∫
I

vq(x)dx

) 1
q

6 K

(
1
|I|

∫
I

v(x)dx

)
, (1.3)

holds for every subinterval I ⊂ I0, and we define the Gq-norm by

[Gq(v)] := sup
I⊂I0

[(
1
|I|

∫
I

vq(x)dx

) 1
q
(

1
|I|

∫
I

v(x)dx

)−1
] q
q−1

.

In [9] Gehring proved that if (1.3) holds, then there exist p > q and a positive constant K1 such that

1
|I|

∫
I

vp(x)dx 6 K1

(
1
|I|

∫
I

v(x)dx

)p
, for every I ⊂ I0.
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On other words Gehring’s result for self-improving property states that: if v ∈ Gq(K), then there exists
ε > 0 and a positive constant K1 such that v ∈ Gq+ε(K1), and then

Gq(K) ⊂ Gq+ε(K1).

For power-low functions, Malaksiano in [18] proved that if I = [0, 1], p > 1 and γ > −1/p, then

(Gp(x
γ))(p−1)/p =

1 + γ

(1 + pγ)1/p . (1.4)

Moreover, if 0 < γ < β and p > 1, then Gp(xγ) < Gp(x
β). Further in [19], Malaksiano proved that if

I = [0, 1], q > 1, and γ ∈ (−1,q− 1), then

(Aq(x
γ)) =

(q− 1)(q−1)

(γ+ 1)(q− 1 − γ)q−1 . (1.5)

Moreover, if 0 < γ < β < q− 1 and q > 1, then Aq(x−γ) < Aq(x−β).
In the last decade, discrete analogues in harmonic analysis became a very active and attractive field

of research. For example, the research on regularity and boundedness of discrete analogues of the cor-
responding Lp operators, as well as the higher summability theorems analogues for higher integrability
theorems have been studied by numerous authors (see, e.g., [6, 8, 16, 17, 24, 28] and references therein). In
the articles [23, 26] the authors studied the structure and basic properties of the weighted discrete Gehring
classes, as well as the relationship between the weighted discrete Gehring and Muckenhoupt classes. In
recent years, by utilizing the conformable calculus, many authors proved several results related to some
integral inequalities like Chebyshev type inequality [3], Hardy type inequalities [25], Hermite-Hadamard
type inequalities [2, 12, 13], and Iyengar type inequalities [27]. For more details of conformable calculus
we refer the reader to the papers [10, 14, 15, 21, 22, 29] and the references cited therein.

Following this trend and to develop the studies in this directions, we study the structure of con-
formable Muckenhoupt class Aαp(C) and conformable Gehring class Gαq(K). In particular, we prove that
if v ∈ Aαq(C), such that 1 < q <∞, then v ∈ Aα1 (C1). For the relation between conformable Muckenhoupt
class and conformable Gehring class, we prove that if v ∈ Aα1 (C) then v ∈ Gαp(K). Also, we prove the
exact values of the Muckenhoupt norm Aαp(t

γ) and the Gehring norm Gαp(t
γ) for power-low property on

conformable calculus. We believe that the results of this paper will act as fundamental infrastructure for
all topics dealing with conformable Muckenhoupt and Gehring classes. The paper is organized as fol-
lows. Section 2 is devoted to present some preliminaries on conformable calculus which will be involved
throughout the remaining part of the paper. In Section 3, first we state and prove some basic lemmas
which will used to prove our main results. Next, we prove the relationship between the Muckenhoupt
class Aα1 (C) and the Gehring class Gαp(K) via conformable calculus. Particularly, we prove that if the
weight v belongs to the Muckenhoupt class Aα1 (C), then it belongs to the Gehring class Gαp(K) for some
p. We also prove the analogues of (1.4) and (1.5) via conformable calculus and show that the results
depend on the constant α. The results proved by employing some inequalities designed and proved for
this purpose.

2. Preliminaries

In this section, we present some preliminaries and definitions on conformable calculus. Throughout,
we assume that α ∈ (0, 1] and the weight v is a nonnegative locally α-integrable defined on I0 ⊂ R+ and
p is a positive real number. In addition, in our proofs, we will use the convention 0 ·∞ = 0 and 0/0 = 0.

Definition 2.1 ([1]). The conformable derivative of the function f : [0,∞)→ R is defined as follows

Dαf(t) = lim
ε→0

f(t+ εt1−α) − f(t)

ε
,

for t > 0.



S. H. Saker, M. A. Darwish, H. A. Elshamy, J. Math. Computer Sci., 29 (2023), 203–213 206

Theorem 2.2 ([1]). Let α ∈ (0, 1] and f, g be α-differentiable at a point t > 0. Then

(i) Dα(af(t) + bg(t)) = aDαf(t) + bDαg(t);
(ii) Dα(tp) = ptp−α, for all p ∈ R;

(iii) Dα(f(t)g(t)) = f(t)Dαg(t) + g(t)Dαf(t);
(iv) Dα( f(t)g(t)) =

g(t)Dαf(t)−f(t)Dαg(t)
g2(t)

;
(v) Dα(k) = 0, where k is a constant;

(vi) if f is differentiable, then Dαf(t) = t1−αdf(t)
dt .

(vii) Dα(f ◦ g) = t1−αg
′
(t)f

′
(g(t)) = Dαg(t)f

′
(g(t)).

Definition 2.3. A function f : [0,∞)→ R is conformable integrable on [0, t] if the integral

Iα(f)(t) = I(tα−1f)(t) =

∫t
0

f(x)

x1−αdx,

exists.

Theorem 2.4 ([1]). Let a,b, c ∈ R. Then∫b
a

Dαf(t)g(t)dαt = f(t)g(t) |ba −

∫b
a

f (t)Dαg(t)dαt.

Lemma 2.5. Let f : [0,∞)→ R be continuous. Then for all t > 0, we have

(i) DαIαf(t) = f(t);
(ii) IαDαf(t) = f(t) − f(0).

The conformable Hölder inequality is given by∫t
0
|f(s)g(s)|dαs 6

(∫t
0
|f(s)|p dαs

) 1
p
(∫t

0
|g(s)|q dαs

) 1
q

,

where f, g ∈ C([a,b], R), p > 1 and 1/p+ 1/q. We say that f satisfies a reverse Hölder inequality for some
constants p > q if the following holds,(∫t

0
|f(s)|p dαs

) 1
p

6 C

(∫t
0
|f(s)|q dαs

) 1
q

.

Let g ∈ C([0, t], (c,d)) and F ∈ C([c,d], R) is convex. The conformable Jensen inequality (see [5]) is given
by

F

(
αIαg(t)

tα

)
6
α

tα
IαF(g(t)).

Now, we present the definitions of Muckenhoupt and Gehring weights via conformable calculus. The
nonnegative weight v is said to belong to the Muckenhoupt class Aαp(C) on the interval I0 for p > 1 and
C > 1 (independent of p), if

1
tα

∫t
0
v(s)dαs 6 C

(
1
tα

∫t
0
v

1
1−p (s)dαs

)1−p

,

for every t ∈ I0. For p > 1, we define the Aαp -norm of the weight v by

[Aαp(v)] := sup
t∈I0

(
1
tα

∫t
0
v(s)dαs

)(
1
tα

∫t
0
v

−1
p−1 (s)dαs

)p−1

.
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The weight v is said to belong to the Muckenhoupt class Aα1 (C) if

1
tα

∫t
0
v(s)dαs 6 Cv(s), for C > 1,

for every t ∈ I0. The weight v is said to belong to the Gehring class Gαq(K) on the interval I0 for q > 1 and
K > 1 (independent of q) if (

1
tα

∫t
0
vq(s)dαs

) 1
q

6 K
1
tα

∫t
0
v(s)dαs,

for every t ∈ I0. We define the Gαq-norm is by

[Gαq(v)] := sup
t∈I0

( 1
tα

∫t
0
vq(s)dαs

) 1
q
(

1
tα

∫t
0
v(s)dαs

)−1


q
q−1

.

We mention here that when α = 1 the definitions will be reduced to the classical definitions of the
Muckenhoupt and Gehring weights.

3. Main results

For any function v : I0 −→ R+, we define the α-operator Mαv : I0 −→ R+ by

Mαv(t) :=
1
tα

∫t
0
v(s)dαs, for all I0 ⊆ R+. (3.1)

Now we give some properties of the operator Mα that will be needed in the proofs later. From the
definition of Mα, we see that if v is nonincreasing, then

Mαv(t) =
1
tα

∫t
0
v(s)dαs >

1
tα

∫t
0
v(t)dαs =

1
tα

∫t
0
sα−1dsv(t) =

v(t)

α
.

The following lemma gives some properties of the operator Mαv.

Lemma 3.1. Let Mαv be defined as in (3.1). Then we have the following properties:

(i) if v is nonincreasing, then Mαv(t) > 1
αv(t);

(ii) if v is nondecreasing, then Mαv(t) 6 1
αv(t).

Lemma 3.2. If v ∈ Aαp(C), and p > 1, then

Mαv 6
C

α1−p exp (αMα log v) .

Proof. Since v ∈ Aαp(c), for p > 1, then we have

1
tα

∫t
0
v(s)dαs 6 C

(
1
tα

∫t
0
v

1
1−p (s)dαs

)1−p

. (3.2)

By applying conformable Jensen inequality for the convex function F(x) = exp(x) and g replaced by

α

1 − p
log v(s),
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we have

exp
(

α

1 − p

(
1
tα

∫t
0

log v(s)dαs
))

6
α

tα

∫t
0

exp
(

1
1 − p

log v(s)
)
dαs

=
α

tα

∫t
0

(
exp

(
log v

1
1−p (s)

))
dαs =

α

tα

∫t
0
v

1
1−p (s)dαs.

(3.3)

The left hand side of (3.3) can be written as follows:

exp
(

α

1 − p

(
1
tα

∫t
0

log v(s)dαs
))

=

(
exp

(
α

tα

∫t
0

log v(s)dαs
)) 1

1−p

. (3.4)

From (3.3) and (3.4), we get

(
exp

(
α

tα

∫t
0

log v(s)dαs
)) 1

1−p

6
α

tα

∫t
0
v

1
1−p (s)dαs,

and then

exp
(
α

tα

∫t
0

log v(s)dαs
)

>

(
α

tα

∫t
0
v

1
1−p (s)dαs

)1−p

. (3.5)

From (3.2) and (3.5), we obtain

1
tα

∫t
0
v(s)dαs 6

C

α1−p exp
(
α

tα

∫t
0

log v(s)dαs
)

,

which is the desired inequality.

Lemma 3.3. Let 1 < q <∞ and v be a nonincreasing weight. If v ∈ Aαq(C), then v ∈ Aα1 (C1).

Proof. To prove this lemma, we shall prove that if(
1
tα

∫t
0
v(s)dαs

)(
1
tα

∫t
0
v

−1
q−1 (s)dαs

)q−1

6 C, for some C > 1,

then
1
tα

∫t
0
v(s)dαs 6 C1v(t). (3.6)

By using (3.6) and employing Lemma 3.2, we get that

1
tα

∫t
0
v(s)dαs 6

C

α1−p exp
(
α

tα

∫t
0

log v(s)dαs
)

.

By applying Lemma 3.1 for the nondecreasing weight log v(s), we get

1
tα

∫t
0
v(s)dαs 6

C

α1−p exp
(
α

tα

∫t
0

log v(s)dαs
)

6
C

α1−p exp (log v(t)) = C1v(t),

where C1 = C/α1−p. The proof is complete.

Lemma 3.4. Let 1 < p < ∞ and v be a nonnegative weight. Then v ∈ Aαp if and only if v1−p
′
∈ Aα

p
′ with

[Aα
p
′ (v1−p

′
)] = [Aαp(v)]

p
′
−1, where p

′
is the conjugate of p.
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Proof. From the definition of the class Aαp and since 1 − p
′
= 1/(1 − p) < 0, we have for c > 1, that

v ∈ Aαp ⇐⇒
(

1
tα

∫t
0
v(s)dαs

)
6 C

(
1
tα

∫t
0
v

1
1−p (s)dαs

)1−p

⇐⇒
(

1
tα

∫t
0
v(s)dαs

) 1
1−p

> C
1

1−p
1
tα

∫t
0
v

1
1−p (s)dαs

⇐⇒ 1
tα

∫t
0
v1−p′(s)dαs 6 Cp

′−1
(

1
tα

∫t
0
(v1−p

′
(s))

1
1−p′ dαs

)1−p
′

⇐⇒ v1−p
′
∈ Aα

p
′ ,

with [Aα
p
′ (v1−p

′
)] = [Aαp(v)]

p
′
−1. The proof is complete.

The following Lemma will be used to prove our main results.

Lemma 3.5. Let v be a nonincreasing weight. If p > 1, then

1
tα

∫t
0

[
v(s) (Mαv(s))p−1 −

p−α

p
(Mαv(s))p

]
dαs 6

1
p
(Mαv(t))p ,

for all t ∈ I0.

Proof. Let Mαv(t) = V(t) and t ∈ I0. Moreover, since tαV(t) =
∫t

0 v(s)d
αs, the product rule (see Theorem

2.2) yields
tαDαV(t) +αV(t) = v(t).

Put f(t) = tα and g(t) = Vp(t), and by integrating by parts (see Theorem 2.4), we have

α

∫t
0
Vp(s)dαs = tαVp(t) −

∫t
0
sαDαVp(s)dαs. (3.7)

Note that

lim
s→0+

sαVp(s) = lim
s→0+

sα
(

1
sα

∫s
0
v(x)dαx

)p
= 0.

By using the chain rule (see Theorem 2.2), we see that

DαVp(s) = pVp−1(s)DαV(s). (3.8)

From (3.7) and (3.8), we obtain

α

∫t
0
Vp(s)dαs = tαVp(t) − p

∫t
0
[v(s) −αV(s)]Vp−1(s)dαs

= tαVp(t) − p

∫t
0
v(s)Vp−1(s)dαs+αp

∫t
0
Vp(s)dαs.

(3.9)

From (3.9) and (3.7), we obtain

α

∫t
0
Vp(s)dαs = tαVp(t) − p

∫t
0
v(s)Vp−1(s)dαs+αp

∫t
0
Vp(s)dαs.

Since αp < p, we see that

α

∫t
0
Vp(s)dαs 6 tαVp(t) − p

∫t
0
v(s)Vp−1(s)dαs+ p

∫t
0
Vp(s)dαs,
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i.e.,
1
tα

∫t
0

[
v(s)Vp−1(s) −

p−α

p
Vp(s)

]
dαs 6

Vp(t)

p
.

The proof is complete.

Theorem 3.6. Let v be a nonnegative and nonincreasing weight. If Mαv(t) 6 Cv(t) for some C > 1, then for
p ∈ [1,αC/(C− 1)), we have that

Mα(v(t))p 6 A[Mαv(t)]p, for all t ∈ I0,

where A is given by

A :=
C1−p

αC− p(C−1)
.

Proof. From the definition of Mαv(t) and Lemma 3.5 with p = p > 1, we see that

1
tα

∫t
0

[
v(s) (Mαv(s))p−1 −

p−α

p
(Mαv(s))p

]
dαs 6

1
p
(Mαv(t))p . (3.10)

Define the function
Ω(β) = γβp−1 −

p−α

p
βp, for all γ > 0 and β > γ, (3.11)

and

DαΩ(β) = γ(p− 1)βp−1−α − (p−α)βp−α 6 (p− 1)βp−α − (p−α)βp−α = (α− 1)βp−α < 0.

That is Ω(β) is decreasing for β > γ. From Lemma 3.1, we see that

Mαv(s) >
1
α
v(s).

Now, by taking that γ = v(s), β = Mαv(s), and θ = Cv(t), we see that γ 6 β 6 θ, and then we have

Ω(γ) > Ω(β) > Ω(θ) for γ 6 β 6 θ.

This implies, by using (3.11), that

v(s) (Mαv(s))p−1 −
p−α

p
(Mαv(s))p > v(s) (Cv(s))p−1 −

p−α

p
(Cv(s))p

= Cp−1 (v(s))p −
p−α

p
Cp (v(s))p

= Cp−1
[

1 −
p−α

p
C

]
(v(s))p .

(3.12)

By combining (3.10) and (3.12), we get that

Cp−1
[
p− (p−α)C

p

]
1
tα

∫t
0
(v(s))p dαs 6

1
p
(Mαv(t))p ,

which implies that
1
tα

∫t
0
(v(s))p dαs 6

C1−p

αC−p(C−1)
(Mαv(t))p .

The proof is complete.
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In the following we will prove the property of the parameter of Muckenhoupt and Gehring classes for
power-low on conformable calculus.

Lemma 3.7.

(i) If p > 1 and −α < γ < p−α, then the norm Aαp(t
γ) = Ψ(p,γ,α), where

Ψ(p,α,γ) =
1

(α+ γ)
(

p− 1
α(p− 1) − γ

)p−1.

(ii) If 0 < γ < β, then Aαp(t
−γ) < Aαp(t

−β).

Proof. From the definition of the norm of Aαp(v), we have

Aαp(t
γ) := sup

t∈I0

(
1
tα

∫t
0
sγdαs

)(
1
tα

∫t
0
s
γ

1−pdαs

)p−1

.

Now, we determine the integration in the right-hand side. We start by
∫t

0 s
γdαs, then

1
tα

∫t
0
sγdαs =

1
tα

∫t
0
sγsα−1ds =

1
tα

tα+γ

(α+ γ)
. (3.13)

Also, we have that(
1
tα

∫t
0
s
γ

1−pdαs

)p−1

=

(
1
tα

∫t
0
s
γ

1−p sα−1ds

)p−1

=

(
p− 1

α(p− 1) − γ

)p−1 1
tα(p−1)

(
tα+

γ
1−p

)p−1
. (3.14)

By combining (3.13) and (3.14), we see that

Aαp(t
γ) =

1
(α+ γ)

(
p− 1

α(p− 1) − γ

)p−1

sup
t∈I0

tα+γ

tαp

(
tα+

γ
1−p

)p−1
. (3.15)

From (3.15), we see that

Aαp(t
γ) = Ψ(p,α,γ) sup

t∈I0

tα+γ

tαp

(
tα+

γ
1−p

)p−1
.

We define
ζ(t,p,α,γ) = tα+γt−αp

(
tα+

γ
1−p

)p−1
, for t > 1, p > 1, −α < γ < p− 1.

Now, we see that

sup
t>1

ζ(t,p,α,γ) = sup
t>1

tα+γt−αp
(
tα+

γ
1−p

)p−1
= sup
t>1

t0 = 1,

for all fixed p > 1 and −α < γ < p− 1. This gives us that Aαp(tγ) = Ψ(p,α,γ), which proves statement (i).
By noting that

F(x) =
1

(α+ x)

(
p− 1

α(p− 1) − x

)p−1

is a decreasing function for x > 0, we have that F(−γ) < F(−β) if 0 < γ < β. The proof is complete.

Lemma 3.8.

(i) If p > 1 and γ > −1/p, then the norm
(
Gαp(t

γ)
)p−1
P = Ψ(p,γ,α), where

Φ(p,α,γ) =
(α+ γ)

(α+ pγ)1/p .
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(ii) If 0 < γ < β, then
(
Gαp(t

γ)
)p−1
p <

(
Gαp(t

−β)
)p−1
p .

Proof. From the definition of the norm of Gαp(v), we have

(Gαp(t
γ))

p−1
p := sup

t∈I0

(
1
tα

∫t
0
sγdαs

)−1( 1
tα

∫t
0
spγdαs

) 1
p

.

Now, we determine the integration in the right-hand side. We start by
∫t

0 s
γdαs, then

1
tα

∫t
0
sγdαs =

1
tα

∫t
0
sγsα−1ds =

1
tα

tα+γ

(α+ γ)
. (3.16)

Also, we have that (
1
tα

∫t
0
spγdαs

) 1
p

=
1

(α+ pγ)1/p
1

(tα)1/p

(
tα+pγ

)1/p . (3.17)

By combining (3.16) and (3.17), we see that

(Gαp(t
γ))

p−1
p =

(α+ γ)

(α+ pγ)1/p sup
t∈I0

(
tα+pγ

)1/p
(tα)1− 1

p
(
tα+γ

)−1 . (3.18)

From (3.18), we see that

(Gαp(t
γ))

p−1
p = Φ(p,α,γ) sup

t∈I0

(
tα+pγ

)1/p
(tα)1− 1

p
(
tα+γ

)−1 .

We define

ζ(t,p,α,γ) =
(
tα+pγ

)1/p
(tα)1− 1

p
(
tα+γ

)−1 , for t > 1,p > 1,α ∈ (0, 1) and γ > −1/p.

Now, we see that

sup
t>1

ζ(t,p,α,γ) = sup
t>1

(
tα+pγ

)1/p
(tα)1− 1

p
(
tα+γ

)−1
= sup
t>1

t0 = 1,

for all fixed p > 1 and γ > −1/p. This gives us that (Gαp(tγ))
p−1
p = Φ(p,α,γ), which proves statement (i).

By noting that

F(x) =
(α+ x)

(α+ px)1/p

is a decreasing function for x > 0, we have that F(γ) < F(β) if 0 < γ < β. The proof is complete.

Conclusion 3.9. In this paper, we study the structure of the Muckenhoupt class Aαp(C) and the Gehring
class Gαq(K) via conformable calculus. Also, we study the relationships between the two classes and prove
that if v ∈ Aα1 (C), then v ∈ Gαp(K). We generalize the property of the parameter of Muckenhoupt and
Gehring classes for power-low via conformable calculus. We aim to generalize the results of the weighted
classes and use the results to prove the boundedness of operators in conformable version.
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[8] A. Böttcher, M. Seybold, Wackelsatz and Stechkin’s inequality for discrete Muckenhoupt weights, Technische Universität

Chemnitz, Fakultät für Mathematik, (1999). 1
[9] F. W. Gehring, The Lp-integrability of the partial derivatives of a quasiconformal mapping, Bull. Amer. Math. Soc., 79

(1973), 465–466. 1
[10] H. A. Ghany, Abd-Allah Hyder, M. Zakarya, Exact solutions of stochastic fractional Korteweg de-Vries equation with

conformable derivatives, Chin. Phys. B, 29 (2020), 1–8. 1
[11] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math.,

264 (2014), 65–70.
[12] M. A. Khan, Y.-M. Chu, A. Kashuri, R. Liko, G. Ali, Conformable fractional integrals versions of Hermite-Hadamard

inequalities and their generalizations, J. Funct. Spaces, 2018 (2018), 9 pages. 1
[13] Y. Khurshid, M. A. Khan, Y. M. Chu, Conformable fractional integral inequalities for GG-and GA-convex function, AIMS

Math., 5 (2020), 5012–5030. 1
[14] L. Leindler, Generalization of inequalities of Hardy and Littlewood, Acta Sci. Math., 31 (1970), 12 pages. 1
[15] L. Leindler, Further sharpining of inequalities of Hardy and Littlewood, Acta Sci. Math., 54 (1990), 285–289. 1
[16] J. Madrid, Sharp inequalities for the variation of the discrete maximal function, Bull. Austr. Math. Soc., 95 (2017), 94–107.

1
[17] A. Magyar, E. M. Stein, S. Wainger, Discrete analogues in harmonic analysis: spherical averages, Ann. of Math. (2), 155

(2002), 189–208. 1
[18] N. A. Malaksiano, Exact Inclusions of Gehring Classes in Muckenhoupt Classes, Math. Notes, 70 (2001), 673–681. 1
[19] N. A. Malaksiano, The precise embeddings of one-dimensional Muckenhoupt classes in Gehring classes, Acta Sci. Math.

(Szeged), 68 (2002), 237–248. 1
[20] B. Mucheknhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972),

207–226. 1, 1
[21] H. M. Rezk, Wedad Albalawi, H. A. Abd El-Hamid, A. I. Saied, O. Bazighifan, M. S. Mohamed, M. Zakarya,

Hardy-Leindler-Type Inequalities via Conformable Delta Fractional Calculus, J. Funct. Spaces, 2022 (2022), 10 pages. 1
[22] S. H. Saker, M. R. Kenawy, G. AlNemer, M. Zakarya, Some Fractional Dynamic Inequalities of Hardy’sType Via

Conformable Calculus, Mathematics, 8 (2020), 15 pages. 1
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