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Abstract
In this paper, we prove some reverse conformable inequalities with weights and employ them to prove some conformable

inequalities of Gehring type. Moreover, we prove some interpolation theorems which are powerful tools in the study of operators
in function spaces. Our results develop a technique based on the applications of a refinement of conformable inequalities.
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1. Introduction

We fix an interval I0 ⊂ R+ = [0,∞), and consider the subinterval I of I0 of the form [0, s], for
0 < s < ∞ and donate by |I| the Lebesgue measure of I. The nonnegative weight ω is said to belong to
the Muckenhoupt class Ap(C) on the interval I0 for p > 1 and C > 1 (independent of p) if the inequality

1
|I|

∫
I

ω(x)dx 6 C

(
1
|I|

∫
I

ω
1

1−p (x)dx

)1−p

, (1.1)

holds for every subinterval I ⊂ I0. For p > 1, we define the Ap-norm of the weight ω by

[Ap(ω)] := sup
I⊂I0

(
1
|I|

∫
I

ω(x)dx

)(
1
|I|

∫
I

ω
−1
p−1 (x)dx

)p−1

.

The weight ω is said to belong to the Muckenhoupt class A1(C) on the interval I0, if the inequality

1
|I|

∫
I

ω(x)dx 6 Cω(x), for C > 1, (1.2)
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holds for every subinterval I ⊂ I0, and we define the A1-norm by

[A1(ω)] := sup
I⊂I0

1
|I|

(
1

infω

∫
I

ω(x)dx

)
.

In [14], Muckenhoupt proved that if ω is a nonincreasing weight satisfying condition (1.2), then there
exists p ∈ [1,C/(C− 1)] such that

1
|I|

∫
I

ωp(x)dx 6
C

C− p(C− 1)

(
1
|I|

∫
I

ω(x)dx

)p
.

The authors in [3] improved the Muckenhoupt result by excluding the property of monotonicity on the
weight ω by using a rearrangement ω∗ of the function ω over the interval I and established the best
constant. In particular, they proved that if ω is a nonincreasing weight satisfying condition (1.2) with
C > 1, then there exists p ∈ [1,C/(C− 1)] such that

1
|I|

∫
I

ωp(x)dx 6
C1−p

C− p(C− 1)

(
1
|I|

∫
I

ω(x)dx

)p
.

Further in [14], Muckenhoupt proved the following result: if 1 < p <∞ and ω satisfies the Ap-condition
(1.1) on the interval I, with constant C, then there exist constants q and C1 depending on p and C such
that 1 < q < p and ω satisfies the Aq-condition(

1
|I|

∫
I

ω(x)dx

)
⊂
(

1
|I|

∫
I

ω− 1
q−1 (x)dx

)q−1

6 C1,

for every subinterval I ⊂ I0. On other words, Muckenhoupt’s result for self-improving property states that:
if v ∈ Ap(C), then there exists a constant ε > 0 and a positive constant C1 such that v ∈ Ap−ε(C1), and
then Ap(C) ⊂ Ap−ε(C1). Despite of a variety of ideas related to weighted inequalities appeared with the
birth of singular integrals, it was only in the 1970s that a better understanding of the subject was obtained
and the full characterization of the weights ω for which the Hardy-Littlewood maximal operator

Mω(x) := sup
x∈I

1
|I|

∫
I

ω(y)dy,

is bounded on Lpw(R) by means of the so-calledAp-condition was achieved by Muckenhoupt and published
in 1972 (see[14]). Muckenhoupt’s result became a landmark in the theory of weighted inequalities because
most of the previously known results for classical operators had been obtained for special classes of
weights (like power weights) and has been extended to cover several operators like Hardy operator,
Hilbert operator, Calderón-Zygmund singular integral operators, fractional integral operators, etc. The
weight ω is said to belong to the Gehring class Gq(K), 1 < q < ∞ for the interval I0, if there exists a
constant K > 1 such that the inequality(

1
|I|

∫
I

ωq(x)dx

) 1
q

6 K

(
1
|I|

∫
I

ω(x)dx

)
, (1.3)

holds for every subinterval I ⊂ I0 and we define the Gq-norm by

[Gq(ω)] := sup
I⊂I0

[(
1
|I|

∫
I

ωq(x)dx

) 1
q
(

1
|I|

∫
I

ω(x)dx

)−1
] q
q−1

.

In [8, 9], Gehring proved that if (1.3) holds, then there exist p > q and a positive constant K1 such that

1
|I|

∫
I

ωp(x)dx 6 K1

(
1
|I|

∫
I

ω(x)dx

)p
for every I ⊂ I0.
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On other words, Gehring’s result for self-improving property states that: if ω ∈ Gq(K), then there exists
ε > 0 and a positive constant K1 such that ω ∈ Gq+ε(K1), and then

Gq(K) ⊂ Gq+ε(K1).

The proof of the Gehring inequality based on the use of the Calderón-Zygmund decomposition. This
and the scale structure of Lp-spaces. In [8], the author extended the Gehring’s inequality by means of
connecting it to the real method of interpolation by considering maximal operators, and via rearrange-
ments reinterpreted the underlying estimates through the use of K-functionals. This technique allowed to
quantify in a precise way, via reiteration, how the Calderón-Zygmund decompositions have to be repa-
rameterized in order to characterize different Lp-spaces. Various integral inequalities and reverse integral
inequalities (cf. [8, 9]) and their many variants and extensions are important in qualitative analysis of
differential equations (see [2, 4, 5, 12]) and partial differential equations (see [11, 13]), in the study of
weighted norm inequalities for classical operators of harmonic analysis, as well as in functional analysis.
These inequalities also appear in different fields of analysis such as quasiconformal mappings, weighted
Sobolev embedding theorems, and regularity theory of variational problems (see [6, 7, 10]).

Our aim in this paper, is to prove some reverse inequalities with weights and employ them to prove
some conformable inequalities of Gehring types and some interpolation theorems. Moreover, our results
develop a technique based on the applications of a refinement of conformable inequalities. The paper is
organized as follows. Section 2 is devoted to preliminaries on conformable calculus. In Section 3, we state
and prove some basic lemmas which will used to prove our main results. In Section 4, we state and prove
the main results in our paper.

2. Preliminaries on conformable calculus

In this section, we present some preliminaries and definitions on conformable calculus. Throughout,
we assume that α ∈ (0, 1] and the weight f is a nonnegative locally α-integrable defined on I0 ⊂ R+ and
p is a positive real number. In addition, in our proofs, we will use the convention 0 ·∞ = 0 and 0/0 = 0.

Definition 2.1 ([1]). Let α ∈ (0, 1]. Given a function f : [0,∞)→ R. Then conformable derivative is defined
as follows

Dαf(t) = lim
ε→0

f(t+ εt1−α) − f(t)

ε
,

for t > 0.

Now, we present some useful properties of α-derivative as the following.

Theorem 2.2 ([1]). Let α ∈ (0, 1], and f,g be α-differentiable at a point t > 0. Then

1. Dα(af(t) + bg(t)) = aDαf(t) + bDαg(t);
2. Dα(tp) = ptp−α, for all p ∈ R;
3. Dα(f(t)g(t)) = f(t)Dαg(t) + g(t)Dαf(t);
4. Dα( f(t)g(t)) =

g(t)Dαf(t)−f(t)Dαg(t)
g2(t)

;
5. Dα(k) = 0, where k is a constant;
6. if f is differentiable, then Dαf(t) = t1−αdf(t)

dt ;
7. if f and g are differentiable functions, then

Dα(f ◦ g)(t) = t1−αg
′
(t)f

′
(g(t)) = Dαg(t)f

′
(g(t)).

Definition 2.3. Let α ∈ (0, 1]. A function f : [0, t]→ R is conformable integrable on [0, t] if the integral

Iα(f)(t) = I(tα−1f)(t) =

∫t
0

f(x)

x1−αdx,

exists.
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Theorem 2.4 ([1]). Let a,b, c ∈ R. Then∫b
a

Dαf(t)g(t)dαt = f(t)g(t) |ba −

∫b
a

f (t)Dαg(t)dαt.

Lemma 2.5. Let f : [0,∞)→ R be a continuous function and 0 < α 6 1. Then for all t > 0 we have

1. DαIαf(t) = f(t);
2. IαDαf(t) = f(t) − f(0).

The conformable Hölder inequality is given by

∫t
0
|f(s)g(s)|dαs 6

(∫t
0
|f(s)|p dαs

) 1
p
(∫t

0
|g(s)|q dαs

) 1
q

,

where f, g ∈ C([a,b], R), p > 1 and 1/p+ 1/q. We say that f satisfies a reverse Hölder inequality if for
some constants p > q the following holds

(∫t
0
|f(s)|p dαs

) 1
p

6 C

(∫t
0
|f(s)|q dαs

) 1
q

.

3. Auxiliary results

In this section, we prove the main results. We will introduce some definitions and notations that will
be needed in the paper.

Definition 3.1. Let f : I −→ R+ be a nonnegative and nondecreasing. We define the conformable operator
Mαf : I −→ R+ by

Mαf(t) :=
1
tα

∫t
0
f(s)dαs, for all t > 0. (3.1)

Now we prove some properties of the operator Mα that will be needed in the proofs later. From the
definition of Mα, we see that if f is nonincreasing, then

Mαf(t) =
1
tα

∫t
0
f(s)dαs >

1
tα

∫t
0
f(t)dαs =

1
tα

∫t
0
sα−1dsf(t) =

f(t)

α
.

From this, the following lemma gives some properties of the operator Mαf.

Lemma 3.2. Let Mαf be defined as in (3.1). Then we have the following properties:

(a) if f is nonincreasing, then Mαf(t) > 1
αf(t);

(b) if f is nondecreasing, then Mαf(t) 6 1
αf(t).

Now, we will define Mα[Mαf]p by,

Mα[Mαf]p =
1
tα

∫t
0

(
1
sα

∫s
0
f(x)dαx

)p
dαs, for t > 0.

Theorem 3.3. Let f : I −→ R+ be a nonnegative and nondecreasing. If p > 1, then

Mα[Mαf]p 6

(
p

α(1 − p)

)p
Mαfp(t), for t > 0. (3.2)
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Proof. Let Mαf = F and t > 0. Moreover, since tαF(t) =
∫t

0 f(s)d
αs, the product rule (see Theorem 2.2),

we see that
tαDαF(t) +αF(t) = f(t). (3.3)

Letting u(t) = tα, v(t) = Fp(t) and integrating by parts (see Theorem 2.4), we see that

α

∫t
0
Fp(s)dαs = tαFp(t) −

∫t
0
sαDαFp(s)dαs. (3.4)

By using the chain rule (see Theorem 2.2 ), we see that

DαFp(s) = pDαF(s)Fp−1(s). (3.5)

From (3.4) and (3.5), we see that

α

∫t
0
Fp(s)dαs = tαFp(t) − p

∫t
0
sαDαF(s)Fp−1(s)dαs. (3.6)

From (3.3) and (3.6), we obtain

α

∫t
0
Fp(s)dαs = tαFp(t) − p

∫t
0
[f(s) −αF(s)] Fp−1(s)dαs

= tαFp(t) − p

∫t
0
f(s)Fp−1(s)dαs+αp

∫t
0
Fp(s)dαs.

(3.7)

Note

lim
s→0+

u(s)v(s) = lim
s→0+

sα
(

1
sα

∫s
0
f(x)dαx

)p
= lim
s→0+

sα
(

1
sα

∫s
0
f(x)xα−1dx

)p
= lim
s→0+

sα
fp(s)

αp
= 0.

From (3.7), we obtain

α(1 − p)

∫t
0
Fp(s)dαs = tαFp(t) + p

∫t
0
f(s)Fp−1(s)dαs.

Applying Hölder’s inequality with exponents p and p/(p− 1), we have

α(1 − p)

∫t
0
Fp(s)dαs 6 p

(∫t
0
fp(s)dαs

)1/p(∫t
0
Fp(s)dαs

)(p−1)/p

.

From this we get the desired inequality (3.2) after using the definition of Mα. The proof is complete.

Lemma 3.4. Let x(t) = tα. If γ > 1, then

Dαx1−γ(t) =
α(1 − γ)

tαγ
. (3.8)

Proof. By using the chain rule (see Theorem 2.2), we see that

Dαx1−γ(t) = (1 − γ)x−γ(t)t1−αx
′
(t) = α(1 − γ)t−αγ,

which is (3.8).
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4. Main results

The first theorem will be used later in the proof of conformable Gehring’s inequality.

Theorem 4.1. If p > 1 and f : I −→ R+ is a nonnegative and nonincreasing function, then for any q ∈ (0,p), we
have

1

α
p
q

Mαfp(t) 6
q

αp
[Mαfq(t)]p/q +

(p− q)

p
Mα[Mαfq(t)]p/q, for t > 0.

Proof. Let t > 0 and let

γ =
p

q
and F =

∫t
0
fq(s)dαs.

By using Lemma 3.4, we have

(p− q)

p
Mα[Mαfq(t)]p/q =

(γ− 1)
γtα

∫t
0

(
F(s)

sα

)γ
dαs

=
−1
γtα

∫t
0
Fγ(s)

(1 − γ)

sαγ
dαs =

−1
αγtα

∫t
0
Fγ(s)Dαx1−γ(s)dαs.

Putting u(s) = x1−γ(s), v(s) = Fγ(s) and integrating by parts, we obtain that

(p− q)

p
Mα[Mαfq(t)]p/q = lim

s→0

x1−γ(s)Fγ(s)

αγtα
−
x1−γ(t)Fγ(t)

αγtα
+

1
αγtα

∫t
0
x1−γ(s)DαFγ(s)dαs

=
1

αγtα

∫t
0
sα(1−γ)DαFγ(s)dαs−

1
αγ

(
F(t)

tα

)γ
.

By using Lemma 3.2, since Mαfq(s) > 1/(α)fq(s) for s > 0, we see that

(p− q)

p
Mα[Mαfq(t)]p/q =

1
αtα

∫t
0
fq(s)[Mαfq(s)]γ−1dαs−

1
αγ

[Mαfq(t)]γ

>
1

αγtα

∫t
0
fq(s)[fq(s)]γ−1dαs−

1
αγ

[Mαfq(t)]γ

=
1

αγtα

∫t
0
[fq(s)]γdαs−

1
αγ

[Mαfq(t)]γ

=
1

α
p
q

Mαfp(t) −
q

αp
[Mαfq(t)]p/q.

The proof is complete.

Now, we state and prove first conformable version of the Gehring inequality for monotone functions.

Theorem 4.2. Let p > 1 and f : I −→ R+ is a nonnegative and nonincreasing function. If

Mαfq(t) 6 λ[Mαf(t)]q, for some λ > 0, (4.1)

then for p > q, we have
Mαfp(t) 6 A[Mαf(t)]p, for t > 0, (4.2)

where

A =
qλp/q

α1−p
qp−α(p− q)λp/q

(
p

α(1−p)

)p > 0.



S. H. Saker, M. A. Darwish, H. A. Elshamy, J. Math. Computer Sci., 29 (2023), 192–202 198

Proof. From Theorem 4.1, we have that

1

α
p
q

Mαfp(t) 6
q

αp
[Mαfq(t)]p/q +

(p− q)

p
Mα[Mαfq(t)]p/q.

By using (4.1), we obtain

1

α
p
q

Mαfp(t) 6
q

αp
[λ[Mαf(t)]q]p/q +

(p− q)

p
Mα[λ[Mαf(t)]q]p/q

=
q

αp
λp/q[Mαf(t)]p + λp/q

(p− q)

p
Mα[[Mαf(t)]p].

By applying Theorem 3.3, since Mα[Mαf]p 6 (p/α(1 − p))pMαfp(t), we obtain

1

α
p
q

Mαfp(t) 6
q

αp
λp/q[Mαf(t)]p + λp/q

(p− q)

p

(
p

α(1 − p)

)p
Mαfp(t).

So
Mαfp(t) 6 A[Mαf(t)]p,

which is the desired result.

Theorem 4.3. If p > 1, f : I −→ R+ is a nonnegative and nonincreasing function and (4.2) holds, then for
0 < r < 1, we have

Mαfp(t) 6 Ā[Mαf(t)]p/r, for t > 0,

where Ā = A1/θ with θ = (1 − 1
p)/(

1
r −

1
p).

Proof. Note that θ ∈ (0, 1) and (1− θ)/p+ (θ/r) = 1. By applying Hölder’s inequality with exponents 1/θ
and p/(1 − θ), and (4.2), we have(

1
tα

∫t
0
fp(s)dαs

)1/p

6
A1/p

tα

∫t
0
f(s)dαs

=
A1/p

tα

∫t
0
f1−θ(s)fθ(s)dαs

6 A1/p
(

1
tα

∫t
0
fp(s)dαs

)(1−θ)/p( 1
tα

∫t
0
fr(s)dαs

)θ/r
= A1/p[Mαfp(t)](1−θ)/p × [Mαfr(t)]θ/r.

By substituting, we find (
1
tα

∫t
0
fp(s)dαs

)θ/p
6 A1/p

(
1
tα

∫t
0
fr(s)dαs

)θ/r
.

The proof is complete.

Theorem 4.4. If 0 < p0 < p1 <∞, 0 < θ < 1 and f is a nonnegative and nonincreasing function, then

(1) if p = (1 − θ)p0 + θp1, then

Mαfp(t) 6 [Mαfp0(t)]1−θ[Mp1f(t)]θ, for t > 0;

(2) if p = 1
1−θ
p0

+ θ
p1

, then

Mαfp(t) 6 [Mαfp0(t)](1−θ)p/p0 [Mp1f(t)]θp/p1 , for t > 0.
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Proof.

(1). By applying Hölder’s inequality with exponents 1/θ and 1/(1 − θ), we have

Mαfp(t) =
1
tα

∫t
0
fp(s)dαs =

1
tα

∫t
0
f(1−θ)p0(s)fθp1(s)dαs

(
1
tα

∫t
0
fp0(s)dαs

)1−θ( 1
tα

∫t
0
fp1(s)dαs

)θ
= [Mαfp0(t)]1−θ[Mαfp1(t)]θ,

which is (1).

(2). By applying Hölder’s inequality with exponents 1/γ and 1/(1 − γ), where γ = θp/p1, 1 − γ = (1 −
θ)p/p0, we have

Mαfp(t) =
1
tα

∫t
0
f(1−θ)p(s)fθp(s)dαs

6

(
1
tα

∫t
0
f(1−θ)p/(1−γ)(s)dαs

)1−γ( 1
tα

∫t
0
fθp/γ(s)dαs

)γ
= [Mαfp0(t)](1−θ)p/p0 [Mp1f(t)]θp/p1 ,

which shows (2). The proof is complete.

In the following, we give a new proof of conformable Gehring’s inequality.

Theorem 4.5. If p > 1, f : I −→ R+ is a nonnegative and nonincreasing function and

Mαf(t) 6 λf(t) for some λ > 1, (4.3)

then for p ∈ [1, λ/(λ− 1)], where k = αλ, we have

Mαfp(t) 6 A[Mαf(t)]p for t > 0, where A =
αp−1k

k− p(k− 1)
> 0.

Proof. Let F(t) =
∫t

0 f(s)d
αs. By using property (5) in Theorem 2.2, we obtain

Dα log tα = t1−α d

dt
log tα =

α

tα
. (4.4)

Now, since tαMαf(t) = F(t), we get by using (4.3) that

α

tα
=
αMαf(t)

F(t)
6 αλ

f(t)

F(t)
= k

f(t)

F(t)
.

This and (4.4) give us that

Dα log tα 6 k
Dα(F(t))

F(t)
.

By integrating the last inequality from s to t, we get that∫t
s

Dα(log xα)dαx 6 k
∫t
s

Dα(F(x))

F(x)
dαx 6 k

∫t
s

x1−α d
dx(F(x))

F(x)
xα−1dx.

That is,

log
(
tα

sα

)1/k

6 log
(
F(t)

F(s)

)
. (4.5)
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Now, since f is nonincreasing, we have from Lemma 3.2 and (4.5) that

1
α
f(s) 6 Mαf(s) =

F(s)

sα
6

1
sα

(
sα

tα

)1/k

F(t),

then
1
αp
fp(s) 6

(
1
sα

)p(
sα

tα

)p/k
Fp(t).

Integrating from 0 to t, and putting γ = p(1 − 1/k) ∈ (0, 1), we obtain

1
tα

∫t
0
fp(s)dαs 6

αpFp(t)

tα(1+p/k)

∫t
0

1
sαp(1−1/k)d

αs =
αpFp(t)

tα(1+p/k)

∫t
0

1
sαγ

dαs.

Letting x(t) = tα, from Lemma (3.4), we see that

Dαx1−γ(t) =
α(1 − γ)

tαγ
. (4.6)

Since γ > 1, and by using (4.6), then we get that

1
tα

∫t
0
fp(s)dαs 6

αpFp(t)

α(1 − γ)tα(1+p/k)

∫t
0
Dα

(
x1−γ(t)

)
dαs

=
αp−1Fp(t)

(1 − γ)tα(1+p/k)

∫t
0
Dα

(
x1−γ(t)

)
dαs

=
αp−1Fp(t)tα(1−γ)

(1 − γ)tα(1+p/k) =
αp−1

(1 − γ)

(
F(t)

tα

)p
,

which is the desired result.

5. Conformable higher integrability

For t > 0, f is a nonnegative and nonincreasing and q > 1, we have

Mαfq(t) =
1
tα

∫t
0
fq(s)dαs =

1
tα

∫t
0
fq−1(s)f(s)dαs >

fq−1(t)

tα

∫t
0
f(s)dαs = fq−1(t)Mαf(t). (5.1)

Now, consider the class of nonnegative and nonincreasing functions f that satisfy the reverse of (5.1).
Then

Mαfq(t) 6 λfq−1(t)Mαf(t) for some λ > 1. (5.2)

Theorem 5.1. If q > 1, f is a nonnegative and nonincreasing function, (5.2) holds, and λq > 1 − q, then for
p ∈ [q,qλq/(λq − 1)), we have

Mαfp(t) 6 K[Mαfq(t)]p/q for t > 0, (5.3)

where

K =
α
p
q−1λ

1+p/q
q

λq −
p
q(λq − 1)

, with λq =
qλ

α(1 − q)
.

Proof. Let Mαfq = F. By applying Hölder’s inequality with exponents q and q/(q − 1), and (5.2), we
obtain

1
tα

∫t
0
F(s)dαs 6

λ

tα

∫t
0
fq−1(s)

(
1
sα

∫s
0
f(τ)dατ

)
dαs
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6 λ

(
1
tα

∫t
0
fq(s)dαs

)(q−1)/q( 1
tα

∫t
0

(
1
sα

∫s
0
fq(τ)dατ

)q
dαs

)1/q

.

By using the definition of Mαf, we obtain

MαF(t) =
1
tα

∫t
0
F(s)dαs 6 λ[Mαfq(t)](q−1)/q[Mα[Mαf(t)]q]1/q. (5.4)

From Theorem 3.3, we have

[Mα[Mαf(t)]q]1/q 6
q

α(1 − q)
[Mαfq(t)]1/q. (5.5)

From (5.4) and (5.5), we have that

MαF(t) =
1
tα

∫t
0
F(s)dαs 6

qλ

α(1 − q)
[Mαfq(t)](q−1)/q[Mαfq(t)]1/q

=
qλ

α(1 − q)
Mαfq(t) = λqM

αfq(t) = λqF(t).
(5.6)

Note λq > 1 since λq > 1 − q. Since F is a nonnegative and nonincreasing (see Lemma 3.2), then we have

MαFr(t) 6 A[Mαf(t)]r, (5.7)

with

A =
αr−1λq

λq − r(λq − 1)
and r =

p

q
∈ [1,

λq

λq − 1
).

Note

F(t) =
1
tα

∫t
0
fq(s)dαs >

1
α
fq(t).

From (5.7) and (5.6), we have that

Mαfp(t) =
1
tα

∫t
0
(fq(s))rdαs 6

1
tα

∫t
0
Fr(s)dαs

= Mαfr(t) 6 A[Mαf(t)]r 6 Aλrq[F(t)]
r = K[F(t)]r = K[Mαfq(t)]p/q,

which proves (5.3).

6. Conclusion

In this paper, we proved some reverse conformable inequalities with weights and employed them
to prove some conformable inequalities of Gehring type. Also, we proved some interpolation theorems
which are powerful tools in the study of operators in function spaces. We aim to generalize the results of
the weighted classes and use the results to prove the boundedness of operators in conformable version.
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