

External direct products on dual UP (BCC)-algebras

Chatsuda Chanmanee ${ }^{\text {a }}$, Ronnason Chinram ${ }^{\text {b }}$, Rukchart Prasertpong ${ }^{\mathrm{c}}$, Pongpun Julatha ${ }^{\mathrm{d}}$, Aiyared lampan ${ }^{\mathrm{a}, *}$
${ }^{a}$ Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand.
${ }^{b}$ Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
${ }^{c}$ Division of Mathematics and Statistics, Faculty of Science and Technology, Nakhon Sawan Rajabhat University, Nakhon Sawan 60000, Thailand.
${ }^{d}$ Department of Mathematics, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand.

Abstract

The concept of the direct product of finite family of B-algebras is introduced by Lingcong and Endam [J. A. V. Lingcong, J. C. Endam, Int. J. Algebra, 10 (2016), 33-40]. In this paper, we introduce the concept of the direct product of infinite family of BCC-algebras and prove that it is a dual BCC-algebras (dBCC-algebras), we call the external direct product dBCC-algebra induced by BCC-algebras, which is a general concept of the direct product in the sense of Lingcong and Endam. We find the result of the external direct product of special subsets of BCC-algebras. Also, we introduce the concept of the weak direct product dBCC-algebras. Finally, we provide several fundamental theorems of (anti-)BCC-homomorphisms in view of the external direct product dBCC-algebras.

Keywords: BCC-algebra, dBCC-algebra, external direct product, weak direct product, BCC-homomorphism, anti-BCC-homomorphism.
2020 MSC: 03G25, 20K25.
©2023 All rights reserved.

1. Introduction and Preliminaries

Imai and Iséki defined two kinds of abstract algebras, BCK-algebras and BCI-algebras, which have been intensively studied by numerous academics. The class of $B C K$-algebras is known to be a proper subclass of the class of $B C I$-algebras [15, 16]. In 2002, Neggers and Kim [29] constructed a new algebraic structure. They took some properties from $B C I$ and $B C K$-algebras be called a B-algebra. Furthermore, Kim and Kim [22] introduced a new notion, called a $B G$-algebra which is a generalization of B-algebra. They obtained several isomorphism theorems of $B G$-algebras and related properties.

Iampan [11] developed the concept of UP-algebras in 2017, and it is known that the class of KUalgebras [30] is a proper subclass of the class of UP-algebras. It have been examined by several researchers,

[^0]for example, graphs associated with commutative UP-algebras and a graph of equivalence classes of commutative UP-algebras by Ansari et al. in 2018 [2]. In the same year Senapati et al. [35] applied the cubic set structure in UP-algebras and proved the results based on them. In 2019, Satirad et al. [32] proved every nonempty set and every nonempty totally ordered set can be a UP-algebra. In 2020, Romano and Jun [31] introduced the concept of weak implicative UP-filters in UP-algebras. In 2022, Ansari et al. [4] defined the notion of a UP-algebra valued function on a set, investigated related properties, and established the binary block codes generated by UP-algebras valued function. Following that, Koam et al. [23] proposed and researched generalized UP-valued cut functions and their many features. Using the concept of generalized UP-valued cut functions, they created n-ary block-codes for UP-algebras. In this year, Jun et al. [17] have shown that the concept of UP-algebras (see [11]) and the concept of BCC-algebras (see [24]) are the same concept. Therefore, in this article and future research, our research team will use the name BCC instead of UP in honor of Komori, who first defined it in 1984.

The concept of the direct product [37] was first defined in the group and obtained some properties. For example, a direct product of the group is also a group, and a direct product of the abelian group is also an abelian group. Then, direct product groups are applied to other algebraic structures. In 2016, Lingcong and Endam [25] discussed the notion of the direct product of B-algebras, 0 -commutative B algebras, and B-homomorphisms and obtained related properties, one of which is a direct product of two B-algebras, which is also a B-algebra. Then, they extended the concept of the direct product of B-algebra to finite family B-algebra, and some of the related properties were investigated. Also, they introduced two canonical mappings of the direct product of B-algebras and we obtained some of their properties [26]. In the same year, Endam and Teves [9] defined the direct product of BF-algebras, 0 -commutative $B F$-algebras, and $B F$-homomorphism and obtained related properties. In 2018, Abebe [1] introduced the concept of the finite direct product of BRK-algebras and proved that the finite direct product of BRKalgebras is a $B R K$-algebra. In 2019, Widianto et al. [40] defined the direct product of $B G$-algebras, 0 commutative $B G$-algebras, and $B G$-homomorphism, including related properties of $B G$-algebras. In 2020, Setiani et al. [37] defined the direct product of $B P$-algebras, which is equivalent to B-algebras. They obtained the relevant property of the direct product of $B P$-algebras and then defined the direct product of $B P$-algebras as applied to finite sets of $B P$-algebras, finite family 0 -commutative $B P$-algebras, and finite family $B P$-homomorphisms. In 2021, Kavitha and Gowri [21] defined the direct product of GK algebra. They derived the finite form of the direct product of GK algebra and function as well. They investigated and applied the concept of the direct product of GK algebra in GK function and GK kernel and obtained interesting results.

In this paper, we introduce the concept of the direct product of infinite family of BCC-algebras and prove that it is a dBCC-algebras, we call the external direct product dBCC-algebra induced by BCCalgebras, which is a general concept of the direct product in the sense of Lingcong and Endam [25]. Moreover, we introduce the concept of the weak direct product dBCC-algebras. Finally, we discuss several (anti-)BCC-homomorphism theorems in view of the external direct product dBCC-algebras.

The concept of BCC-algebras (see [24]) can be redefined without the condition (1.1) as follows.

Definition 1.1 ([11]). An algebra $X=(X ; *, 0)$ of type $(2,0)$ is called a $B C C$-algebra if it satisfies the following axioms:

$$
\begin{align*}
& (\forall x, y, z \in X)((y * z) *((x * y) *(x * z))=0), \tag{UP-1}\\
& (\forall x \in X)(0 * x=x), \tag{UP-2}\\
& (\forall x \in X)(x * 0=0), \tag{UP-3}\\
& (\forall x, y \in X)(x * y=0, y * x=0 \Rightarrow x=y) . \tag{UP-4}
\end{align*}
$$

Example 1.2. Let $X=\{0,1,2,3,4,5,6\}$ be a set with the Cayley table as follows:

$*$	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	0	0	2	3	4	5	6
2	0	0	0	3	0	0	6
3	0	0	2	0	4	0	0
4	0	0	2	3	0	0	6
5	0	0	2	3	4	0	6
6	0	0	2	3	4	5	0

Then $X=(X ; *, 0)$ is a BCC-algebra.
For more studies and examples of BCC-algebras, see $[2,3,7,11,12,14,23,32,33,35,36]$.
Definition 1.3 ([8]). An algebra $X=(X ; *, 0)$ of type (2,0) is called a dual BCC-algebra (dBCC-algebra) if it satisfies (UP-4) and the following axioms:

$$
\begin{align*}
& (\forall x, y, z \in X)(((z * x) *(y * x)) *(z * y)=0), \tag{DUP-1}\\
& (\forall x \in X)(x * 0=x), \tag{DUP-2}\\
& (\forall x \in X)(0 * x=0) . \tag{DUP-3}
\end{align*}
$$

The binary relation \leqslant on a dBCC-algebra $X=(X ; *, 0)$ is defined as follows:

$$
(\forall x, y \in X)(x \leqslant y \Leftrightarrow x * y=0) .
$$

Example 1.4. Let $X=\{0,1,2,3,4,5,6\}$ be a set with the Cayley table as follows:

$*$	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	1	0	1	1	1	1	1
2	2	0	0	3	3	3	2
3	3	0	0	0	3	3	3
4	4	0	0	0	0	4	4
5	5	0	0	0	0	0	5
6	6	0	0	0	0	0	0

Then $X=(X ; *, 0)$ is a dBCC-algebra.
Let $A=\left(A ; *_{A}, 0_{A}\right)$ and $B=\left(B ; *_{B}, 0_{B}\right)$ be $B C C$-algebras. $A \operatorname{map} \varphi: A \rightarrow B$ is called a $B C C-$ homomorphism if

$$
(\forall x, y \in A)\left(\varphi\left(x *_{A} y\right)=\varphi(x) *_{B} \varphi(y)\right)
$$

and an anti-BCC-homomorphism if

$$
(\forall x, y \in \mathcal{A})\left(\varphi\left(x *_{\mathrm{A}} y\right)=\varphi(y) *_{\mathrm{B}} \varphi(x)\right) .
$$

The kernel of φ, denoted by $\operatorname{ker} \varphi$, is defined to be the $\left\{x \in A \mid \varphi(x)=0_{B}\right\}$. The $\operatorname{ker} \varphi$ is a BCC-ideal of A, and $\operatorname{ker} \varphi=\left\{0_{A}\right\}$ if and only if φ is injective. A (anti-)BCC-homomorphism φ is called a (anti-) BCC-monomorphism, (anti-)BCC-epimorphism, or (anti-)BCC-isomorphism if φ is injective, surjective, or bijective, respectively.

In a BCC-algebra $X=(X ; *, 0)$, the following assertions are valid (see [11, 12]).

$$
\begin{equation*}
(\forall x \in X)(x * x=0), \tag{1.1}
\end{equation*}
$$

$$
\begin{aligned}
& (\forall x, y, z \in X)(x * y=0, y * z=0 \Rightarrow x * z=0) \\
& (\forall x, y, z \in X)(x * y=0 \Rightarrow(z * x) *(z * y)=0) \\
& (\forall x, y, z \in X)(x * y=0 \Rightarrow(y * z) *(x * z)=0) \\
& (\forall x, y \in X)(x *(y * x)=0) \\
& (\forall x, y \in X)((y * x) * x=0 \Leftrightarrow x=y * x) \\
& (\forall x, y \in X)(x *(y * y)=0) \\
& (\forall u, x, y, z \in X)((x *(y * z)) *(x *((u * y) *(u * z)))=0) \\
& (\forall u, x, y, z \in X)((((u * x) *(u * y)) * z) *((x * y) * z)=0) \\
& (\forall x, y, z \in X)(((x * y) * z) *(y * z)=0) \\
& (\forall x, y, z \in X)(x * y=0 \Rightarrow x *(z * y)=0) \\
& (\forall x, y, z \in X)(((x * y) * z) *(x *(y * z))=0) \\
& (\forall u, x, y, z \in X)(((x * y) * z) *(y *(u * z))=0)
\end{aligned}
$$

According to [11], the binary relation \leqslant on a BCC-algebra $X=(X ; *, 0)$ is defined as follows:

$$
(\forall x, y \in X)(x \leqslant y \Leftrightarrow x * y=0)
$$

Definition 1.5. A BCC-algebra $X=(X ; *, 0)$ is said to be
(i) bounded if there is an element $1 \in X$ such that $1 \leqslant x$ for all $x \in X$, that is,

$$
\begin{equation*}
(\forall x \in X)(1 * x=0) \tag{Bounded}
\end{equation*}
$$

(ii) meet-commutative [34] if it satisfies the identity

$$
(\forall x, y \in X)(x \wedge y=y \wedge x)
$$

(Meet-commutative)
where

$$
\begin{equation*}
(\forall x, y \in X)(x \wedge y=(y * x) * x) \tag{Meet}
\end{equation*}
$$

Definition 1.6. A dBCC-algebra $X=(X ; *, 0)$ is said to be
(i) bounded if there is an element $1 \in X$ such that $x \leqslant 1$ for all $x \in X$, that is,

$$
\begin{equation*}
(\forall x \in X)(x * 1=0) \tag{Bounded}
\end{equation*}
$$

(ii) join-commutative if it satisfies the identity

$$
(\forall x, y \in X)(x \vee y=y \vee x)
$$

(Join-commutative)
where

$$
\begin{equation*}
(\forall x, y \in X)(x \vee y=x *(x * y)) \tag{Join}
\end{equation*}
$$

Example 1.7. Let $X=\{0,1,2,3,4\}$ be a set with the Cayley table as follows:

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	1	1
2	2	0	0	3	2
3	3	0	0	0	3
4	4	0	0	0	0

Then $X=(X ; *, 0,1)$ is a bounded dBCC-algebra.

Example 1.8. Let $X=\{0,1,2,3,4\}$ be a set with the Cayley table as follows:

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	3	2	1
2	2	0	0	2	2
3	3	0	3	0	3
4	4	4	4	4	0

Then $X=(X ; *, 0)$ is a join-commutative dBCC-algebra.
Definition 1.9 ($[10,11,13,18-20,38])$. A nonempty subset S of a BCC-algebra $X=(X ; *, 0)$ is called
(i) a BCC-subalgebra of X if it satisfies the following condition:

$$
\begin{equation*}
(\forall x, y \in S)(x * y \in S) ; \tag{1.2}
\end{equation*}
$$

(ii) a near BCC-filter of X if it satisfies the following condition:

$$
\begin{equation*}
(\forall x, y \in X)(y \in S \Rightarrow x * y \in S) ; \tag{1.3}
\end{equation*}
$$

(iii) a BCC-filter of X if it satisfies the following conditions:

$$
\begin{align*}
& \text { the constant } 0 \text { of } X \text { is in } S \text {, } \tag{1.4}\\
& (\forall x, y \in X)(x * y \in S, x \in S \Rightarrow y \in S) ; \tag{1.5}
\end{align*}
$$

(iv) an implicative $B C C$-filter of X if it satisfies the condition (1.4) and the following condition:

$$
\begin{equation*}
(\forall x, y, z \in X)(x *(y * z) \in S, x * y \in S \Rightarrow x * z \in S) ; \tag{1.6}
\end{equation*}
$$

(v) a comparative BCC-filter of X if it satisfies the condition (1.4) and the following condition:

$$
\begin{equation*}
(\forall x, y, z \in X)(x *((y * z) * y) \in S, x \in S \Rightarrow y \in S) \tag{1.7}
\end{equation*}
$$

(vi) a shift BCC-filter of X if it satisfies the condition (1.4) and the following condition:

$$
\begin{equation*}
(\forall x, y, z \in X)(x *(y * z) \in S, x \in S \Rightarrow((z * y) * y) * z \in S) ; \tag{1.8}
\end{equation*}
$$

(vii) a BCC-ideal of X if it satisfies the condition (1.4) and the following condition:

$$
\begin{equation*}
(\forall x, y, z \in X)(x *(y * z) \in S, y \in S \Rightarrow x * z \in S) ; \tag{1.9}
\end{equation*}
$$

(viii) a strong BCC-ideal of X if it satisfies the condition (1.4) and the following condition:

$$
\begin{equation*}
(\forall x, y, z \in X)((z * y) *(z * x) \in S, y \in S \Rightarrow x \in S) . \tag{1.10}
\end{equation*}
$$

Definition 1.10. A nonempty subset S of a dBCC-algebra $X=(X ; *, 0)$ is called
(i) a dBCC-subalgebra of X if it satisfies the condition (1.2);
(ii) a near $d B C C$-filter of X if it satisfies the following condition:

$$
\begin{equation*}
(\forall x, y \in X)(y \in S \Rightarrow y * x \in S) \tag{1.11}
\end{equation*}
$$

(iii) a dBCC-filter of X if it satisfies the following conditions:

$$
\begin{align*}
& \text { the constant } 0 \text { of } X \text { is in } S \text {, } \tag{1.12}\\
& (\forall x, y \in X)(y * x \in S, x \in S \Rightarrow y \in S) ; \tag{1.13}
\end{align*}
$$

(iv) an implicative $d B C C$-filter of X if it satisfies the condition (1.12) and the following condition:

$$
\begin{equation*}
(\forall x, y, z \in X)(x *(y * z) \in S, x * y \in S \Rightarrow x * z \in S) ; \tag{1.14}
\end{equation*}
$$

(v) a comparative dBCC-filter (CBCCF) of X if it satisfies the condition (1.12) and the following condition:

$$
\begin{equation*}
(\forall x, y, z \in X)(x *((y * z) * y) \in S, x \in S \Rightarrow y \in S) \tag{1.15}
\end{equation*}
$$

(vi) a shift dBCC-filter of X if it satisfies the condition (1.12) and the following condition:

$$
\begin{equation*}
(\forall x, y, z \in X)(x *(y * z) \in S, x \in S \Rightarrow((z * y) * y) * z \in S) \tag{1.16}
\end{equation*}
$$

(vii) a $d B C C$-ideal of X if it satisfies the condition (1.12) and the following condition:

$$
\begin{equation*}
(\forall x, y, z \in X)(x *(y * z) \in S, y \in S \Rightarrow x * z \in S) ; \tag{1.17}
\end{equation*}
$$

(viii) a strong dBCC-ideal of X if it satisfies the condition (1.12) and the following condition:

$$
\begin{equation*}
(\forall x, y, z \in X)((z * y) *(z * x) \in S, y \in S \Rightarrow x \in S) \tag{1.18}
\end{equation*}
$$

2. External direct product dBCC-algebras

Lingcong and Endam [25] discussed the notion of the direct product of B-algebras, 0 -commutative B algebras, and B-homomorphisms and obtained related properties, one of which is a direct product of two B-algebras, which is also a B-algebra. Then, they extended the concept of the direct product of B-algebra to finite family B-algebra, and some of the related properties were investigated as follows.

Definition 2.1 ([25]). Let $\left(X_{i} ; *_{i}\right)$ be an algebra for each $i \in\{1,2, \ldots, k\}$. Define the direct product of algebras $X_{1}, X_{2}, \ldots, X_{k}$ to be the structure $\left(\prod_{i=1}^{k} X_{i} ; \otimes\right)$, where

$$
\prod_{i=1}^{k} X_{i}=X_{1} \times X_{2} \times \ldots \times X_{k}=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}\right) \mid x_{i} \in X_{i} \forall i=1,2, \ldots, k\right\}
$$

and whose operation \otimes is given by

$$
\left(x_{1}, x_{2}, \ldots, x_{k}\right) \otimes\left(y_{1}, y_{2}, \ldots, y_{k}\right)=\left(x_{1} *_{1} y_{1}, x_{2} *_{2} y_{2}, \ldots, x_{k} *_{k} y_{k}\right)
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{k}\right),\left(y_{1}, y_{2}, \ldots, y_{k}\right) \in \prod_{i=1}^{k} x_{i}$.
Now, we extend the concept of the direct product to infinite family of BCC-algebras and provide some of its properties.
Definition 2.2. Let X_{i} be a nonempty set for each $i \in I$. Define the external direct product of sets X_{i} for all $i \in I$ to be the set $\prod_{i \in I} X_{i}$, where

$$
\prod_{i \in I} X_{i}=\left\{f: I \rightarrow \bigcup_{i \in I} X_{i} \mid f(i) \in X_{i} \forall i \in I\right\} .
$$

For convenience, we define an element of $\prod_{i \in I} X_{i}$ with a function $\left(x_{i}\right)_{i \in I}: I \rightarrow \bigcup_{i \in I} X_{i}$, where $i \mapsto x_{i} \in X_{i}$ for all $i \in I$.

Remark 2.3. Let X_{i} be a nonempty set and S_{i} a subset of X_{i} for all $i \in I$. Then $\prod_{i \in I} S_{i}$ is a nonempty subset of the external direct product $\prod_{i \in I} X_{i}$ if and only if S_{i} is a nonempty subset of X_{i} for all $i \in I$.

Definition 2.4. Let $X_{i}=\left(X_{i} ; *_{i}\right)$ be an algebra for all $i \in I$. Define the binary operation \boxtimes on the external direct product $\prod_{i \in I} X_{i}=\left(\prod_{i \in I} X_{i} ; \boxtimes\right)$ as follows:

$$
\left(\forall\left(x_{i}\right)_{i \in I},\left(y_{i}\right)_{i \in I} \in \prod_{i \in I} x_{i}\right)\left(\left(x_{\mathfrak{i}}\right)_{\mathfrak{i} \in I} \boxtimes\left(y_{i}\right)_{i \in I}=\left(y_{i} *_{i} x_{i}\right)_{i \in I}\right) .
$$

We shall show that \boxtimes is a binary operation on $\prod_{i \in I} X_{i}$. Let $\left(x_{i}\right)_{i \in I}\left(y_{i}\right)_{i \in I} \in \prod_{i \in I} X_{i}$. Since $*_{i}$ is a binary operation on X_{i} for all $i \in I$, we have $y_{i} *_{i} x_{i} \in X_{i}$ for all $i \in I$. Then $\left(y_{i} *_{i} x_{i}\right)_{i \in I} \in \prod_{i \in I} X_{i}$ such that

$$
\left(x_{i}\right)_{i \in \mathrm{I}} \boxtimes\left(y_{i}\right)_{i \in \mathrm{I}}=\left(y_{i} *_{i} x_{i}\right)_{i \in \mathrm{I}} .
$$

Let $\left(x_{i}\right)_{i \in I}\left(y_{i}\right)_{i \in I},\left(x_{i}^{\prime}\right)_{i \in I}\left(y_{i}^{\prime}\right)_{i \in I} \in \prod_{i \in I} x_{i}$ be such that $\left(x_{i}\right)_{i \in I}=\left(y_{i}\right)_{i \in I}$ and $\left(x_{i}^{\prime}\right)_{i \in I}=\left(y_{i}^{\prime}\right)_{i \in I}$. We shall show that $\left(x_{i}\right)_{i \in I} \boxtimes\left(x_{i}^{\prime}\right)_{i \in I}=\left(y_{i}\right)_{i \in I} \boxtimes\left(y_{i}^{\prime}\right)_{i \in I}$. Then

$$
x_{i}=y_{i} \text { for all } i \in I \text { and } x_{i}^{\prime}=y_{i}^{\prime} \text { for all } i \in I .
$$

Since $*_{i}$ is a binary operation on X_{i} for all $i \in I$, we have $x_{i}^{\prime} *_{i} x_{i}=y_{i}^{\prime} *_{i} y_{i}$ for all $i \in I$. Thus

$$
\left(x_{i}\right)_{i \in I} \boxtimes\left(x_{i}^{\prime}\right)_{i \in I}=\left(x_{i}^{\prime} *_{i} x_{i}\right)_{i \in I}=\left(y_{i}^{\prime} *_{i} y_{i}\right)_{i \in I}=\left(y_{i}\right)_{i \in I} \boxtimes\left(y_{i}^{\prime}\right)_{i \in I} .
$$

Hence, \boxtimes is a binary operation on $\prod_{i \in I} X_{i}$.
Let $X_{i}=\left(X_{i} ; *_{i}, 0_{i}\right)$ be a BCC-algebra for all $i \in I$. For $i \in I$, let $x_{i} \in X_{i}$. We define the function $f_{x_{i}}: I \rightarrow \bigcup_{i \in I} X_{i}$ as follows:

$$
(\forall j \in I)\left(f_{x_{i}}(\mathfrak{j})=\left\{\begin{array}{ll}
x_{i}, & \text { if } \mathfrak{j}=\mathfrak{i}, \tag{2.1}\\
0_{\mathfrak{j}}, & \text { otherwise },
\end{array}\right) .\right.
$$

Then $f_{x_{i}} \in \prod_{i \in I} X_{i}$.
Lemma 2.5. Let $X_{i}=\left(X_{i} ; *_{i}, 0_{i}\right)$ be a BCC-algebra for all $i \in I$. For $i \in I$, let $x_{i}, y_{i} \in X_{i}$. Then $f_{x_{i}} \boxtimes f_{y_{i}}=$ $f_{y_{i} *_{i} x_{i}}$.

Proof. Now,

$$
(\forall j \in I)\left(\left(f_{x_{i}} \boxtimes f_{y_{i}}\right)(j)=\left\{\begin{array}{ll}
y_{i} *_{i} x_{i}, & \text { if } \mathfrak{j}=i, \\
0_{j} *_{j} 0_{j}, & \text { otherwise },
\end{array}\right) .\right.
$$

By (1.1), we have

$$
(\forall j \in I)\left(\left(f_{x_{i}} \boxtimes f_{y_{i}}\right)(j)=\left\{\begin{array}{ll}
y_{i} *_{i} x_{i}, & i f j=i, \\
0_{j}, & \text { otherwise },
\end{array}\right) .\right.
$$

By (2.1), we have $f_{x_{i}} \boxtimes f_{y_{i}}=f_{y_{i}{ }^{*} x_{i}}$.
The following theorem shows that the direct product of BCC-algebras in term of infinite family of $B C C$-algebras is also.

Theorem 2.6. $X_{i}=\left(X_{i} ; *_{i}, 0_{i}\right)$ is a BCC-algebra for all $i \in I$ if and only if $\prod_{i \in I} X_{i}=\left(\prod_{i \in I} X_{i} ; \boxtimes,\left(0_{i}\right)_{i \in I}\right)$ is a $d B C C$-algebra, where the binary operation \boxtimes is defined in Definition 2.4.

Proof. Assume that $X_{i}=\left(X_{i} ; *_{i}, 0_{i}\right)$ is a BCC-algebra for all $i \in I$.
(i) Let $\left(x_{i}\right)_{i \in I}\left(y_{i}\right)_{i \in I}\left(z_{i}\right)_{i \in I} \in \prod_{i \in I} X_{i}$. Since X_{i} satisfies (UP-1), we have $\left(y_{i} *_{i} z_{i}\right) *_{i}\left(\left(x_{i} *_{i} y_{i}\right) *_{i}\left(x_{i} *_{i}\right.\right.$ $\left.\left.z_{i}\right)\right)=0_{i}$ for all $\mathfrak{i} \in I$. Thus

$$
\begin{aligned}
&\left.\left(\left(\left(z_{i}\right)_{i \in I} \boxtimes\left(x_{i}\right)_{i \in I}\right) \boxtimes\left(\left(y_{i}\right)_{i \in I} \boxtimes\left(x_{i}\right)_{i \in I}\right)\right)\right) \boxtimes\left(\left(z_{i}\right)_{i \in I} \boxtimes\left(y_{i}\right)_{i \in I}\right) \\
&=\left(\left(x_{i} *_{i} z_{i}\right)_{i \in I} \boxtimes\left(x_{i} *_{i} y_{i}\right)_{i \in I}\right) \boxtimes\left(y_{i} *_{i} z_{i}\right)_{i \in I} \\
&=\left(\left(x_{i} *_{i} y_{i}\right) *_{i}\left(x_{i} *_{i} z_{i}\right)\right)_{i \in I} \boxtimes\left(y_{i} *_{i} z_{i}\right)_{i \in I} \\
&=\left(\left(y_{i} *_{i} z_{i}\right) *_{i}\left(\left(x_{i} *_{i} y_{i}\right) *_{i}\left(x_{i} *_{i} z_{i}\right)\right)\right)_{i \in I}=\left(0_{i}\right)_{i \in I} .
\end{aligned}
$$

(ii) Let $\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} X_{i}$. Since X_{i} satisfies (UP-2), we have $0_{i} *_{i} x_{i}=x_{i}$ for all $i \in I$. Thus

$$
\left(x_{i}\right)_{i \in I} \boxtimes\left(0_{i}\right)_{i \in I}=\left(0_{i} *_{i} x_{i}\right)_{i \in I}=\left(x_{i}\right)_{i \in I} .
$$

(iii) Let $\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} X_{i}$. Since X_{i} satisfies (UP-3), we have $x_{i} *_{i} 0_{i}=0_{i}$ for all $i \in I$. Thus

$$
\left(0_{i}\right)_{i \in I} \boxtimes\left(x_{i}\right)_{i \in I}=\left(x_{i} *_{i} 0_{i}\right)_{i \in I}=\left(0_{i}\right)_{i \in I} .
$$

UP-4: Let $\left(x_{i}\right)_{i \in I}\left(y_{i}\right)_{i \in I} \in \prod_{i \in I} x_{i}$ be such that $\left(x_{i}\right)_{i \in I} \boxtimes\left(y_{i}\right)_{i \in I}=\left(0_{i}\right)_{i \in I}$ and $\left(y_{i}\right)_{i \in I} \boxtimes\left(x_{i}\right)_{i \in I}=$ $\left(0_{i}\right)_{i \in I}$. Then $\left(y_{i} *_{i} x_{i}\right)_{i \in I}=\left(0_{i}\right)_{i \in I}$ and $\left(x_{i} *_{i} y_{i}\right)_{i \in I}=\left(0_{i}\right)_{i \in I}$, so $y_{i} *_{i} x_{i}=0_{i}$ and $x_{i} *_{i} y_{i}=0_{i}$ for all $i \in I$. Since X_{i} satisfies (UP-4), we have $x_{i}=y_{i}$ for all $i \in I$. Therefore, $\left(x_{i}\right)_{i \in I}=\left(y_{i}\right)_{i \in I}$.

Hence, $\prod_{i \in I} X_{i}=\left(\prod_{i \in I} X_{i} ; \boxtimes,\left(0_{i}\right)_{i \in I}\right)$ is a dBCC-algebra.
Conversely, assume that $\prod_{i \in I} X_{i}=\left(\prod_{i \in I} X_{i} ; \boxtimes,\left(0_{i}\right)_{i \in I}\right)$ is a dBCC-algebra, where the binary operation \boxtimes is defined in Definition 2.4. Let $i \in I$.
UP-1: Let $x_{i}, y_{i}, z_{i} \in X_{i}$. Then $f_{x_{i}}, f_{y_{i}}, f_{z_{i}} \in \prod_{i \in I} X_{i}$, which are defined by (2.1). Since $\prod_{i \in I} X_{i}$ satisfies (i), we have $\left(\left(f_{z_{i}} \boxtimes f_{x_{i}}\right) \boxtimes\left(f_{y_{i}} \boxtimes f_{x_{i}}\right)\right) \boxtimes\left(f_{z_{i}} \boxtimes f_{y_{i}}\right)=\left(0_{i}\right)_{i \in I}$. Now,
$(\forall j \in I)\left(\left(\left(f_{z_{i}} \boxtimes f_{x_{i}}\right) \boxtimes\left(f_{y_{i}} \boxtimes f_{x_{i}}\right)\right) \boxtimes\left(f_{z_{i}} \boxtimes f_{y_{i}}\right)\right)(j)=\left\{\begin{array}{ll}\left(y_{i} *_{i} z_{i}\right) *_{i}\left(\left(x_{i} *_{i} y_{i}\right) *_{i}\left(x_{i} *_{i} z_{i}\right)\right), & \text { if } \mathfrak{j}=\boldsymbol{i}, \\ \left(0_{j} *_{j} 0_{j}\right) *_{j}\left(\left(0_{j} *_{j} 0_{j}\right) *_{j}\left(0_{j} *_{j} 0_{j}\right)\right), & \text { otherwise },\end{array}\right)$,
this implies that $\left(y_{i} *_{i} z_{i}\right) *_{i}\left(\left(x_{i} *_{i} y_{i}\right) *_{i}\left(x_{i} *_{i} z_{i}\right)\right)=0_{i}$.
UP-2: Let $x_{i} \in X_{i}$. Then $f_{x_{i}} \in \prod_{i \in I} X_{i}$, which is defined by (2.1). Since $\prod_{i \in I} X_{i}$ satisfies (ii), we have $f_{x_{i}} \boxtimes\left(0_{i}\right)_{i \in I}=f_{x_{i}}$. Now,

$$
(\forall j \in I)\left(\left(f_{x_{i}} \boxtimes\left(0_{i}\right)_{i \in I}\right)(j)=\left\{\begin{array}{ll}
0_{i} *_{i} x_{i}, & \text { if } j=i, \\
0_{j} *_{j} 0_{j}, & \text { otherwise },
\end{array}\right),\right.
$$

this implies that $0_{i} *_{i} x_{i}=x_{i}$.
UP-3: Let $x_{i} \in X_{i}$. Then $f_{x_{i}} \in \prod_{i \in I} X_{i}$, which is defined by (2.1). Since $\prod_{i \in I} X_{i}$ satisfies ((iii)), we have $\left(0_{i}\right)_{i \in I} \boxtimes f_{x_{i}}=\left(0_{i}\right)_{i \in I}$. Now,

$$
(\forall j \in I)\left(\left(\left(0_{i}\right)_{i \in I} \boxtimes f_{x_{i}}\right)(j)=\left\{\begin{array}{ll}
x_{i} *_{i} 0_{i}, & \text { if } j=i, \\
0_{j} *_{j} 0_{j}, & \text { otherwise },
\end{array}\right),\right.
$$

this implies that $x_{i} *_{i} 0_{i}=0_{i}$.
UP-4: Let $x_{i}, y_{i} \in X_{i}$ be such that $x_{i} *_{i} y_{i}=0_{i}$ and $y_{i} *_{i} x_{i}=0_{i}$ for all $i \in I$. Then $f_{x_{i}}, f_{y_{i}} \in \prod_{i \in I} X_{i}$, which are defined by (2.1). Now,

$$
(\forall j \in I)\left(\left(f_{x_{i}} \boxtimes f_{y_{i}}\right)(j)=\left\{\begin{array}{ll}
y_{i} *_{i} x_{i}, & \text { if } j=i, \\
0_{j} *_{j} 0_{j}, & \text { otherwise }
\end{array}\right),\right.
$$

and

$$
(\forall j \in I)\left(\left(f_{y_{i}} \boxtimes f_{x_{i}}\right)(j)=\left\{\begin{array}{ll}
x_{i} *_{i} y_{i}, & i f j=i, \\
0_{j} *_{j} 0_{j}, & \text { otherwise },
\end{array}\right) .\right.
$$

By assumption and (1.1), we have
$(\forall j \in I)\left(\left(f_{x_{i}} \boxtimes f_{y_{i}}\right)(j)=\left\{\begin{array}{ll}0_{i}, & \text { if } j=i, \\ 0_{j}, & \text { otherwise },\end{array}\right) \quad\right.$ and $\quad(\forall j \in I)\left(\left(f_{y_{i}} \boxtimes f_{x_{i}}\right)(j)=\left\{\begin{array}{ll}0_{i}, & \text { if } j=i, \\ 0_{j}, & \text { otherwise, }\end{array}\right)\right.$.
Thus $f_{x_{i}} \boxtimes f_{y_{i}}=\left(0_{i}\right)_{i \in I}$ and $f_{y_{i}} \boxtimes f_{x_{i}}=\left(0_{i}\right)_{i \in I}$. Since $\prod_{i \in I} X_{i}$ satisfies (UP-4), we have $f_{x_{i}}=f_{y_{i}}$. Therefore, $x_{i}=y_{i}$.

Hence, $X_{i}=\left(X_{i} ; *_{i}, 0_{i}\right)$ is a BCC-algebra for all $i \in I$.
We call the dBCC-algebra $\prod_{i \in I} X_{i}=\left(\prod_{i \in I} X_{i} ; \boxtimes,\left(0_{i}\right)_{i \in I}\right)$ in Theorem 2.6 the external direct product dBCC-algebra induced by a BCC-algebra $X_{i}=\left(X_{i} ; *_{i}, 0_{i}\right)$ for all $i \in I$.

Theorem 2.7. Let $X_{i}=\left(X_{i} ; *_{i}, O_{i}\right)$ be a $B C C$-algebra for all $i \in I$. Then X_{i} is a bounded $B C C$-algebra for all $i \in I$ if and only if $\prod_{i \in I} X_{i}=\left(\prod_{i \in I} X_{i} ;\left(0_{i}\right)_{i \in I}\right)$ is a bounded BCC-algebra, where the binary operation \boxtimes is defined in Definition 2.4.

Proof. By Theorem 2.6, we have $X_{i}=\left(X_{i} ; *_{i}, 0_{i}\right)$ is a BCC-algebra for all $i \in I$ if and only if $\prod_{i \in I} X_{i}=$ $\left(\prod_{i \in I} X_{i} ; \boxtimes,\left(0_{i}\right)_{i \in I}\right)$ is a dBCC-algebra, where the binary operation \boxtimes is defined in Definition 2.4. We are left to prove that X_{i} is bounded for all $i \in I$ if and only if $\prod_{i \in I} X_{i}$ is bounded.

Assume that X_{i} is bounded for all $i \in I$. Then there exists $1_{i} \in X_{i}$ be such that $1_{i} \leqslant x_{i}$ for all $x_{i} \in X_{i}$. That is, $1_{i} *_{i} x_{i}=0_{i}$ for all $i \in I$. Now, $\left(1_{i}\right)_{i \in I} \in \prod_{i \in I} X_{i}$. Let $\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} X_{i}$. Thus

$$
\left(x_{i}\right)_{i \in I} \boxtimes\left(1_{i}\right)_{i \in I}=\left(1_{i} *_{i} x_{i}\right)_{i \in I}=\left(0_{i}\right)_{i \in I} .
$$

That is, $\left(x_{i}\right)_{i \in I} \leqslant\left(1_{i}\right)_{i \in I}$. Hence, $\prod_{i \in I} X_{i}$ is bounded.
Conversely, assume that $\prod_{i \in I} x_{i}$ is bounded. Then there exists $\left(1_{i}\right)_{i \in I} \in \prod_{i \in I} x_{i}$ such that $\left(x_{i}\right)_{i \in I} \leqslant$ $\left(1_{i}\right)_{i \in I}$ for all $\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} X_{i}$. That is, $\left(x_{i}\right)_{i \in I} \boxtimes\left(1_{i}\right)_{i \in I}=\left(0_{i}\right)_{i \in I}$ for all $\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} X_{i}$. Let $i \in I$. Now, $1_{i} \in X_{i}$. Let $x_{i} \in X_{i}$. Then $f_{x_{i}} \in \prod_{i \in I} X_{i}$, which is defined by (2.1). Since $\prod_{i \in I} X_{i}$ is bounded, we have $f_{x_{i}} \boxtimes\left(1_{i}\right)_{i \in I}=\left(0_{i}\right)_{i \in I}$. Now,

$$
(\forall j \in I)\left(\left(f_{x_{i}} \boxtimes\left(1_{i}\right)_{i \in I}\right)(\mathfrak{j})=\left\{\begin{array}{ll}
1_{i} *_{i} x_{i}, & \text { if } \mathfrak{j}=\mathfrak{i}, \\
0_{j} *_{j} 0_{j}, & \text { otherwise },
\end{array}\right),\right.
$$

this implies that $1_{i} *_{i} x_{i}=0_{i}$. That is, $1_{i} \leqslant x_{i}$. Hence, X_{i} is bounded for all $i \in I$.
Theorem 2.8. Let $X_{i}=\left(X_{i} ; *_{i}, 0_{i}\right)$ be a BCC-algebra for all $i \in I$. Then X_{i} is a meet-commutative BCC-algebra for all $i \in I$ if and only if $\prod_{i \in I} X_{i}=\left(\prod_{i \in I} X_{i} ; \boxtimes,\left(0_{i}\right)_{i \in I}\right)$ is a join-commutative BCC-algebra, where the binary operation \boxtimes is defined in Definition 2.4.

Proof. By Theorem 2.6, we have $X_{i}=\left(X_{i} ; *_{i}, 0_{i}\right)$ is a BCC-algebra for all $i \in I$ if and only if $\prod_{i \in I} X_{i}=$ $\left(\prod_{i \in I} X_{i} ; \boxtimes,\left(0_{i}\right)_{i \in I}\right)$ is a dBCC-algebra, where the binary operation \boxtimes is defined in Definition 2.4. We are left to prove that X_{i} is meet-commutative for all $i \in I$ if and only if $\prod_{i \in I} X_{i}$ is join-commutative.

Assume that X_{i} is meet-commutative for all $i \in I$. Let $\left(x_{i}\right)_{i \in I},\left(y_{i}\right)_{i \in I} \in \prod_{i \in I} X_{i}$. Since X_{i} is meetcommutative, we have $x_{i} \wedge y_{i}=y_{i} \wedge x_{i}$ for all $i \in I$. That is, $\left(y_{i} *_{i} x_{i}\right) *_{i} x_{i}=\left(x_{i} *_{i} y_{i}\right) *_{i} y_{i}$ for all $i \in I$. Thus

$$
\begin{aligned}
\left(x_{i}\right)_{i \in I} \vee\left(y_{i}\right)_{i \in I} & =\left(x_{i}\right)_{i \in I} \boxtimes\left(\left(x_{i}\right)_{i \in I} \boxtimes\left(y_{i}\right)_{i \in I}\right) \\
& =\left(x_{i}\right)_{i \in I} \boxtimes\left(y_{i} *_{i} x_{i}\right)_{i \in I} \\
& =\left(\left(y_{i} *_{i} x_{i}\right) *_{i} x_{i}\right)_{i \in I}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\left(x_{i} *_{i} y_{i}\right) *_{i} y_{i}\right)_{i \in I} \\
& =\left(y_{i}\right)_{i \in I} \boxtimes\left(x_{i} *_{i} y_{i}\right)_{i \in I} \\
& =\left(y_{i}\right)_{i \in I} \boxtimes\left(\left(y_{i}\right)_{i \in I} \boxtimes\left(x_{i}\right)_{i \in I}\right) \\
& =\left(y_{i}\right)_{i \in I} \vee\left(x_{i}\right)_{i \in I} .
\end{aligned}
$$

Hence, $\prod_{i \in I} X_{i}$ is join-commutative.
Conversely, assume that $\prod_{i \in I} X_{i}$ is join-commutative. Let $i \in I$. Let $x_{i}, y_{i} \in X_{i}$. Then $f_{x_{i}}, f_{y_{i}} \in$ $\prod_{i \in I} X_{i}$, which are defined by (2.1). Since $\prod_{i \in I} X_{i}$ is join-commutative, we have $f_{x_{i}} \vee f_{y_{i}}=f_{y_{i}} \vee f_{x_{i}}$. That is, $f_{x_{i}} \boxtimes\left(f_{x_{i}} \boxtimes f_{y_{i}}\right)=f_{y_{i}} \boxtimes\left(f_{y_{i}} \boxtimes f_{x_{i}}\right)$. By Lemma 2.5, we have $f_{\left(y_{i} *_{i} x_{i}\right) *_{i} x_{i}}=f_{\left(x_{i} *_{i} y_{i}\right) *_{i} y_{i}}$. By (2.1), we have $\left(y_{i} *_{i} x_{i}\right) *_{i} x_{i}=\left(x_{i} *_{i} y_{i}\right) *_{i} y_{i}$. That is, $x_{i} \wedge y_{i}=y_{i} \wedge x_{i}$. Hence, X_{i} is meet-commutative for all $i \in I$.

Next, we introduce the concept of the weak direct product of infinite family of dBCC-algebras and obtain some of its properties as follows.
Definition 2.9. Let $X_{i}=\left(X_{i} ; *_{i}, O_{i}\right)$ be a BCC-algebra for all $i \in I$. Define the weak direct product dBCCalgebra induced by X_{i} for all $i \in I$ to be the structure $\prod_{i \in I}^{w} X_{i}=\left(\prod_{i \in I}^{w} X_{i} ; \boxtimes\right)$, where

$$
\prod_{i \in I}^{w} x_{i}=\left\{\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} x_{i} \mid x_{i} \neq 0_{i} \text {, where the number of such } i \text { is finite }\right\}
$$

Then $\left(0_{i}\right)_{i \in I} \in \prod_{i \in I}^{w} X_{i} \subseteq \prod_{i \in I} X_{i}$.
Theorem 2.10. Let $X_{i}=\left(X_{i} ; *_{i}, O_{i}\right)$ be a BCC-algebra for all $i \in I$. Then $\prod_{i \in I}^{W} X_{i}$ is a dBCC-subalgebra of the external direct product dBCC-algebra $\prod_{i \in \mathrm{I}} X_{i}=\left(\prod_{i \in \mathrm{I}} \mathrm{X}_{\mathrm{i}} ; \boxtimes,\left(0_{i}\right)_{i \in \mathrm{I}}\right)$.
Proof. We see that $\left(0_{i}\right)_{i \in I} \in \prod_{i \in I}^{w} X_{i} \neq \emptyset$. Let $\left(x_{i}\right)_{i \in I},\left(y_{i}\right)_{i \in I} \in \prod_{i \in I}^{w} X_{i}$, where $I_{1}=\left\{i \in I \mid x_{i} \neq 0_{i}\right\}$ and $\mathrm{I}_{2}=\left\{i \in \mathrm{I} \mid \mathrm{y}_{\mathrm{i}} \neq 0_{i}\right\}$ are finite. Then $\left|\mathrm{I}_{1} \cup \mathrm{I}_{2}\right|$ is finite. Thus

$$
(\forall j \in I)\left(\left(\left(x_{i}\right)_{i \in I} \boxtimes\left(y_{i}\right)_{i \in I}\right)(\mathfrak{j})=\left\{\begin{array}{ll}
0_{j} *_{j} x_{j}, & \text { if } j \in I_{1}-I_{2}, \\
y_{j} *_{j} x_{j}, & \text { if } j \in I_{1} \cap I_{2}, \\
y_{j} *_{j} 0_{j}, & \text { if } j \in I_{2}-I_{1}, \\
0_{j} *_{j} 0_{j}, & \text { otherwise, }
\end{array}\right) .\right.
$$

By (UP-2) and (UP-3), we have

$$
(\forall j \in I)\left(\left(\left(x_{i}\right)_{i \in I} \boxtimes\left(y_{i}\right)_{i \in I}\right)(\mathfrak{j})=\left\{\begin{array}{ll}
x_{j}, & \text { if } \mathfrak{j} \in I_{1}-I_{2}, \\
y_{j} *_{j} x_{j}, & \text { if } \mathfrak{j} \in I_{1} \cap I_{2}, \\
0_{j}, & \text { if } j \in I_{2}-I_{1}, \\
0_{j}, & \text { otherwise, }
\end{array}\right) .\right.
$$

This implies that the number of such $\left(\left(x_{i}\right)_{i \in I} \boxtimes\left(y_{i}\right)_{i \in I}\right)(j)$ is not more than $\left|I_{1}\right|$, that is, it is finite. Thus $\left(x_{i}\right)_{i \in I} \boxtimes\left(y_{i}\right)_{i \in I} \in \prod_{i \in I}^{w} X_{i}$. Hence, $\prod_{i \in I}^{W} X_{i}$ is a dBCC-subalgebra of $\prod_{i \in I} X_{i}$.

Theorem 2.11. Let $X_{i}=\left(X_{i} ; *_{i}, 0_{i}\right)$ be a BCC-algebra and S_{i} a subset of X_{i} for all $i \in I$. Then S_{i} is a BCCsubalgebra of X_{i} for all $i \in I$ if and only if $\prod_{i \in I} S_{i}$ is a dBCC-subalgebra of the external direct product $d B C C$-algebra $\prod_{i \in I} X_{i}=\left(\prod_{i \in I} X_{i} ; \boxtimes,\left(0_{i}\right)_{i \in I}\right)$.
Proof. Assume that S_{i} is a BCC-subalgebra of X_{i} for all $i \in I$. Since S_{i} is a nonempty subset of X_{i} for all $i \in I$ and by Remark 2.3, we have $\prod_{i \in I} S_{i}$ is a nonempty subset of $\prod_{i \in I} X_{i}$. Let $\left(x_{i}\right)_{i \in I},\left(y_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Then $x_{i}, y_{i} \in S_{i}$ for all $i \in I$. By (1.2), we have $x_{i} *_{i} y_{i} \in S_{i}$ for all $i \in I$, so $\left(y_{i}\right)_{i \in I} \boxtimes\left(x_{i}\right)_{i \in I}=\left(x_{i} *_{i} y_{i}\right)_{i \in I} \in$ $\prod_{i \in I} S_{i}$. Hence, $\prod_{i \in I} S_{i}$ is a dBCC-subalgebra of $\prod_{i \in I} X_{i}$.

Conversely, assume that $\prod_{i \in I} S_{i}$ is a dBCC-subalgebra of $\prod_{i \in I} X_{i}$. Since $\prod_{i \in I} S_{i}$ is a nonempty subset of $\prod_{i \in I} X_{i}$ and by Remark 2.3, we have S_{i} is a nonempty subset of X_{i} for all $i \in I$. Let $i \in I$ and let $x_{i}, y_{i} \in S_{i}$. Then $f_{x_{i}}, f_{y_{i}} \in \prod_{i \in I} S_{i}$, which are defined by (2.1). By (1.2) and Lemma 2.5, we have $f_{x_{i} *_{i} y_{i}}=f_{y_{i}} \boxtimes f_{x_{i}} \in \prod_{i \in I} S_{i}$. By (2.1), we have $x_{i} *_{i} y_{i} \in S_{i}$. Hence, S_{i} is a BCC-subalgebra of X_{i} for all $i \in \mathrm{I}$.

Theorem 2.12. Let $X_{i}=\left(X_{i} ; *_{i}, 0_{i}\right)$ be a BCC-algebra and S_{i} a subset of X_{i} for all $i \in I$. Then S_{i} is a near $B C C$-filter of X_{i} for all $i \in I$ if and only if $\prod_{i \in I} S_{i}$ is a near dBCC-filter of the external direct product dBCC-algebra $\prod_{i \in I} X_{i}=\left(\prod_{i \in I} X_{i} ; \boxtimes,\left(0_{i}\right)_{i \in I}\right)$.
Proof. Assume that S_{i} is a near BCC-filter of X_{i} for all $i \in I$. Since S_{i} is a nonempty subset of X_{i} for all $i \in I$ and by Remark 2.3, we have $\prod_{i \in I} S_{i}$ is a nonempty subset of $\prod_{i \in I} X_{i}$. Let $\left(x_{i}\right)_{i \in I},\left(y_{i}\right)_{i \in I} \in \prod_{i \in I} X_{i}$ be such that $\left(y_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Thus $y_{i} \in S_{i}$ for all $i \in I$, it follows from (1.3) that $x_{i} *_{i} y_{i} \in S_{i}$ for all $i \in I$. Thus $\left(y_{i}\right)_{i \in I} \boxtimes\left(x_{i}\right)_{i \in I}=\left(x_{i} *_{i} y_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Hence, $\prod_{i \in I} S_{i}$ is a near dBCC-filter of $\prod_{i \in I} X_{i}$.

Conversely, assume that $\prod_{i \in I} S_{i}$ is a near dBCC-filter of $\prod_{i \in I} X_{i}$. Since $\prod_{i \in I} S_{i}$ is a nonempty subset of $\prod_{i \in I} X_{i}$ and by Remark 2.3, we have S_{i} is a nonempty subset of X_{i} for all $i \in I$. Let $i \in I$ and let $x_{i}, y_{i} \in X_{i}$ be such that $y_{i} \in S_{i}$. Then $f_{x_{i}}, f_{y_{i}} \in \prod_{i \in I} X_{i}$ and $f_{y_{i}} \in \prod_{i \in I} S_{i}$, which are defined by (2.1). By (1.11) and by Lemma 2.5, we have $f_{x_{i} *_{i} y_{i}}=f_{y_{i}} \boxtimes f_{x_{i}} \in \prod_{i \in I} S_{i}$. By (2.1), we have $x_{i} *_{i} y_{i} \in S_{i}$. Hence, S_{i} is a near BCC-filter of X_{i} for all $i \in I$.

Theorem 2.13. Let $X_{i}=\left(X_{i} ; *_{i}, O_{i}\right)$ be a BCC-algebra and S_{i} a subset of X_{i} for all $i \in I$. Then S_{i} is a BCCfilter of X_{i} for all $i \in I$ if and only if $\prod_{i \in I} S_{i}$ is a dBCC-filter of the external direct product dBCC-algebra $\prod_{i \in I} X_{i}=\left(\prod_{i \in I} X_{i} ; \boxtimes,\left(0_{i}\right)_{i \in I}\right)$.

Proof. Assume that S_{i} is a BCC-filter of X_{i} for all $i \in I$. Then $0_{i} \in S_{i}$ for all $i \in I$, so $\left(0_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i} \neq \emptyset$. Let $\left(x_{i}\right)_{i \in I},\left(y_{i}\right)_{i \in I} \in \prod_{i \in I} x_{i}$ be such that $\left(y_{i}\right)_{i \in I} \boxtimes\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$ and $\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Then $\left(x_{i} *_{i} y_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Thus $x_{i} *_{i} y_{i} \in S_{i}$ and $x_{i} \in S_{i}$, it follows from (1.5) that $y_{i} \in S_{i}$ for all $i \in I$. Thus $\left(y_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Hence, $\prod_{i \in I} S_{i}$ is a dBCC-filter of $\prod_{i \in I} X_{i}$.

Conversely, assume that $\prod_{i \in I} S_{i}$ is a dBCC-filter of $\prod_{i \in I} x_{i}$. Then $\left(0_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$, so $0_{i} \in S_{i} \neq \emptyset$ for all $i \in I$. Let $i \in I$ and let $x_{i}, y_{i} \in X_{i}$ be such that $x_{i} *_{i} y_{i} \in S_{i}$ and $x_{i} \in S_{i}$. Then $f_{x_{i}}, f_{y_{i}} \in \prod_{i \in I} X_{i}$ and $f_{x_{i} *_{i} y_{i}} \in \prod_{i \in I} S_{i}$ and $f_{x_{i}} \in \prod_{i \in I} S_{i}$, which are defined by (2.1). By Lemma 2.5, we have $f_{y_{i}} \boxtimes f_{x_{i}}=$ $f_{x_{i} *_{i} y_{i}} \in \prod_{i \in I} S_{i}$. By (1.13), we have $f_{y_{i}} \in \prod_{i \in I} S_{i}$. By (2.1), we have $y_{i} \in S_{i}$. Hence, S_{i} is a BCC-filter of X_{i} for all $i \in I$.

Theorem 2.14. Let $X_{i}=\left(X_{i} ; *_{i}, 0_{i}\right)$ be a BCC-algebra and S_{i} a subset of X_{i} for all $i \in I$. Then S_{i} is an implicative $B C C$-filter of X_{i} for all $i \in I$ if and only if $\prod_{i \in I} S_{i}$ is an implicative dBCC-filter of the external direct product dBCC-algebra $\prod_{i \in I} X_{i}=\left(\prod_{i \in I} X_{i} ; \boxtimes,\left(0_{i}\right)_{i \in I}\right)$.

Proof. Assume that S_{i} is an implicative BCC-filter of X_{i} for all $i \in I$. Then $0_{i} \in S_{i}$ for all $i \in I$, so $\left(0_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i} \neq \emptyset$. Let $\left(x_{i}\right)_{i \in I},\left(y_{i}\right)_{i \in I},\left(z_{i}\right)_{i \in I} \in \prod_{i \in I} X_{i}$ be such that $\left(\left(z_{i}\right)_{i \in I} \boxtimes\left(y_{i}\right)_{i \in I}\right) \boxtimes\left(x_{i}\right)_{i \in I} \in$ $\prod_{i \in I} S_{i}$ and $\left(y_{i}\right)_{i \in I} \boxtimes\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Then $\left(x_{i} *_{i}\left(y_{i} *_{i} z_{i}\right)\right)_{i \in I} \in \prod_{i \in I} S_{i}$ and $\left(x_{i} *_{i} y_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Thus $x_{i} *_{i}\left(y_{i} *_{i} z_{i}\right) \in S_{i}$ and $x_{i} *_{i} y_{i} \in S_{i}$, it follows from (1.6) that $x_{i} *_{i} z_{i} \in S_{i}$ for all $i \in I$. Thus $\left(z_{i}\right)_{i \in I} \boxtimes\left(x_{i}\right)_{i \in I}=\left(x_{i} *_{i} z_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Hence, $\prod_{i \in I} S_{i}$ is an implicative dBCC-filter of $\prod_{i \in I} X_{i}$.

Conversely, assume that $\prod_{i \in I} S_{i}$ is an implicative dBCC-filter of $\prod_{i \in I} X_{i}$. Then $\left(0_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$, so $0_{i} \in S_{i} \neq \emptyset$ for all $i \in I$. Let $i \in I$ and let $x_{i}, y_{i}, z_{i} \in X_{i}$ be such that $x_{i} *_{i}\left(y_{i} *_{i} z_{i}\right) \in S_{i}$ and $x_{i} *_{i} y_{i} \in S_{i}$. Then $f_{x_{i}}, f_{y_{i}}, f_{z_{i}} \in \prod_{i \in I} X_{i}$ and $f_{x_{i} *_{i}\left(y_{i} *_{i} z_{i}\right)} \in \prod_{i \in I} S_{i}$ and $f_{x_{i} *_{i} y_{i}} \in \prod_{i \in I} S_{i}$, which are defined by (2.1). By Lemma 2.5, we have $\left(f_{z_{i}} \boxtimes f_{y_{i}}\right) \boxtimes f_{x_{i}}=f_{x_{i} *_{i}\left(y_{i} *_{i} z_{i}\right)} \in \prod_{i \in I} S_{i}$ and $f_{y_{i}} \boxtimes f_{x_{i}}=f_{x_{i} *_{i} y_{i}} \in \prod_{i \in I} S_{i}$. By (1.14) and Lemma 2.5, we have $f_{x_{i} *_{i} z_{i}}=f_{z_{i}} \boxtimes f_{x_{i}} \in \prod_{i \in I} S_{i}$. By (2.1), we have $x_{i} *_{i} z_{i} \in S_{i}$. Hence, S_{i} is an implicative BCC-filter of X_{i} for all $i \in I$.

Theorem 2.15. Let $X_{i}=\left(X_{i} ; *_{i}, O_{i}\right)$ be a BCC-algebra and S_{i} a subset of X_{i} for all $i \in I$. Then S_{i} is a comparative BCC-filter of X_{i} for all $i \in I$ if and only if $\prod_{i \in I} S_{i}$ is a comparative dBCC-filter of the external direct product dBCC-algebra $\prod_{i \in I} X_{i}=\left(\prod_{i \in I} X_{i} ; \boxtimes,\left(0_{i}\right)_{i \in I}\right)$.

Proof. Assume that S_{i} is a comparative BCC-filter of X_{i} for all $i \in I$. Then $0_{i} \in S_{i}$ for all $i \in I$, so $\left(0_{i}\right)_{i \in I} \in$ $\prod_{i \in I} S_{i} \neq \emptyset$. Let $\left(x_{i}\right)_{i \in I,}\left(y_{i}\right)_{i \in I},\left(z_{i}\right)_{i \in I} \in \prod_{i \in I} x_{i}$ be such that $\left(\left(y_{i}\right)_{i \in I} \boxtimes\left(\left(z_{i}\right)_{i \in I} \boxtimes\left(y_{i}\right)_{i \in I}\right)\right) \boxtimes\left(x_{i}\right)_{i \in I} \in$ $\prod_{i \in I} S_{i}$ and $\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Then $\left(x_{i} *_{i}\left(\left(y_{i} *_{i} z_{i}\right) *_{i} y_{i}\right)\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Thus $x_{i} *_{i}\left(\left(y_{i} *_{i} z_{i}\right) *_{i} y_{i}\right) \in S_{i}$ and $x_{i} \in S_{i}$, it follows from (1.7) that $y_{i} \in S_{i}$ for all $i \in I$. Thus $\left(y_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Hence, $\prod_{i \in I} S_{i}$ is a comparative dBCC-filter of $\prod_{i \in I} X_{i}$.

Conversely, assume that $\prod_{i \in I} S_{i}$ is a comparative dBCC-filter of $\prod_{i \in I} X_{i}$. Then $\left(0_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$, so $0_{i} \in S_{i} \neq \emptyset$ for all $i \in I$. Let $i \in I$ and let $x_{i}, y_{i}, z_{i} \in X_{i}$ be such that $x_{i} *_{i}\left(\left(y_{i} *_{i} z_{i}\right) *_{i} y_{i}\right) \in S_{i}$ and $x_{i} \in S_{i}$. Then $f_{x_{i}}, f_{y_{i}}, f_{z_{i}} \in \prod_{i \in I} X_{i}$ and $f_{x_{i} *_{i}\left(\left(y_{i} *_{i} z_{i}\right) *_{i} y_{i}\right)} \in \prod_{i \in I} S_{i}$ and $f_{x_{i}} \in \prod_{i \in I} S_{i}$, which are defined by (2.1). By Lemma 2.5, we have $\left(f_{y_{i}} \boxtimes\left(f_{z_{i}} \boxtimes f_{y_{i}}\right)\right) \boxtimes f_{x_{i}}=f_{x_{i} *_{i}\left(\left(y_{i} *_{i} z_{i}\right) *_{i} y_{i}\right)} \in \prod_{i \in I} S_{i}$. By (1.15), we have $f_{y_{i}} \in \prod_{i \in I} S_{i}$. By (2.1), we have $y_{i} \in S_{i}$. Hence, S_{i} is a comparative BCC-filter of X_{i} for all $i \in I$.
Theorem 2.16. Let $X_{i}=\left(X_{i} ; *_{i}, O_{i}\right)$ be a BCC-algebra and S_{i} a subset of X_{i} for all $i \in I$. Then S_{i} is a shift $B C C$-filter of X_{i} for all $i \in I$ if and only if $\prod_{i \in \mathrm{I}} \mathrm{S}_{\mathrm{i}}$ is a shift dBCC-filter of the external direct product $d B C C$-algebra $\prod_{i \in I} X_{i}=\left(\prod_{i \in I} X_{i} ; \boxtimes,\left(0_{i}\right)_{i \in I}\right)$.
Proof. Assume that S_{i} is a shift BCC-filter of X_{i} for all $i \in I$. Then $0_{i} \in S_{i}$ for all $i \in I$, so $\left(0_{i}\right)_{i \in I} \in$ $\prod_{i \in I} s_{i} \neq \emptyset$. Let $\left(x_{i}\right)_{i \in I}\left(y_{i}\right)_{i \in I},\left(z_{i}\right)_{i \in I} \in \prod_{i \in I} x_{i}$ be such that $\left(\left(z_{i}\right)_{i \in I} \boxtimes\left(y_{i}\right)_{i \in I}\right) \boxtimes\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} s_{i}$ and $\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Then $\left(x_{i} *_{i}\left(y_{i} *_{i} z_{i}\right)\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Thus $x_{i} *_{i}\left(y_{i} *_{i} z_{i}\right) \in S_{i}$ and $x_{i} \in S_{i}$, it follows from (1.8) that $\left(\left(z_{i} *_{i} y_{i}\right) *_{i} y_{i}\right) *_{i} z_{i} \in S_{i}$ for all $i \in I$. Thus $\left(z_{i}\right)_{i \in I} \boxtimes\left(\left(y_{i}\right)_{i \in I} \boxtimes\left(\left(y_{i}\right)_{i \in I} \boxtimes\left(z_{i}\right)_{i \in I}\right)\right)=$ $\left(\left(\left(z_{i} *_{i} y_{i}\right) *_{i} y_{i}\right) *_{i} z_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Hence, $\prod_{i \in I} S_{i}$ is a shift dBCC-filter of $\prod_{i \in I} X_{i}$.

Conversely, assume that $\prod_{i \in I} S_{i}$ is a shift dBCC-filter of $\prod_{i \in I} X_{i}$. Then $\left(0_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$, so $0_{i} \in$ $S_{i} \neq \emptyset$ for all $i \in I$. Let $i \in I$ and let $x_{i}, y_{i}, z_{i} \in X_{i}$ be such that $x_{i} *_{i}\left(y_{i} *_{i} z_{i}\right) \in S_{i}$ and $x_{i} \in S_{i}$. Then $f_{x_{i}}, f_{y_{i}}, f_{z_{i}} \in \prod_{i \in I} X_{i}$ and $f_{x_{i} *_{i}\left(y_{i} *_{i} z_{i}\right)} \in \prod_{i \in I} S_{i}$ and $f_{x_{i}} \in \prod_{i \in I} S_{i}$, which are defined by (2.1). By Lemma 2.5, we have $\left(f_{z_{i}} \boxtimes f_{y_{i}}\right) \boxtimes f_{x_{i}}=f_{x_{i} *_{i}\left(y_{i} *_{i} z_{i}\right)} \in \prod_{i \in I} S_{i}$. By (1.16) and Lemma 2.5, we have $f_{\left(\left(z_{i} *_{i} y_{i}\right) *_{i} y_{i}\right) *_{i} z_{i}}=f_{z_{i}} \boxtimes\left(f_{y_{i}} \boxtimes\left(f_{y_{i}} \boxtimes f_{z_{i}}\right)\right) \in \prod_{i \in I} S_{i}$. By (2.1), we have $\left(\left(z_{i} *_{i} y_{i}\right) *_{i} y_{i}\right) *_{i} z_{i} \in S_{i}$. Hence, S_{i} is a shift BCC-filter of X_{i} for all $i \in I$.

Theorem 2.17. Let $X_{i}=\left(X_{i} ; *_{i}, O_{i}\right)$ be a BCC-algebra and S_{i} a subset of X_{i} for all $i \in I$. Then S_{i} is a BCC-ideal of X_{i} for all $i \in I$ if and only if $\prod_{i \in I} S_{i}$ is a dBCC-ideal of the external direct product dBCC-algebra $\prod_{i \in I} X_{i}=$ $\left(\prod_{i \in I} X_{i} ; \boxtimes,\left(0_{i}\right)_{i \in I}\right)$.
Proof. Assume that S_{i} is a BCC-ideal of X_{i} for all $i \in I$. Then $0_{i} \in S_{i}$ for all $i \in I$, so $\left(0_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i} \neq \emptyset$. Let $\left(x_{i}\right)_{i \in I},\left(y_{i}\right)_{i \in I},\left(z_{i}\right)_{i \in I} \in \prod_{i \in I} X_{i}$ be such that $\left(\left(z_{i}\right)_{i \in I} \boxtimes\left(y_{i}\right)_{i \in I}\right) \boxtimes\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} s_{i}$ and $\left(y_{i}\right)_{i \in I} \in$ $\prod_{i \in I} S_{i}$. Then $\left(x_{i} *_{i}\left(y_{i} *_{i} z_{i}\right)\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Thus $x_{i} *_{i}\left(y_{i} *_{i} z_{i}\right) \in S_{i}$ and $y_{i} \in S_{i}$, it follows from (1.9) that $x_{i} *_{i} z_{i} \in S_{i}$ for all $i \in I$. Thus $\left(z_{i}\right)_{i \in I} \boxtimes\left(x_{i}\right)_{i \in I}=\left(x_{i} *_{i} z_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Hence, $\prod_{i \in I} S_{i}$ is a dBCC-ideal of $\prod_{i \in I} X_{i}$.

Conversely, assume that $\prod_{i \in I} S_{i}$ is a dBCC-ideal of $\prod_{i \in I} X_{i}$. Then $\left(0_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$, so $0_{i} \in S_{i} \neq \emptyset$ for all $i \in I$. Let $i \in I$ and let $x_{i}, y_{i}, z_{i} \in X_{i}$ be such that $x_{i} *_{i}\left(y_{i} *_{i} z_{i}\right) \in S_{i}$ and $y_{i} \in S_{i}$. Then $f_{x_{i}}, f_{y_{i}}, f_{z_{i}} \in$ $\prod_{i \in I} X_{i}$ and $f_{x_{i} *_{i}\left(y_{i} *_{i} z_{i}\right)} \in \prod_{i \in I} S_{i}$ and $f_{y_{i}} \in \prod_{i \in I} s_{i}$, which are defined by (2.1). By Lemma 2.5, we have $\left(f_{z_{i}} \boxtimes f_{y_{i}}\right) \boxtimes f_{x_{i}}=f_{x_{i} *_{i}\left(y_{i} *_{i} z_{i}\right)} \in \prod_{i \in I} S_{i}$. By (1.17) and Lemma 2.5, we have $f_{x_{i} *_{i} z_{i}}=f_{z_{i}} \boxtimes f_{x_{i}} \in \prod_{i \in I} S_{i}$. By (2.1), we have $x_{i} *_{i} z_{i} \in S_{i}$. Hence, S_{i} is a BCC-ideal of X_{i} for all $i \in I$.

Theorem 2.18. Let $X_{i}=\left(X_{i} ; *_{i}, 0_{i}\right)$ be a BCC-algebra and S_{i} a subset of X_{i} for all $i \in I$. Then S_{i} is a strong BCCideal of X_{i} for all $i \in I$ if and only if $\prod_{i \in I} S_{i}$ is a strong dBCC-ideal of the external direct product dBCC-algebra $\prod_{i \in I} X_{i}=\left(\prod_{i \in I} X_{i} ; \boxtimes,\left(0_{i}\right)_{i \in I}\right)$.
Proof. Assume that S_{i} is a strong BCC-ideal of X_{i} for all $i \in I$. Then $0_{i} \in S_{i}$ for all $i \in I$, so $\left(0_{i}\right)_{i \in I} \in$ $\prod_{i \in I} s_{i} \neq \emptyset$. Let $\left(x_{i}\right)_{i \in I},\left(y_{i}\right)_{i \in I},\left(z_{i}\right)_{i \in I} \in \prod_{i \in I} x_{i}$ be such that $\left(\left(x_{i}\right)_{i \in I} \boxtimes\left(z_{i}\right)_{i \in I}\right) \boxtimes\left(\left(y_{i}\right)_{i \in I} \boxtimes\left(z_{i}\right)_{i \in I}\right) \in$ $\prod_{i \in I} S_{i}$ and $\left(y_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Then $\left(\left(z_{i} *_{i} y_{i}\right) *_{i}\left(z_{i} *_{i} x_{i}\right)\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Thus $\left(z_{i} *_{i} y_{i}\right) *_{i}\left(z_{i} *_{i} x_{i}\right) \in S_{i}$ and $y_{i} \in S_{i}$, it follows from (1.10) that $x_{i} \in S_{i}$ for all $i \in I$. Thus $\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$. Hence, $\prod_{i \in I} S_{i}$ is a strong dBCC-ideal of $\prod_{i \in I} X_{i}$.

Conversely, assume that $\prod_{i \in I} S_{i}$ is a strong dBCC-ideal of $\prod_{i \in I} X_{i}$. Then $\left(0_{i}\right)_{i \in I} \in \prod_{i \in I} S_{i}$, so $0_{i} \in S_{i} \neq \emptyset$ for all $i \in I$. Let $i \in I$ and let $x_{i}, y_{i}, z_{i} \in X_{i}$ be such that $\left(z_{i} *_{i} y_{i}\right) *_{i}\left(z_{i} *_{i} x_{i}\right) \in S_{i}$ and
$y_{i} \in S_{i}$. Then $f_{x_{i}}, f_{y_{i}}, f_{z_{i}} \in \prod_{i \in I} x_{i}$ and $f_{\left(z_{i} *_{i} y_{i}\right) *_{i}\left(z_{i} *_{i} x_{i}\right)} \in \prod_{i \in I} s_{i}$ and $f_{y_{i}} \in \prod_{i \in I} s_{i}$, which are defined by (2.1). By Lemma 2.5, we have $\left(f_{x_{i}} \boxtimes f_{z_{i}}\right) \boxtimes\left(f_{y_{i}} \boxtimes f_{z_{i}}\right)=f_{\left(z_{i} *_{i} y_{i}\right) *_{i}\left(z_{i} *_{i} x_{i}\right)} \in \prod_{i \in I} S_{i}$. By (1.18), we have $f_{x_{i}} \in \prod_{i \in I} S_{i}$. By (2.1), we have $x_{i} \in S_{i}$. Hence, S_{i} is a strong BCC-ideal of X_{i} for all $i \in I$.

Moreover, we discuss several BCC-homomorphism theorems in view of the external direct product of dBCC-algebras.

Definition 2.19 ([6]). Let $X_{i}=\left(X_{i} ; *_{i}\right)$ and $S_{i}=\left(S_{i} ; \circ_{i}\right)$ be algebras and $\psi_{i}: X_{i} \rightarrow S_{i}$ be a function for all $i \in I$. Define the function $\psi: \prod_{i \in I} X_{i} \rightarrow \prod_{i \in I} S_{i}$ given by

$$
\left(\forall\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} x_{i}\right)\left(\psi\left(x_{i}\right)_{i \in I}=\left(\psi_{i}\left(x_{i}\right)\right)_{i \in I}\right) .
$$

Then $\psi: \prod_{i \in I} X_{i} \rightarrow \prod_{i \in I} S_{i}$ is a function (see [6]).
Theorem 2.20 ([6]). Let $X_{i}=\left(X_{i} ; *_{i}\right)$ and $S_{i}=\left(S_{i} ; \circ_{i}\right)$ be algebras and $\psi_{i}: X_{i} \rightarrow S_{i}$ be a function for all $i \in I$.
(i) ψ_{i} is injective for all $i \in I$ if and only if ψ is injective which is defined in Definition 2.19.
(ii) ψ_{i} is surjective for all $\mathrm{i} \in \mathrm{I}$ if and only if ψ is surjective.
(iii) ψ_{i} is bijective for all $\mathrm{i} \in \mathrm{I}$ if and only if ψ is bijective.

Theorem 2.21. Let $X_{i}=\left(X_{i} ; *_{i}, O_{i}\right)$ and $S_{i}=\left(S_{i} ; \circ_{i}, 1_{i}\right)$ be BCC-algebras and $\psi_{i}: X_{i} \rightarrow S_{i}$ be a function for all $i \in I$. Then
(i) ψ_{i} is a BCC-homomorphism for all $\mathrm{i} \in \mathrm{I}$ if and only if ψ is a dBCC-homomorphism which is defined in Definition 2.19;
(ii) ψ_{i} is a BCC-monomorphism for all $\mathrm{i} \in \mathrm{I}$ if and only if ψ is a dBCC-monomorphism;
(iii) ψ_{i} is a BCC-epimorphism for all $\mathrm{i} \in \mathrm{I}$ if and only if ψ is a dBCC-epimorphism;
(iv) ψ_{i} is a BCC-isomorphism for all $\mathrm{i} \in \mathrm{I}$ if and only if ψ is a dBCC-isomorphism;
(v) $\operatorname{ker} \psi=\prod_{i \in \mathrm{I}} \operatorname{ker} \psi_{\mathrm{i}}$ and $\psi\left(\prod_{i \in \mathrm{I}} X_{i}\right)=\prod_{i \in \mathrm{I}} \psi_{i}\left(X_{i}\right)$.

Proof.
(i) Assume that ψ_{i} is a BCC-homomorphism for all $i \in I$. Let $\left(x_{i}\right)_{i \in I}\left(x_{i}^{\prime}\right)_{i \in I} \in \prod_{i \in I} X_{i}$. Then

$$
\begin{aligned}
\psi\left(\left(x_{i}\right)_{i \in I} \boxtimes\left(x_{i}^{\prime}\right)_{i \in I}\right)=\psi\left(x_{i}^{\prime} *_{i} x_{i}\right)_{i \in I} & =\left(\psi_{i}\left(x_{i}^{\prime} *_{i} x_{i}\right)\right)_{i \in I} \\
& =\left(\psi_{i}\left(x_{i}^{\prime}\right) *_{i} \psi_{i}\left(x_{i}\right)\right)_{i \in I} \\
& =\left(\psi_{i}\left(x_{i}\right)\right)_{i \in I} \boxtimes\left(\psi_{i}\left(x_{i}^{\prime}\right)\right)_{i \in I}=\psi\left(x_{i}\right)_{i \in I} \boxtimes \psi\left(x_{i}^{\prime}\right)_{i \in I} .
\end{aligned}
$$

Hence, ψ is a dBCC-homomorphism.
Conversely, assume that ψ is a dBCC-homomorphism. Let $i \in I$. Let $x_{i}, y_{i} \in X_{i}$. Then $f_{x_{i}}, f_{y_{i}} \in$ $\prod_{i \in I} X_{i}$, which is defined by (2.1). Since ψ is a dBCC-homomorphism, we have $\psi\left(f_{x_{i}} \boxtimes f_{y_{i}}\right)=\psi\left(f_{x_{i}}\right) \boxtimes$ $\psi\left(f_{y_{i}}\right)$. Since

$$
(\forall j \in I)\left(\left(f_{x_{i}} \boxtimes f_{y_{i}}\right)(j)=\left\{\begin{array}{ll}
y_{i} *_{i} x_{i}, & i f j=i, \\
0_{j} *_{j} 0_{j}, & \text { otherwise },
\end{array}\right),\right.
$$

we have

$$
(\forall j \in I)\left(\psi\left(f_{x_{i}} \boxtimes f_{y_{i}}\right)(\mathfrak{j})=\left\{\begin{array}{ll}
\psi_{i}\left(y_{i} *_{i} x_{i}\right), & \text { if } \mathfrak{j}=\mathfrak{i}, \tag{2.2}\\
\psi_{j}\left(0_{j} *_{j} 0_{j}\right), & \text { otherwise, }
\end{array}\right) .\right.
$$

Since

$$
(\forall j \in I)\left(\psi (f _ { x _ { i } }) (\mathfrak { j }) = \{ \begin{array} { l l }
{ \psi _ { i } (x _ { i }) , } & { \text { if } j = i , } \\
{ \psi _ { j } (0 _ { j }) , } & { \text { otherwise } , }
\end{array}) \quad \text { and } \quad (\forall j \in I) \left(\psi\left(f_{y_{i}}\right)(\mathfrak{j})=\left\{\begin{array}{ll}
\psi_{i}\left(y_{i}\right), & \text { if } \mathfrak{j}=\mathfrak{i}, \\
\psi_{j}\left(0_{j}\right), & \text { otherwise },
\end{array}\right),\right.\right.
$$

we have

$$
(\forall j \in I)\left(\left(\psi\left(f_{x_{i}}\right) \boxtimes \psi\left(f_{y_{i}}\right)\right)(\mathfrak{j})=\left\{\begin{array}{ll}
\psi_{i}\left(y_{i}\right) o_{i} \psi_{i}\left(x_{i}\right), & \text { if } \mathfrak{j}=\mathfrak{i}, \tag{2.3}\\
\psi_{j}\left(0_{j}\right) \circ_{j} \psi_{j}\left(0_{j}\right), & \text { otherwise },
\end{array}\right) .\right.
$$

By (2.2) and (2.3), we have $\psi_{i}\left(y_{i} *_{i} x_{i}\right)=\psi_{i}\left(y_{i}\right) \circ_{i} \psi_{i}\left(x_{i}\right)$. Hence, ψ_{i} is a BCC-homomorphism for all $i \in I$.
(ii) It is straightforward from (i) and Theorem 2.20 (i).
(iii) It is straightforward from (i) and Theorem 2.20 (ii).
(iv) It is straightforward from (i) and Theorem 2.20 (iii).
(v) Let $\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} X_{i}$. Then

$$
\begin{aligned}
\left(x_{i}\right)_{i \in I} \in \operatorname{ker} \psi & \Leftrightarrow \psi\left(x_{i}\right)_{i \in I}=\left(1_{i}\right)_{i \in I} \\
& \Leftrightarrow\left(\psi_{i}\left(x_{i}\right)\right)_{i \in I}=\left(1_{i}\right)_{i \in I} \\
& \Leftrightarrow \psi_{i}\left(x_{i}\right)=1_{i} \forall i \in I \\
& \Leftrightarrow x_{i} \in \operatorname{ker} \psi_{i} \forall i \in I \\
& \Leftrightarrow\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} \operatorname{ker} \psi_{i} .
\end{aligned}
$$

Hence, $\operatorname{ker} \psi=\prod_{i \in \mathrm{I}} \operatorname{ker} \psi_{i}$. Now,

$$
\begin{aligned}
\left(y_{i}\right)_{i \in I} \in \psi\left(\prod_{i \in I} x_{i}\right) & \Leftrightarrow \exists\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} x_{i} \text { s.t. }\left(y_{i}\right)_{i \in I}=\psi\left(x_{i}\right)_{i \in I} \\
& \Leftrightarrow \exists\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} x_{i} \text { s.t. }\left(y_{i}\right)_{i \in I}=\left(\psi_{i}\left(x_{i}\right)\right)_{i \in I} \\
& \Leftrightarrow \exists x_{i} \in X_{i} \text { s.t. } y_{i}=\psi_{i}\left(x_{i}\right) \in \psi\left(X_{i}\right) \forall i \in I \\
& \Leftrightarrow\left(y_{i}\right)_{i \in I} \in \prod_{i \in I} \psi_{i}\left(X_{i}\right) .
\end{aligned}
$$

Hence, $\psi\left(\prod_{i \in I} X_{i}\right)=\prod_{i \in I} \psi_{i}\left(X_{i}\right)$.
Finally, we discuss several anti-BCC-homomorphism theorems in view of the external direct product of dBCC-algebras.

Theorem 2.22. Let $X_{i}=\left(X_{i} ; *_{i}, O_{i}\right)$ and $S_{i}=\left(S_{i} ; \circ_{i}, 1_{i}\right)$ be BCC-algebras and $\psi_{i}: X_{i} \rightarrow S_{i}$ be a function for all $i \in I$. Then
(i) ψ_{i} is an anti-BCC-homomorphism for all $\mathrm{i} \in \mathrm{I}$ if and only if ψ is an anti-dBCC-homomorphism which is defined in Definition 2.19;
(ii) ψ_{i} is an anti-BCC-monomorphism for all $\mathrm{i} \in \mathrm{I}$ if and only if ψ is an anti-dBCC-monomorphism;
(iii) ψ_{i} is an anti-BCC-epimorphism for all $i \in I$ if and only if ψ is an anti-dBCC-epimorphism;
(iv) ψ_{i} is an anti-BCC-isomorphism for all $\mathrm{i} \in \mathrm{I}$ if and only if ψ is an anti-dBCC-isomorphism.

Proof.
(i) Assume that ψ_{i} is an anti-BCC-homomorphism for all $i \in I$. Let $\left(x_{i}\right)_{i \in I},\left(x_{i}^{\prime}\right)_{i \in I} \in \prod_{i \in I} X_{i}$. Then

$$
\begin{aligned}
\psi\left(\left(x_{i}\right)_{i \in I} \boxtimes\left(x_{i}^{\prime}\right)_{i \in I}\right)=\psi\left(x_{i}^{\prime} *_{i} x_{i}\right)_{i \in I} & =\left(\psi_{i}\left(x_{i}^{\prime} *_{i} x_{i}\right)\right)_{i \in I} \\
& =\left(\psi_{i}\left(x_{i}\right) *_{i} \psi_{i}\left(x_{i}^{\prime}\right)\right)_{i \in I} \\
& =\left(\psi_{i}\left(x_{i}^{\prime}\right)\right)_{i \in I} \boxtimes\left(\psi_{i}\left(x_{i}\right)\right)_{i \in I}=\psi\left(x_{i}^{\prime}\right)_{i \in I} \boxtimes \psi\left(x_{i}\right)_{i \in I} .
\end{aligned}
$$

Hence, ψ is an anti-dBCC-homomorphism.
Conversely, assume that ψ is an anti-dBCC-homomorphism. Let $i \in I$. Let $x_{i}, y_{i} \in X_{i}$. Then $f_{x_{i}}, f_{y_{i}} \in$ $\prod_{i \in I} X_{i}$, which are defined by (2.1). Since ψ is an anti-dBCC-homomorphism, we have $\psi\left(f_{x_{i}} \boxtimes f_{y_{i}}\right)=$ $\psi\left(f_{y_{i}}\right) \boxtimes \psi\left(f_{x_{i}}\right)$. Since

$$
(\forall j \in I)\left(\left(f_{x_{i}} \boxtimes f_{y_{i}}\right)(j)=\left\{\begin{array}{ll}
y_{i} *_{i} x_{i}, & \text { if } \mathfrak{j}=\mathfrak{i}, \\
0_{j} *_{j} 0_{j}, & \text { otherwise }
\end{array}\right)\right.
$$

we have

$$
(\forall j \in I)\left(\psi\left(f_{x_{i}} \boxtimes f_{y_{i}}\right)(\mathfrak{j})=\left\{\begin{array}{ll}
\psi_{i}\left(y_{i} *_{i} x_{i}\right), & \text { if } \mathfrak{j}=\mathfrak{i}, \tag{2.4}\\
\psi_{j}\left(0_{j} *_{j} 0_{j}\right), & \text { otherwise },
\end{array}\right)\right.
$$

Since

$$
(\forall j \in I)\left(\psi (f _ { y _ { i } }) (\mathfrak { j }) = \{ \begin{array} { l l }
{ \psi _ { i } (y _ { i }) , } & { \text { if } \mathfrak { j } = \mathfrak { i } , } \\
{ \psi _ { \mathfrak { j } } (0 _ { j }) , } & { \text { otherwise, } }
\end{array}) \quad \text { and } \quad (\forall \mathfrak { j } \in I) \left(\psi\left(f_{x_{i}}\right)(\mathfrak{j})=\left\{\begin{array}{ll}
\psi_{i}\left(x_{i}\right), & \text { if } \mathfrak{j}=\mathfrak{i}, \\
\psi_{j}\left(0_{j}\right), & \text { otherwise },
\end{array}\right)\right.\right.
$$

we have

$$
(\forall j \in I)\left(\left(\psi\left(f_{y_{i}}\right) \boxtimes \psi\left(f_{x_{i}}\right)\right)(j)=\left\{\begin{array}{ll}
\psi_{i}\left(x_{i}\right) o_{i} \psi_{i}\left(y_{i}\right), & \text { if } \mathfrak{j}=\mathfrak{i} \tag{2.5}\\
\psi_{j}\left(0_{j}\right) o_{j} \psi_{j}\left(0_{j}\right), & \text { otherwise },
\end{array}\right)\right.
$$

By (2.4) and (2.5), we have $\psi_{i}\left(y_{i} *_{i} x_{i}\right)=\psi_{i}\left(x_{i}\right) o_{i} \psi_{i}\left(y_{i}\right)$. Hence, ψ_{i} is an anti-BCC-homomorphism for all $i \in \mathrm{I}$.
(ii) It is straightforward from (i) and Theorem 2.20 (i).
(iii) It is straightforward from (i) and Theorem 2.20 (ii).
(iv) It is straightforward from (i) and Theorem 2.20 (iii).

3. Conclusions and Future Work

In this paper, we have introduced the concept of the direct product of infinite family of BCC-algebras and prove that it is a dBCC-algebras, we call the external direct product dBCC-algebra induced by BCCalgebras, which is a general concept of the direct product in the sense of Lingcong and Endam [25]. We proved that the external direct product of BCC-algebras is dBCC-algebras, the external direct product of a bounded BCC-algebra is a bounded dBCC-algebra, and the external direct product of a meetcommutative BCC-algebra is a join-commutative dBCC-algebra. Also, we have introduced the concept of the weak direct product dBCC-algebras. We proved that the weak direct product of BCC-algebras is dBCC-subalgebras and the external direct product of BCC-subalgebras (resp., near BCC-filters, BCCfilters, comparative BCC-filters, shift BCC-filters, implicative BCC-filters, BCC-ideals, strong BCC-ideals) is a dBCC-subalgebra (resp., near dBCC-filter, dBCC-filter, comparative dBCC-filter, shift dBCC-filter, implicative dBCC-filter, dBCC-ideal, strong dBCC-ideal) of the external direct product dBCC-algebras. Finally, we have provided several fundamental theorems of (anti-)BCC-homomorphisms in view of the external direct product dBCC-algebras.

Based on the concept of the external direct product dBCC-algebras in this article, we can apply it to the study of the external direct product in other algebraic systems. Researching the external and weak direct products that we will study in the future will be the internal direct products dBCC-algebras.

The research topics of interest by our research team being studied in the external direct product dBCC-algebras are as follows:
(1) to study fuzzy set theory (with respect to a triangular norm) based on the concept of Somjanta et al. [38] and Thongarsa et al. [5, 39];
(2) to study bipolar fuzzy set theory based on the concept of Muhiuddin [27];
(3) to study interval-valued fuzzy set theory based on the concept of Muhiuddin et al. [28];
(4) to study interval-valued intuitionistic fuzzy set theory based on the concept of Senapati et al. [36].

Acknowledgments

This work was supported by the revenue budget in 2022, School of Science, University of Phayao, Thailand.

References

[1] G. A. Abebe, On the theory of BRK-algebras, Doctoral dissertation, Department of Mathematics, Addis Ababa University, (2018). 1
[2] M. A. Ansari, A. Haidar, A. N. A. Koam, On a graph associated to UP-algebras, Math. Comput. Appl., 23 (2018), 12 pages. 1, 1
[3] M. A. Ansari, A. N. A. Koam, A. Haider, Rough set theory applied to UP-algebras, Ital. J. Pure Appl. Math., 42 (2019), 388-402. 1
[4] M. A. Ansari, A. N. A. Koam, A. Haidar, On binary block codes associated to LP-algebras, Ital. J. Pure Appl. Math., 47 (2022), 205-220. 1
[5] P. Burandate, S. Thongarsa, A. Iampan, Fuzzy sets in UP-algebras with respect to a triangular norm, Konuralp J. Math., 7 (2019), 410-432. (1)
[6] C. Chanmanee, R. Chinram, R. Prasertpong, P. Julatha, A. Iampan, Direct product of infinite family of B-algebras, Eur. J. Pure Appl. Math., 15 (2022), 999-1014. 2.19, 2.20
[7] R. Chinram, A. Iampan, Codewords generated by UP-valued functions, AIMS Math., 6 (2021), 4771-4785. 1
[8] W. A. Dudek, X. H. Zhang, On ideals and congruences in BCC-algebras, Czechoslovak Math. J., 48 (1998), 21-29. 1.3
[9] J. C. Endam, R. C. Teves, Direct product of BF-algebras, Int. J. Algebra, 10 (2016), 125-132. 1
[10] T. Guntasow, S. Sajak, A. Jomkham, A. Iampan, Fuzzy translations of a fuzzy set in UP-algebras, J. Indones. Math. Soc., 23 (2017), 1-19. 1.9
[11] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Topics, 5 (2017), 35-54. 1, 1.1, 1, 1, 1, 1.9
[12] A. Iampan, Introducing fully UP-semigroups, Discuss. Math. Gen. Algebra Appl., 38 (2018), 297-306. 1, 1
[13] A. Iampan, Multipliers and near UP-filters of UP-algebras, J. Discrete Math. Sci. Cryptogr., 24 (2021), 667-680. 1.9
[14] A. Iampan, M. Songsaeng, G. Muhiuddin, Fuzzy duplex UP-algebras, Eur. J. Pure Appl. Math., 13 (2020), $459-471$. 1
[15] Y. Imai, K. Iséki, On axiom systems of propositional calculi. XIV, Proc. Japan Acad., 42 (1966), 19-22. 1
[16] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 26-29. 1
[17] Y. B. Jun, B. Brundha, N. Rajesh, R. K. Bandaru, (3, 2)-Fuzzy LUP-subalgebras and (3,2)-fuzzy UP-filters, J. Mahani Math. Res. Cent., 11 (2022), 1-14. 1
[18] Y. B. Jun, A. Iampan, Comparative and allied UP-filters, Lobachevskii J. Math., 40 (2019), 60-66. 1.9
[19] Y. B. Jun, A. Iampan, Implicative UP-filters, Afr. Mat., 30 (2019), 1093-1101.
[20] Y. B. Jun, A. Iampan, Shift LP-filters and decompositions of LP-filters in UP-algebras, Missouri J. Math. Sci., 31 (2019), 36-45. 1.9
[21] J. Kavitha, R. Gowri, Direct product of GK algebra, Indian J. Technol., 14 (2018), 2802-2805. 1
[22] C. B. Kim, H. S. Kim, On BG-algebras, Demonstratio Math., 41 (2008), 497-505. 1
[23] A. N. A. Koam, A. Haider, M. A. Ansari, Generalized cut functions and n-ary block codes on UP-algebras, J. Math., 2022 (2022), 5 pages. 1, 1
[24] Y. Komori, The class of BCC-algebras is not a variety, Math. Japon., 29 (1984), 391-394. 1
[25] J. A. V. Lingcong, J. C. Endam, Direct product of B-algebras, Int. J. Algebra, 10 (2016), 33-40. 1, 2, 2.1, 3
[26] J. A. V. Lingcong, J. C. Endam, Mappings of the direct product of B-algebras, Int. J. Algebra, 10 (2016), 133-140. 1
[27] G. Muhiuddin, Bipolar fuzzy KU-subalgebras/ideals of KU-algebras, Ann. Fuzzy Math. Inform., 8 (2014), 409-418. (2)
[28] G. Muhiuddin, D. Al-Kadi, A. Mahboob, More general form of interval-valued fuzzy ideals of BCK/BCI-algebras, Secur. Commun. Netw., 2021 (2021), 10 pages. (3)
[29] J. Neggers, H. S. Kim, On B-algebras, Mat. Vesnik, 54 (2002), 21-29. 1
[30] C. Prabpayak, U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna, 5 (2009), 54-57. 1
[31] D. A. Romano, Y. B. Jun, Weak implicative UP-filters of UP-algebras, Open J. Math. Sci., 4 (2020), 442-447. 1
[32] A. Satirad, P. Mosrijai, A. Iampan, Formulas for finding UP-algebras, Int. J. Math. Comput. Sci., 14 (2019), $403-409$. 1, 1
[33] A. Satirad, P. Mosrijai, A. Iampan, Generalized power UP-algebras, Int. J. Math. Comput. Sci., 14 (2019), 17-25. 1
[34] K. Sawika, R. Intasan, A. Kaewwasri, A. Iampan, Derivations of UP-algebras, Korean J. Math., 24 (2016), 345-367. (ii)
[35] T. Senapati, Y. B. Jun, K. P. Shum, Cubic set structure applied in UP-algebras, Discrete Math. Algorithms Appl., 10 (2018), 23 pages. 1,1
[36] T. Senapati, G. Muhiuddin, K. P. Shum, Representation of UP-algebras in interval-valued intuitionistic fuzzy environment, Ital. J. Pure Appl. Math., 38 (2017), 497-517. 1, (4)
[37] A. Setiani, S. Gemawati, L. Deswita, Direct product of BP-algebra, Int. J. Math. Trends Tech., 66 (2020), 63-66. 1
[38] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, A. Iampan, Fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform., 12 (2016), 739-756. 1.9, (1)
[39] S. Thongarsa, P. Burandate, A. Iampan, Some operations of fuzzy sets in UP-algebras with respect to a triangular norm, Ann. Commun. Math., 2 (2019), 1-10. (1)
[40] S. Widianto, S. Gemawati, Kartini, Direct product in BG-algebras, Int. J. Algebra, 13 (2019), 239-247. 1

[^0]: *Corresponding author
 Email addresses: chatsuda.chanmanee@gmail.com (Chatsuda Chanmanee), ronnason.c@psu.ac.th (Ronnason Chinram), rukchart.p@nsru.ac.th (Rukchart Prasertpong), pongpun.j@psru.ac.th (Pongpun Julatha), aiyared.ia@up.ac.th (Aiyared Iampan)
 doi: 10.22436/jmcs.029.02.07
 Received: 2022-06-29 Revised: 2022-07-16 Accepted: 2022-07-21

