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Abstract

This work deals with the singularly perturbed periodical boundary value problem for a quasilinear
second-order differential equation. The numerical method is constructed on piecewise uniform Shishkin
type mesh, which gives first-order uniform convergence in the discrete maximum norm. Numerical results
supporting the theory are presented. c©2016 All rights reserved.
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1. Introduction

In this paper, we consider the non-linear second order singularly perturbed periodical boundary value
problem (BVP)

Lu ≡ ε2u′′ + εa (x)u′ − f (x, u) = 0, 0 < x < l, (1.1)

u (0)− u (l) = 0, (1.2)

L0u ≡ ε
(
u′ (l)− u′ (0)

)
= A, (1.3)

where 0 < ε << 1 is the perturbation parameter and A is a given constant. We assume that the functions
a (x) ≥ 0 and f (x, u) are sufficiently smooth on [0, l] and [0, l]×R, respectively, to be specified and besides
a (0) = a (l) and f (0, u(0)) = f (l, u(l)), and furthermore

0 < β ≤ ∂f

∂u
≤ β∗ <∞.

The solution u of (1.1)-(1.3) has in general a boundary layer near x = 0 and x = l (see Section 2).
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Numerical treatment of singular perturbation problems has received a great deal of attention in the
past. This type of problems arise in various fields of applied mathematics, mechanics and physics, see
[5, 6, 11, 12, 15] and also references therein.

It is a well known fact that the solution of singularly perturbed boundary value problems exhibit a
multiscale character. That is, there is a thin layer(s) where the solution varies rapidly, while away from
the layer the solution behaves regularly and varies slowly. So, the standard numerical methods for solving
such problems are unstable and fail to give accurate results when the perturbation parameter ε is small.
Therefore, it is important to develop suitable numerical methods for solving these problems, whose accuracy
does not depend on the value of parameter ε, that is methods that are convergence ε-uniformly. One of
techniques used to derive such methods consists of using fitted difference schemes on the special condensing
grids (see [6, 7, 9, 10, 17] and also references cited in them). The difference schemes for singularly perturbed
periodical problems with first order reduced equation have been handled by other techniques examined in
the works of Pechenkina [13], Lin and Jiang [8], Xin [3] and the references therein. Extra inquiry regarding
to numerical solution of periodical and other type problems can be also found in survey paper of Ramos
[14].

Our goal in this paper is to give an exponentially fitted difference scheme on a special piecewise uniform
grid (Shishkin grid) for the numerical solution of (1.1)-(1.3). We construct a difference scheme that is based
on the method of integral identities by using exponential basis functions and interpolating quadrature rules
with the weight and remainder terms in integral form, see [1, 2, 4]. This method of approximation has
the advantage that the schemes can also be effective in the case where the original problem considered
under certain singularities. In the Section 2 we give useful properties of the exact solution of (1.1)-(1.3)
that are needed in later sections. In Section 3, we construct exponentially finite fitted difference scheme
using a piecewise uniform mesh, which is fitted to the boundary layers and give the error analysis for the
approximate solution. Uniform convergence is proved in the discrete maximum norm. Some numerical
results, which are in agreement with the theoretical results have presented in the Section 4. The approach
to the construction of the discrete problem and the error analysis for the approximate solution are similar
to those in the works of Amiraliyev and Mamedov [2] and Amiraliyev and Duru [1].

Throughout the paper, C will denote a generic positive constant independent of ε and the mesh param-
eter.

2. Properties of the exact solution

Here we give useful asymptotic estimates of the exact solution of the problem (1.1)-(1.3) that are needed
in later sections.

Lemma 2.1. Let a, f ∈ C1 [0, l]. Then for the solution u (x) of the problem (1.1)-(1.3) the following
estimates hold:

‖u‖ ≤ β−1 ‖F‖+ β̄|A|, (2.1)

where

‖u‖ = max
[0,l]
|u (x) |, β̄ = c0 coth (c0l/4) , c0 = a∗ +

√
(a∗)2 + 4β,

a∗ = max
[0,l]

a (x) , F (x) = f (x, 0)

and ∣∣u′ (x)
∣∣ ≤C {1 + ε−1

(
e

−µ1x
ε + e

−µ2(l−x)
ε

)}
, 0 ≤ x ≤ l (2.2)

with

µ1 =0.5
(√

a2 (0) + 4β + a (0)
)
, µ2 = 0.5

(√
a2 (l) + 4β − a (l)

)
,

providing that ∂f
∂x (x, u) is bounded for x ∈ [0, l] and |u| ≤ C.
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Proof. We rewrite (1.1) in the form

L∗u ≡ε2u′′ + εa (x)u′ − b (x)u

=F (x) , 0 < x < l
(2.3)

with b (x) = ∂f
∂u (x, ξu) , 0 < ξ < 1 and use the Maximum Principle: Let L∗ and L0 be the differential

operators in (2.3), (1.2)-(1.3) and v ∈ C2 [0, l] . If v (0) = v (l) , L0v ≥ 0, and L∗v ≤ 0 for all 0 < x < l, then
v (x) ≥ 0 for all 0 ≤ x ≤ l. The further analysis is almost identical to that in the work of Amiraliyev and
Duru [1].

3. Discretization, layer-adapted mesh and convergence

Let ωN be any nonuniform mesh on [0, l] :

ωN = {0 < x1 < ... < xN−1 < l, hi = xi − xi−1}

and ω̄N = ωN ∪ {x0 = 0, xN = l} .To simplify the notation we set vi = v (xi) for any function v (x), while yi
denotes an approximation of u (x) at xi. For any mesh function {vi} defined on ω̄N we use

vx̄,i =
vi − vi−1

hi
, vx,i =

vi+1 − vi
hi+1

,

vx̊,i =
vx̄,i + vx,i

2
, vx̂,i =

vi+1 − vi
~

,

vx̄x̂,i =
vx,i − vx̄,i

~
, ~i =

hi + hi+1

2
,

‖v‖∞ ≡‖v‖∞,ω̄N := max
0≤i≤N

|vi| .

The approach to generating the difference method is through the integral identity

χ−1
i ~−1

i

∫ l

0
Luϕi (x) dx = 0, i = 1, 2, ..., N − 1 (3.1)

with the exponential basis functions {ϕi (x)}N−1
i=1 having the form

ϕi (x) =


ϕ

(1)
i (x) , xi−1 < x < xi,

ϕ
(2)
i (x) , xi < x < xi+1,

0, x /∈ (xi−1, xi+1) ,

where ϕ
(1)
i (x) and ϕ

(2)
i (x), respectively, are the solutions of the following problems:

εϕ′′ − aiϕ′ =0, xi−1 < x < xi,

ϕ (xi−1) =0, ϕ (xi) = 1,

εϕ′′ − aiϕ′ =0, xi < x < xi+1,

ϕ (xi) =1, ϕ (xi+1) = 0.

The functions ϕ
(1)
i (x) and ϕ

(2)
i (x) can be explicitly expressed as follows:

ϕ
(1)
i (x) =

eai(x−xi−1)/ε − 1

eaihi/ε − 1
, for ai 6= 0,

ϕ
(2)
i (x) =

1− e−ai(xi+1−x)/ε

1− e−aihi+1/ε
, for ai 6= 0,
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ϕ
(1)
i (x) =

x− xi−1

hi
, for ai = 0,

ϕ
(2)
i (x) =

xi+1 − x
hi+1

, for ai = 0,

and

χi =~−1
i

∫ xi+1

xi−1

ϕi (x) dx

=

{
~−1
i

(
hi

1−eaihi/ε + hi+1

1−e−aihi+1/ε

)
, ai 6= 0

1, ai = 0.

Using interpolating quadrature rules with the weight and remainder terms in integral form on subinterval
[xi−1, xi+1], consistently with [1, 2, 4], we obtain the following relation:

`ui +Ri ≡ε2θiux̄x̂,i + εaiux̊,i − f (xi, ui) +Ri

=0, i = 1, 2, ..., N − 1
(3.2)

with

θi =


ai~i
2ε

hi+1

(
e
aihi
ε −1

)
+hi

(
1−e−

aihi+1
ε

)
hi+1

(
e
aihi
ε −1

)
−hi

(
1−e−

aihi+1
ε

)
 , ai 6= 0

1, ai = 0

(3.3)

and local truncation error

Ri =− `ui

=εχ−1
i ~−1

i

∫ xi+1

xi−1

[a (x)− a (xi)]u
′ϕi (x) dx− χ−1

i ~−1
i

∫ xi+1

xi−1

dxϕi (x)

×
∫ xi+1

xi−1

d

dx
f (ξ, u (ξ))K∗0,i (x, ξ) dξ,

(3.4)

where

K∗0,i (x, ξ) =T0 (x− ξ)− T0 (xi − ξ) ,
1 ≤i ≤ N − 1,

T0 (λ) =

{
1, λ ≥ 0
0, λ < 0.

To define an approximation for the boundary condition (1.3), we use the integral identity∫ `

0
Luϕ0 (x) dx = 0

with the exponential basis function ϕ0 (x) having the form

ϕ0 (x) =


ϕ

(2)
0 (x) , x ∈ (x0, x1) ,

ϕ
(1)
N (x) , x ∈ (xN−1, xN ) ,

0, otherwise,

where ϕ
(2)
0 (x) and ϕ

(1)
N (x) , respectively, are the solutions of the following problems:

εϕ′′0 − a0ϕ
′
0 =0, x0 < x < x1,
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ϕ0 (x0) =1, ϕ (x1) = 0,

εϕ′′N − aNϕ′N =0, xN−1 < x < xN ,

ϕN (xN−1) =0, ϕ (xN ) = 1.

Analogously, as above, we can write the following difference relation:

`0u0 ≡ε2
(
θ

(N)
0 ux̄,N − θ(0)

0 ux,0

)
+ κ0f (0, u0)

=εA− r
(3.5)

with factor coefficients

θ
(0)
0 =

{
a0h1/ε

1−e−a0h1/ε a0 6= 0

1, a0 = 0
(3.6)

θ
(N)
0 =

{
aNh3/ε

eaNh3/ε−1
aN 6= 0

1, aN = 0
(3.7)

κ0 =
h1

1− e−a0h1/ε
− h3

eaNh3/ε − 1
(3.8)

and local truncation error

r =εA− `0u0

=ε

∫ x1

x0

[a0 − a (x)]u′ (x)ϕ
(2)
0 (x) dx+ ε

∫ xN

xN−1

[aN − a (x)]u′ (x)ϕ
(1)
N (x) dx

+

∫ x1

x0

[f (x, u)− f (0, u0)]ϕ
(2)
0 (x) dx+

∫ xN

xN−1

[f (x, u)− f (l, uN )]ϕ
(1)
N (x) dx.

(3.9)

Neglecting Ri and r in (3.2) and (3.5), we have the following difference scheme for approximation (1.1)-
(1.3):

`yi ≡ε2θiyx̄x̂,i + εaiyx̊,i − f (xi, yi) = 0, i = 1, 2, ..., N − 1 (3.10)

y0 − yN = 0, (3.11)

`0y0 ≡ε2
(
θ

(N)
0 yx̄,N − θ(0)

0 yx,0

)
+ κ0f (0, y0)

=εA,
(3.12)

where θi, θ
(0)
0 , θ

(N)
0 and κ0 are defined by (3.3), (3.6), (3.7) and (3.8), respectively.

We now give the mesh. The difference scheme (3.10)-(3.12) in order to be ε-uniform convergent, we will
use the Shishkin mesh on [0, l] . For a divisible by 4 positive integer N , we divide each of the intervals [0, σ1]
and [l − σ2, l] into N/4 equidistant subintervals and also [σ1, l − σ2] into N/2 equidistant subintervals, where
the transition points σ1 and σ2, which separate the fine and coarse portions of the mesh, are obtained by
taking

σ1 = min

{
l

4
, µ−1

1 ε lnN

}
, σ2 = min

{
l

4
, µ−1

2 ε lnN

}
,

where µ1 and µ2 are given in Lemma 2.1. In practice, one usually has σi << l (i = 1, 2) , so the mesh is fine
on [0, σ1] , [l − σ2, l] and coarse on [σ1, l − σ2] . Hence, if denote by h(1), h(2) and h(3) the step-size in [0, σ1] ,
[σ1, l − σ2] and [l − σ2, l] , respectively, we have
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h(1) =
4σ1

N
, h(2) =

2 (l − σ2 − σ1)

N
, h(3) =

4σ2

N
,

(
h(1) + h(3)

)
2

=
2l

N
, h(k) ≤ lN−1, k = 1, 3,

lN−1 ≤ h(2) < 2lN−1,

so

ω̄N =


xi = ih(1), i = 0, 1, ..., N4 ;

xi = σ1 +
(
i− N

4

)
h(2), i = N

4 + 1, ..., 3N
N ;

xi = l − σ2 +
(
i− 3N

4

)
h(3), i = 3N

4 + 1, ..., N ;

h(1) = 4σ1
N , h(2) = 2(l−σ2−σ1)

N , h(3) = 4σ2
N .

We now estimate the approximate error zi = yi − ui, which satisfies

ε2θizx̄x̂,i + εaizx̊,i − b̃izi = Ri, i = 1, 2, ..., N − 1, (3.13)

z0 − zN = 0, (3.14)

ε2
(
θ

(N)
0 zx̄,N − θ(0)

0 zx,0

)
+ b̄0κ0z0 = r, (3.15)

where

b̃i =
∂f

∂u
(xi, ỹi) , b̄0 =

∂f

∂u
(0, ȳ0) ,

ỹi, ȳ0−intermediate points called for by the mean value theorem and the truncation errors Ri and r are
defined by (3.4), (3.9), respectively. It is not difficult to observe that the discrete maximum principle is
valid here and hereby

‖z‖∞,ω̄N ≤ β
−1 ‖R‖∞,ωN + (βκ0)−1 |r| . (3.16)

Further, we confirm that, under the above assumptions of Section 1 for the error functions Ri and r the
following estimates hold:

‖R‖∞,ωN ≤ CN
−1 lnN, (3.17)

(κ0)−1 |r| ≤ CN−1 lnN. (3.18)

The proof of (3.17) is almost identical to that in the work of Cakir and Amiraliyev [4]. We now estimate
the remainder term r. From its explicit expression (3.9), under the smoothness conditions of Lemma 2.1, we
get

(κ0)−1 |r| ≤C
{
h1 + h3 +

∫ x1

x0

∣∣u′∣∣ dx +

∫ xN

xN−1

∣∣u′∣∣ dx}

≤C
{
h1 + h3 +

∫ x1

x0

ε−1e−
µ1x
ε dx +

∫ xN

xN−1

ε−1e−
µ2(l−x)

ε dx

}
≤C {h1 + h3 + h1/ε+ h3/ε} ,

which yields (3.18).
Now we can formulate the main convergence result:

Theorem 3.1. Let u (x) be the solution of (1.1)-(1.3) and y the solution (3.10)-(3.12). Then the following
estimate holds

‖y − u‖∞,ω̄N ≤ CN
−1 lnN.
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4. Algorithm and numerical results

a) To solve the nonlinear problem (3.10)-(3.12), we use the following quasilinearization technique:

ε2θiy
(n)
x̄x̂,i + εaiy

(n)
x̊,i − f

(
xi, y

(n−1)
i

)
− ∂f

∂y

(
xi, y

(n−1)
i

)(
y

(n)
i − y(n−1)

i

)
= 0, (4.1)

y
(n)
0 − y(n)

N = 0, (4.2)

ε2
(
θ

(N)
0 y

(n)
x̄,N − θ

(0)
0 y

(n)
x,0

)
+ κ0

(
f
(

0, y
(n−1)
0

)
+
∂f

∂y

(
0, y

(n−1)
0

)(
y

(n)
0 − y(n−1)

0

))
= εA,

n =1, 2, ...; y
(0)
i given, 1 ≤ i ≤ N − 1.

(4.3)

b) Consider the test problem:

A =1, a (x) = 1− x

2
,

f (x, u) =1 + x2 + u+ tanhu, 0 < x < 1.

For each value of n the algorithm (4.1)-(4.3) has been solved by the periodical factorization procedure (see

[1, 2, 4–16]), with the initial guess y
(0)
i = xi − x2

i and stopping criterion

max
i

∣∣∣y(n)
i − y(n−1)

i

∣∣∣ < 10−5.

As the exact solution is not known we use the double mesh technique to estimate the errors and the
experimental rate of convergence in our computed solution. That is, we compare the computed solutions
with the solution on a mesh that is twice as fine. The error estimate eNε and the computed convergence rate
PNε obtained in this way are denoted by

eNε = max
ω̄N

∣∣yε,N − ỹε,2N ∣∣ ,
where ỹε,2N is the approximate solution of the respective method on the mesh

ω̃2N =
{
xi/2 = 0, 1, ....2N

}
with

xi+1/2 = (xi + xi+1) /2, i = 0, .., N − 1

and

PNε = ln
(
eNε /e

2N
ε

)
/ ln 2.

5. Conclusion

In this paper, the singularly perturbed periodical boundary value problem for a quasilinear second-
order differential equation is considered. We have constructed a numerical method for solving this problem,
which generates ε-uniformly convergent numerical approximations to the solution and its derivatives. The
method comprises a special non-uniform mesh, which is fitted to the boundary layers and constructed a
priori in function of sizes of parameter ε and the problem data. First order convergence in the discrete
maximum norm, independently of the perturbation parameter is obtained. The exact errors and the rates
of convergence are computed for different values of ε and N in Table 1. The obtained results show that
the convergence rate of difference scheme (3.10)-(3.12) is essentially in accord with the theoretical analysis.
They indicate that the theoretical results are fairly sharp. The main lines for the analysis of the uniform
convergence carried out here can be used for the study of more complicated differential problems with
periodical as well as another type boundary conditions.
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Table 1: Errors eNε and convergence rates PNε for various values of ε and N on ω̄N

ε N = 32 N = 64 N = 128 N = 256

2−2 0.0115264 0.0068744 0.0036417 0.0017931

0.80 0.88 0.94 0.99

2−4 0.0114367 0.0068732 0.0036410 0.0017630

0.79 0.86 0.94 0.99

2−6 0.0114335 0.0068738 0.0036413 0.0017633

0.79 0.86 0.94 0.99

2−8 0.0114346 0.0068735 0.0036415 0.0017632

0.79 0.86 0.94 0.99

2−10 0.0114347 0.0068735 0.0036415 0.0017632

0.79 0.86 0.94 0.99

2−12 0.0114345 0.0068735 0.0036415 0.0017632

0.79 0.86 0.94 0.99

2−14 0.0114345 0.0068735 0.0036415 0.0017632

0.79 0.86 0.94 0.99

eN 0.0115264 0.0068744 0.0036417 0.0017931

PN 0.80 0.88 0.94 0.99
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