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Abstract
Lie group analysis of the difference equations of the form

xn+1 =
xn−4xn−3

xn(an + bnxn−4xn−3xn−2xn−1)
,

where an and bn are real sequences, is performed and non-trivial symmetries are derived. Furthermore, we find formulas for
exact solutions of the equations. This work generalizes a recent result in the literature.
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1. Introduction

In recent years, following the work of Sophus Lie [16] on differential equations, various researchers
showed interest in symmetries. Lie investigated the group of transformations which leaves the differential
equations invariant. The idea of symmetry is also connected to conservation laws and this connection
between the two areas has led to greater motivation in researchers, after the work of Noether [21]. It is
known that so long as the symmetries and first integrals are related via the invariance condition, one can
implement the double reduction of the differential equations [20, 26]. The notion of using symmetries
has had its extension to difference equations [17, 18]. On symmetries in difference equations, refer to
[7, 8, 10, 11, 15, 22, 25]. Hydon [11] established a symmetry based algorithm that makes solution finding
possible. Despite the fact that Hydon [10] emphasized on lower-order difference equations, his procedure
works for any order. However, for higher-order equations, computations are cumbersome as such certain
assumptions are put in order to lessen the burden of computation.

In this paper, we are inspired by the work of Elsayed [6], who studied the following recursive se-
quences:

xn+1 =
xn−3xn−4

xn(±1± xn−1xn−2xn−3xn−4)
, n = 0, 1, . . . , (1.1)
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where the initial conditions are arbitrary real numbers. Clearly, (1.1) are special cases of a more general
form

xn+1 =
xn−3xn−4

xn(an + bnxn−1xn−2xn−3xn−4)
, n = 0, 1, . . . , (1.2)

where (an) and (bn) are real sequences. Our aim is to utilize symmetry methods to solve this more
general difference equation (1.2). Equivalently, we study the forward difference equation

un+5 =
unun+1

un+4(An +Bnunun+1un+2un+3)
, (1.3)

since we follow the notation of [11]. Note that (An) and (Bn) are real sequences. For more work on
recurrence equations, please see [1–5, 9, 12, 13, 19, 23].

2. Preliminaries

This section provides background to difference equations in the context of Lie symmetry analysis.

Definition 2.1. Let G be a local group of transformations acting on a manifold M. A subset S ⊂ M is
called G-invariant, and G is called symmetry group of S, if whenever x ∈ S, and g ∈ G is such that g · x is
defined, then g · x ∈ S.

Definition 2.2. Let G be a connected group of transformations acting on a manifold M. A smooth real-
valued function V :M→ R is an invariant function for G if and only if

X(V) = 0 for all x ∈M,

and every infinitesimal generator X of G.

Definition 2.3. A parameterized set of point transformations,

Γε : x 7→ x̂(x; ε),

where x = xi, i = 1, . . . ,p are continuous variables, is a one-parameter local Lie group of transformations
if the following conditions are satisfied:

1. Γ0 is the identity map if x̂ = x when ε = 0;
2. ΓaΓb = Γa+b for every a and b sufficiently close to 0;
3. each x̂i can be represented as a Taylor series (in a neighborhood of ε = 0 that is determined by x),

and therefore
x̂i(x; ε) = xi + εξi(x) +O(ε2), i = 1, . . . ,p.

Assume that the forward rth-order difference equation takes the form

un+r =F(n,un,un+1, . . . ,un+r−1), n ∈ D (2.1)

for some smooth function F and a regular domain D ⊂ Z. So as to compute a symmetry group of (2.1),
we take into consideration the group of point transformations given as

n̂ = n, ûn = un + εQ(n,un) +O(ε2), ûn+j = un+j + εS
jQ(n,un) +O(ε2), (2.2)

where ε (ε is sufficiently small) is the parameter, Q = Q(n,un) is a continuous function, referred to as
characteristic and S is the shift operator defined as S : n 7→ n+ 1. The criterion of invariance is then

ûn+r =F(n̂, ûn, ûn+1, . . . , ûn+r−1), (2.3)
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which yields the linearized symmetry condition [11]

SrQ−XF = 0, (2.4)

by substituting (2.2) in (2.3). Observe that

X =Q(n,un)
∂

∂un
+ SQ(n,un)

∂

∂un+1
+ · · ·+ Sr−1Q(n,un)

∂

∂un+r−1
,

is the corresponding ‘prolonged’ infinitesimal of the group of transformations (2.2). Upon knowledge of
the function(s) Q, one is able to obtain the invariant V by using the canonical coordinate [14]

Sn =

∫
dun

Q(n,un)
. (2.5)

Generally, the steps involved are lengthy even though very exact and do not give room to guess work on
the perfect choice of invariants.

For more understanding on Lie analysis of differential and difference equations, see [11, 24].

3. Main results

We are studying the equation

un+5 = F =
unun+1

un+4(An +Bnunun+1un+2un+3)
. (3.1)

Applying condition (2.4) to (3.1), we get

Q(n+ 5, F) −Q(n,un)
∂F

∂un
−Q(n+ 1,un+1)

∂F

∂un+1
−Q(n+ 2,un+2)

∂F

∂un+2

−Q(n+ 3,un+3)
∂F

∂un+3
−Q(n+ 4,un+4)

∂F

∂un+4
= 0,

that is,

Q(n+ 5, F) +
Anunun+1Q (n+ 4,un+4)

un+4 (An +Bnunun+1un+2un+3)
2

+
Bnun

2un+1
2un+2un+3Q (n+ 4,un+4)

un+4
2 (An +Bnunun+1un+2un+3)

2 +
Bnun

2un+1
2un+2Q (n+ 3,un+3)

un+4 (An +Bnunun+1un+2un+3)
2

+
Bnun

2un+1
2un+3Q (n+ 2,un+2)

un+4 (An +Bnunun+1un+2un+3)
2 −

Anun+1Q (n,un)

un+4 (An +Bnunun+1un+2un+3)
2 = 0.

(3.2)

Eliminating F is achieved by applying implicit differentiation with respect to un (regarding un+4 as a
function of un, un+1, un+2, un+3 and un+5) via the differential operator

L =
∂

∂un
+
∂un+4

∂un

∂

∂un+4
=
∂

∂un
−

[(
∂F

∂un

)/( ∂F

∂un+4

)]
∂

∂un+4
.

With some simplification, we get

(An +Bnunun+1un+2un+3)Q
′ (n+ 4,un+4) +Bnunun+1un+2Q(n+ 3,un+3)

+Bnunun+1un+3Q(n+ 2,un+2) +Bnunun+2un+3Q(n+ 2,un+2) (3.3)
+Bnunun+2un+3Q(n+ 1,un+1) − (An +Bnunun+1un+2un+3)Q

′ (n,un)
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+ 2Bnun+1un+2un+3Q(n,un) +
An

un
Q (n,un) = 0.

The symbol ′ denotes the derivative with respect to the continuous variable. Differentiating (3.3) with
respect to un twice, keeping un+4 constant, yields

−Bnunun+1un+2un+3Q
′′′(n,un) −AnQ

′′′(n,un) +
An

un
Q ′′ (n,un)

−
2An

un2 Q
′ (n,un) +

2An

un3 Q (n,un) = 0.
(3.4)

The characteristic in (3.4) is a function of un only and thus we split (3.4) to get the system

1 : Q ′′′(n,un) −
1
un
Q ′′ (n,un) +

2
un2Q

′ (n,un) −
2
un3Q (n,un) = 0,

un+1un+2un+3 : Q ′′′(n,un) = 0.
(3.5)

One obtains the solution to (3.5) as

Q (n,un) = αnun
2 +βnun (3.6)

for some arbitrary functions αn and βn of n. Substituting (3.6) and its shifts in (3.2), and making a
replacement of the expression of un+5 given in (3.1) in the resulting equation leads to

Bnunun+1un+2un+3
2un+4αn+3 +Bnunun+1un+2un+3un+4

2αn+4

+Bnunun+1un+2
2un+3un+4αn+2 +Bnunun+1un+2un+3un+4(βn+2 +βn+3

+βn+4 +βn+5) +Anun+4
2αn+4 −Anunun+4αn −Anun+1un+4αn+1

−Anun+4 (βn +βn+1 −βn+4 −βn+5) + unun+1αn+5 = 0.

Now equate coefficients of all powers of shifts of un to zero, i.e.,

unun+1un+2un+3
2un+4 : αn+3 = 0,

unun+1un+2un+3un+4
2 : αn+4 = 0,

unun+1un+2
2un+3un+4 : αn+2 = 0,

unun+1un+2un+3un+4 : βn+2 +βn+3 +βn+4 +βn+5 = 0,

un+4
2 : αn+4 = 0,

unun+4 : αn = 0,
un+1un+4 : αn+1 = 0,
un+4 : βn +βn+1 −βn+4 −βn+5 = 0,
unun+1 : αn+5 = 0.

So the system above is reduced to

αn = 0, βn +βn+1 +βn+2 +βn+3 = 0. (3.7)

The three independent solutions of the linear third-order difference equation (3.7) are given by (−1)n, βn,
and β̄n, where β = exp{iπ/2} and β̄ denotes its complex conjugate. The characteristics are then given by

Q1(n,un) = (−1)nun, Q2(n,un) = βnun, and Q3(n,un) = β̄nun,
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and therefore, the symmetry operators admitted by (3.1) are given by

X1 =

4∑
j=0

(−1)n+jun+j
∂

∂un+j

, X2 =

4∑
j=0

βn+jun+j
∂

∂un+j

, X3 =

4∑
j=0

β̄n+jun+j
∂

∂un+j

.

One can choose any one of the characteristics to write the canonical coordinate. We select Q2. Thus

Sn =

∫
dun

Q2(n,un)
=

∫
dun

βnun
=

1
βn

ln |un|

and we use relation (3.7) to derive the invariant function Ṽn as follows:

Ṽn = Snβ
n + Sn+1β

n+1 + Sn+2β
n+2 + Sn+3β

n+3. (3.8)

Actually,

X1(Ṽn) = (−1)n + (−1)n+1 + (−1)n+2 + (−1)n+3 = 0,

X2(Ṽn) = β
n +βn+1 +βn+2 +βn+3 = 0,

X3(Ṽn) = β̄
n + β̄n+1 + β̄n+2 + β̄n+3 = 0.

For the sake of simplicity, we utilize

|Vn| = exp(−Ṽn) (3.9)

instead. In other words, Vn = ±1/(unun+1un+2un+3). One can show via (3.1) and (3.9) that

Vn+2 = AnVn ±Bn. (3.10)

By utilizing the plus sign (one is allowed to choose), the solution of (3.10) can be presented in closed form
as follows:

V2n+j =Vj

n−1∏
k1=0

A2k1+j

+

n−1∑
l=0

B2l+j

n−1∏
k2=l+1

A2k2

 , j = 0, 1.

From the above equation, obtaining the solution of (3.1) is easier. We first use (2.5) to get

|un| = exp (βnSn) .

Secondly, we use (3.8) to get

|un| = exp

[
βnc1 + β̄

nc2 + (−1)nc3 −

(
1
4
−
i

4

) n−1∑
k1=0

βnβ̄k1 |Ṽk1 |

−

(
1
4
+
i

4

) n−1∑
k2=0

β̄nβk2 |Ṽk2 |−
1
2

n−1∑
k3=0

(−1)n−k3 |Ṽk3 |

]
.

Finally, invoking (3.9) yields

|un| = exp

[
βnc1 + β̄

nc2 + (−1)nc3 +

(
1
4
−
i

4

) n−1∑
k1=0

βnβ̄k1 ln |Vk1 |

+

(
1
4
+
i

4

) n−1∑
k2=0

β̄nβk2 ln |Vk2 |+
1
2

n−1∑
k3=0

(−1)n−k3 ln |Vk3 |

]
(3.11)
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= exp

(
Hn +

1
2

n−1∑
k=0

[√
2 cos

(
π(2k− 2n+ 1)

4

)
+ (−1)k−n

]
ln |Vk|

)
,

where Hn = βnc1 + β̄
nc2 + (−1)nc3. Replacing n with 4n+ j for j = 0, 1, 2, 3 yields

|u4n+j| = exp

[
Hj +

1
2

n−1∑
k=0

(√
2 cos

(
π(2k− 2j+ 1)

4

)
+ (−1)k−j

)
ln |Vk|

]
. (3.12)

Set j = 0 in (3.12) to get

|u4n| = exp(H0)

n−1∏
s=0

∣∣∣∣ V4s

V4s+1

∣∣∣∣ .
But substituting n = 0 in (3.11) leads to |u0| = exp(H0). Furthermore, using (3.1) and (3.9), it can be shown
that there is no need of absolute values. Hence

u4n = u0

n−1∏
s=0

V4s

V4s+1
= u0

n−1∏
s=0

V0

(
2s−1∏
k1=0

A2k1

)
+

2s−1∑
l=0

(
B2l

2s−1∏
k2=l+1

A2k2

)

V1

(
2s−1∏
k1=0

A2k1+1

)
+

2s−1∑
l=0

(
B2l+1

2s−1∏
k2=l+1

A2k2

)

=
un4
un−1

0

n−1∏
s=0

(
2s−1∏
k1=0

A2k1

)
+ u0u1u2u3

2s−1∑
l=0

(
B2l

2s−1∏
k2=l+1

A2k2

)
(

2s−1∏
k1=0

A2k1+1

)
+ u1u2u3u4

2s−1∑
l=0

(
B2l+1

2s−1∏
k2=l+1

A2k2+1

) .

For j = 1, we find that

u4n+1 = u1

n−1∏
s=0

V4s+1

V4s+2
,

so that

u4n+1 = u1

n−1∏
s=0

V1

(
2s−1∏
k1=0

A2k1+1

)
+

n−1∑
l=0

(
B2l+1

2s−1∏
k2=l+1

A2k2+1

)

V0

(
2s∏

k1=0
A2k1

)
+

2s∑
l=0

(
B2l

2s∏
k2=l+1

A2k2

)

=
un0 u1

un4

n−1∏
s=0

(
2s−1∏
k1=0

A2k1+1

)
+ u1u2u3u4

2s−1∑
l=0

(
B2l+1

2s−1∏
k2=l+1

A2k2+1

)
(

2s∏
k1=0

A2k1

)
+ u0u1u2u3

2s∑
l=0

(
B2l

2s∏
k2=l+1

A2k2

) .

For j = 2, we have

u4n+2 = u2

n−1∏
s=0

V4s+2

V4s+3
,

which evaluates to

u4n+2 = u2

n−1∏
s=0

V0

(
2s∏

k1=0
A2k1

)
+

2s∑
l=0

(
B2l

2s∏
k2=l+1

A2k2

)

V1

(
2s∏

k1=0
A2k1+1

)
+

2s∑
l=0

(
B2l+1

2s∏
k2=l+1

A2k2+1

)
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=
un4 u2

un0

n−1∏
s=0

(
2s∏

k1=0
A2k1

)
+ u0u1u2u3

2s∑
l=0

(
B2l

2s∏
k2=l+1

A2k2

)
(

2s∏
k1=0

A2k1+1

)
+ u1u2u3u4

2s∑
l=0

(
B2l+1

2s∏
k2=l+1

A2k2+1

) .

Finally, for j = 3, we obtain

u4n+3 = u3

n−1∏
s=0

V4s+3

V4s+4
,

so that

u4n+3 = u3

n−1∏
s=0

V1

(
2s∏

k1=0
A2k1+1

)
+

2s∑
l=0

(
B2l+1

2s∏
k2=l+1

A2k2+1

)

V0

(
2s+1∏
k1=0

A2k1

)
+

2s+1∑
l=0

(
B2l

2s+1∏
k2=l+1

A2k2

)

=
un0 u3

un4

n−1∏
s=0

(
2s∏

k1=0
A2k1+1

)
+ u1u2u3u4

2s∑
l=0

(
B2l+1

2s∏
k2=l+1

A2k2+1

)
(

2s+1∏
k1=0

A2k1

)
+ u0u1u2u3

2s+1∑
l=0

(
B2l

2s+1∏
k2=l+1

A2k2

) .

Hence, the solution to (1.2) is given by

x4n−4 =
xn0

xn−1
−4

n−1∏
s=0

(
2s−1∏
k1=0

a2k1

)
+ x−4x−3x−2x−1

2s−1∑
l=0

(
b2l

2s−1∏
k2=l+1

a2k2

)
(

2s−1∏
k1=0

a2k1+1

)
+ x−3x−2x−1x0

2s−1∑
l=0

(
b2l+1

2s−1∏
k2=l+1

a2k2+1

) ,

which can be rearranged as

x4n =
xn+1

0
xn−4

n∏
s=0

(
2s−1∏
k1=0

a2k1

)
+ x−4x−3x−2x−1

2s−1∑
l=0

(
b2l

2s−1∏
k2=l+1

a2k2

)
(

2s−1∏
k1=0

a2k1+1

)
+ x−3x−2x−1x0

2s−1∑
l=0

(
b2l+1

2s−1∏
k2=l+1

a2k2+1

) .

The term s = 0 in the product (indexed by s) is equal to 1 using the facts that
−1∑
i=0

ai = 0 and
−1∏
j=0
aj = 1.

As a result, we can still rewrite the solution as

x4n =
xn+1

0
xn−4

n−1∏
s=0

(
2s+1∏
k1=0

a2k1

)
+ x−4x−3x−2x−1

2s+1∑
l=0

(
b2l

2s+1∏
k2=l+1

a2k2

)
(

2s+1∏
k1=0

a2k1+1

)
+ x−3x−2x−1x0

2s+1∑
l=0

(
b2l+1

2s+1∏
k2=l+1

a2k2+1

) . (3.13)

Furthermore, observe that

x4n−3 =
xn−4x−3

xn0

n−1∏
s=0

(
2s−1∏
k1=0

a2k1+1

)
+ x−3x−2x−1x0

2s−1∑
l=0

(
b2l+1

2s−1∏
k2=l+1

a2k2+1

)
(

2s∏
k1=0

a2k1

)
+ x−4x−3x−2x−1

2s∑
l=0

(
b2l

2s∏
k2=l+1

a2k2

) , (3.14)
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x4n−2 =
xn0 x−2

xn−4

n−1∏
s=0

(
2s∏

k1=0
a2k1

)
+ x−4x−3x−2x−1

2s∑
l=0

(
b2l

2s∏
k2=l+1

a2k2

)
(

2s∏
k1=0

a2k1+1

)
+ x−3x−2x−1x0

2s∑
l=0

(
b2l+1

2s∏
k2=l+1

a2k2+1

) , (3.15)

x4n−1 =
xn−4x−1

xn0

n−1∏
s=0

(
2s∏

k1=0
a2k1+1

)
+ x−3x−2x−1x0

2s∑
l=0

(
b2l+1

2s∏
k2=l+1

a2k2+1

)
(

2s+1∏
k1=0

a2k1

)
+ x−4x−3x−2x−1

2s+1∑
l=0

(
b2l

2s+1∏
k2=l+1

a2k2

) , (3.16)

as long as any of the denominators does not vanish.
In the following sections, we look at some special cases.

4. The case an, bn are 1-periodic

In this case an = a and bn = b, where a,b ∈ R.

4.1. The case a 6= 1
From (3.13)-(3.16), the solution is given by

x4n =
xn+1

0
xn−4

n−1∏
s=0

a2s+2 + bx−4x−3x−2x−1
1−a2s+2

1−a

a2s+2 + bx−3x−2x−1x0
1−a2s+2

1−a

, x4n−3 =
xn−4x−3

xn0

n−1∏
s=0

a2s + bx−3x−2x−1x0
1−a2s

1−a

a2s+1 + bx−4x−3x−2x−1
1−a2s+1

1−a

,

x4n−2 =
xn0 x−2

xn−4

n−1∏
s=0

a2s+1 + bx−4x−3x−2x−1
1−a2s+1

1−a

a2s+1 + bx−3x−2x−1x0
1−a2s+1

1−a

, x4n−1 =
xn−4x−1

xn0

n−1∏
s=0

a2s+1 + bx−3x−2x−1x0
1−a2s+1

1−a

a2s+2 + bx−4x−3x−2x−1
1−a2s+2

1−a

,

where x−4, x0 6= 0 and for all (i, s) ∈ {0, 1}× {0, 1, 2, 3, . . . ,n− 1},

(1 − a)a2s+i + (1 − a2s+i)bx−3x−2x−1x0 6= 0

and
(1 − a)a2s+1+i + (1 − a2s+1+i)bx−4x−3x−2x−1 6= 0.

4.1.1. The case a = −1
In this case, the solution which for b = ±1 appears in [6] (see Theorems 3 and 8), is given by

x4n =
xn+1

0
xn−4

, x4n−3 =
xn−4x−3

xn0
(−1 + bx−4x−3x−2x−1)

−n,

x4n−2 =
xn0 x−2

xn−4

(
−1 + bx−4x−3x−2x−1

−1 + bx−3x−2x−1x0

)n

, x4n−1 =
xn−4x−1

xn0
(−1 + bx−3x−2x−1x0)

n,

where x−4, x0 6= 0, bx−4x−3x−2x−1 6= 1 and bx−3x−2x−1x0 6= 1.

4.2. The case a = 1
From (3.13)-(3.16), the solution, which for b = ±1 appears in [6] (see Theorems 1 and 6), is given by

x4n =
xn+1

0
xn−4

n−1∏
s=0

1 + (2s+ 2)bx−4x−3x−2x−1

1 + (2s+ 2)bx−3x−2x−1x0
, x4n−3 =

xn−4x−3

xn0

n−1∏
s=0

1 + 2sbx−3x−2x−1x0

1 + (2s+ 1)bx−4x−3x−2x−1
,

x4n−2 =
xn0 x−2

xn−4

n−1∏
s=0

1 + (2s+ 1)bx−4x−3x−2x−1

1 + (2s+ 1)bx−3x−2x−1x0
, x4n−1 =

xn−4x−1

xn0

n−1∏
s=0

1 + (2s+ 1)bx−3x−2x−1x0

1 + (2s+ 2)bx−4x−3x−2x−1
,

where x−4, x0 6= 0, 2jbx−4x−3x−2x−1 6= −1, (2j − 1)bx−4x−3x−2x−1 6= −1, 2jbx−3x−2x−1x0 6= −1, and
(2j− 1)bx−3x−2x−1x0 6= −1 for all j = 1, 2, 3, . . . ,n.
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5. The case an,bn are 2-periodic

We assume that {an}∞n=0 = a0,a1,a0,a1, . . . and {bn}
∞
n=0 = b0,b1,b0,b1, . . .. Then, from (3.13)-(3.16),

we have

x4n =
xn+1

0
xn−4

n−1∏
s=0

a2s+2
0 + b0x−4x−3x−2x−1

2s+1∑
l=0

al0

a2s+2
1 + b1x−3x−2x−1x0

2s+1∑
l=0

al1

, x4n−3 =
xn−4x−3

xn0

n−1∏
s=0

a2s
1 + b1x−3x−2x−1x0

2s−1∑
l=0

al1

a2s+1
0 + b0x−4x−3x−2x−1

2s∑
l=0

al0

,

x4n−2 =
xn0 x−2

xn−4

n−1∏
s=0

a2s+1
0 + b0x−4x−3x−2x−1

2s∑
l=0

al0

a2s+1
1 + b1x−3x−2x−1x0

2s∑
l=0

al1

, x4n−1 =
xn−4x−1

xn0

n−1∏
s=0

a2s+1
1 + b1x−3x−2x−1x0

2s∑
l=0

al1

a2s+2
0 + b0x−4x−3x−2x−1

2s+1∑
l=0

al0

,

as long as x−4, x0 6= 0 and for all (i, s) ∈ {0, 1}× {0, 1, 2, . . . ,n− 1}, a2s+1+i
0 + b0x−4x−3x−2x−1

2s+i∑
l=0

al0 6= 0

and a2s+1+i
1 + b1x−3x−2x−1x0

2s+i∑
l=0

al1 6= 0.

5.1. The case a0 = 1 and a1 = −1
The solution is given by

x4n =
xn+1

0
xn−4

n−1∏
s=0

(1 + (2s+ 2)b0x−4x−3x−2x−1),

x4n−3 =
xn−4x−3

xn0

n−1∏
s=0

1
1 + (2s+ 1)b0x−4x−3x−2x−1

,

x4n−2 = x−2

(
x0

x−4(−1 + b1x−3x−2x−1x0)

)n n−1∏
s=0

(1 + (2s+ 1)b0x−4x−3x−2x−1),

x4n−1 = x−1

(
x−4(−1 + b1x−3x−2x−1x0)

x0

)n n−1∏
s=0

1
1 + (2s+ 2)b0x−4x−3x−2x−1

,

where x−4, x0 6= 0, b1x−3x−2x−1x0 6= 1 and jb0x−4x−3x−2x−1 6= −1 for all j = 1, 2, 3, . . . , 2n.

5.2. The case a0 = −1 and a1 = 1
In this case, we obtain

x4n =
xn+1

0
xn−4

n−1∏
s=0

1
1 + (2s+ 2)b1x−3x−2x−1x0

,

x4n−3 = x−3

(
x−4

x0(−1 + b0x−4x−3x−2x−1)

)n n−1∏
s=0

(1 + 2sb1x−3x−2x−1x0),

x4n−2 = x−2

(
x0(−1 + b0x−4x−3x−2x−1)

x−4

)n n−1∏
s=0

1
1 + (2s+ 1)b1x−3x−2x−1x0

,

x4n−1 =
xn−4x−1

xn0

n−1∏
s=0

(1 + (2s+ 1)b1x−3x−2x−1x0),

where x−4, x0 6= 0, b0x−4x−3x−2x−1 6= 1 and jb1x−3x−2x−1x0 6= −1 for all j = 1, 2, 3, . . . , 2n.
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6. Numerical examples

In this section, we plot some graphs that illustrate the behavior of the solutions.

Example 6.1. Figure 1 is the graph of un+5 = unun+1
un+4(1+8unun+1un+2un+3)

with u0 = 1,u1 = 0.96,u2 =

0.71,u3 = 8, and u4 = 0.46.

Example 6.2. Figure 2 is the graph of un+5 = unun+1
un+4(1+0.15unun+1un+2un+3)

with u0 = 0.46,u1 = 0.44,u2 =

0.36,u3 = 0.98, and u4 = 0.6.

Figure 1: Graph of un+5 = unun+1
un+4(1+8unun+1un+2un+3)

. Figure 2: Graph of un+5 = unun+1
un+4(1+0.15unun+1un+2un+3)

.

Example 6.3. Figure 3 is the graph of un+5 = unun+1
un+4(7+3unun+1un+2un+3)

with u0 = 2,u1 = 0.1,u2 =

0.96,u3 = 6, and u4 = 0.26.

Example 6.4. Figure 4 is the graph of un+5 = unun+1
un+4(0.93+0.86unun+1un+2un+3)

with u0 = 0.79,u1 = 0.22,u2 =

0.05,u3 = 0.74, and u4 = 0.17.

Figure 3: Graph of un+5 = unun+1
un+4(7+3unun+1un+2un+3)

. Figure 4: Graph of un+5 = unun+1
un+4(0.93+0.86unun+1un+2un+3)

.
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7. Conclusion

Our work in this paper was twofold. First, we found non-trivial Lie symmetry generators of the
difference equations (1.2). Second, we derived explicit formulas for solutions of difference equations in
question. Consequently, this generalized what Elsayed found where the values of an and bn were only
confined to ±1. We showed that in those particular cases, our results yielded Elsayed’s results.
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