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Abstract
The concept of the direct product of finite family of B-algebras is introduced by Lingcong and Endam [J. A. V. Lingcong, J.

C. Endam, Int. J. Algebra, 10 (2016), 33–40]. In this paper, we introduce the concept of the direct product of infinite family of
UP (BCC)-algebras, we call the external direct product, which is a general concept of the direct product in the sense of Lingcong
and Endam, and find the result of the external direct product of special subsets of UP (BCC)-algebras. Also, we introduce
the concept of the weak direct product of UP (BCC)-algebras. Finally, we provide several fundamental theorems of (anti-)UP
(BCC)-homomorphisms in view of the external direct product UP (BCC)-algebras.
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1. Introduction and preliminaries

Imai and Iséki introduced two classes of abstract algebras called BCK-algebras and BCI-algebras and
have been extensively investigated by many researchers. It is known that the class of BCK-algebras is
a proper subclass of the class of BCI-algebras [15, 16]. In 2002, Neggers and Kim [29] constructed a
new algebraic structure. They took some properties from BCI and BCK-algebras be called a B-algebra.
Furthermore, Kim and Kim [22] introduced a new notion, called a BG-algebra which is a generalization
of B-algebra. They obtained several isomorphism theorems of BG-algebras and related properties.

The notion of UP-algebras was introduced by Iampan [11] in 2017, and it is known that the class
of KU-algebras [30] is a proper subclass of the class of UP-algebras. It have been examined by several
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researchers, for example, graphs associated with commutative UP-algebras and a graph of equivalence
classes of commutative UP-algebras by Ansari et al. in 2018 [2]. In the same year Senapati et al. [36]
applied the cubic set structure in UP-algebras and proved the results based on them. In 2019, Satirad et
al. [32] proved every nonempty set and every nonempty totally ordered set can be a UP-algebra. In 2020,
Romano and Jun [31] introduced the concept of weak implicative UP-filters in UP-algebras, etc. In 2022,
Jun et al. [17] have shown that the concept of UP-algebras (see [11]) and the concept of BCC-algebras (see
[24]) are the same concept. Therefore, in this article and future research, our research team will use the
name BCC instead of UP in honor of Komori, who first defined it in 1984.

The concept of the direct product [35] was first defined in the group and obtained some properties.
For example, a direct product of the group is also a group, and a direct product of the abelian group is
also an abelian group. Then, direct product groups are applied to other algebraic structures. In 2016,
Lingcong and Endam [25] discussed the notion of the direct product of B-algebras, 0-commutative B-
algebras, and B-homomorphisms and obtained related properties, one of which is a direct product of two
B-algebras, which is also a B-algebra. Then, they extended the concept of the direct product of B-algebra
to finite family B-algebra, and some of the related properties were investigated. Also, they introduced
two canonical mappings of the direct product of B-algebras and we obtained some of their properties
[26]. In the same year, Endam and Teves [8] defined the direct product of BF-algebras, 0-commutative
BF-algebras, and BF-homomorphism and obtained related properties. In 2018, Abebe [1] introduced the
concept of the finite direct product of BRK-algebras and proved that the finite direct product of BRK-
algebras is a BRK-algebra. In 2019, Widianto et al. [40] defined the direct product of BG-algebras, 0-
commutative BG-algebras, and BG-homomorphism, including related properties of BG-algebras. In 2020,
Setiani et al. [35] defined the direct product of BP-algebras, which is equivalent to B-algebras. They
obtained the relevant property of the direct product of BP-algebras and then defined the direct product
of BP-algebras as applied to finite sets of BP-algebras, finite family 0-commutative BP-algebras, and finite
family BP-homomorphisms. In 2021, Kavitha and Gowri [21] defined the direct product of GK algebra.
They derived the finite form of the direct product of GK algebra and function as well. They investigated
and applied the concept of the direct product of GK algebra in GK function and GK kernel and obtained
interesting results.

In this paper, we introduce the concept of the direct product of infinite family of BCC-algebras, we call
the external direct product, which is a general concept of the direct product in the sense of Lingcong and
Endam [25]. Moreover, we introduce the concept of the weak direct product of BCC-algebras. Finally, we
discuss several (anti-)BCC-homomorphism theorems in view of the external direct product BCC-algebras.

The concept of BCC-algebras (see [24]) can be redefined without the condition (1.1) as follows.

Definition 1.1 ([10]). An algebra X = (X; ∗, 0) of type (2, 0) is called a BCC-algebra if it satisfies the following
axioms:

(∀x,y, z ∈ X)((y ∗ z) ∗ ((x ∗ y) ∗ (x ∗ z)) = 0), (BCC-1)
(∀x ∈ X)(0 ∗ x = x), (BCC-2)
(∀x ∈ X)(x ∗ 0 = 0), (BCC-3)
(∀x,y ∈ X)(x ∗ y = 0,y ∗ x = 0⇒ x = y). (BCC-4)

Example 1.2. Let X = {0, 1, 2, 3, 4, 5, 6} be a set with the Cayley table as follows:

∗ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 0 0 2 3 4 0 6
2 0 1 0 3 4 5 6
3 0 1 2 0 4 0 6
4 0 1 2 3 0 5 6
5 0 1 2 3 4 0 6
6 0 1 2 3 4 5 0
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Then X = (X; ∗, 0) is a BCC-algebra.

Example 1.3 ([33]). Let X be a universal set and let Ω ∈ P(X), where P(X) means the power set of X. Let
PΩ(X) = {A ∈ P(X) | Ω ⊆ A}. Define a binary operation · on PΩ(X) by putting A ·B = B∩ (AC ∪Ω) for all
A,B ∈ PΩ(X), where AC means the complement of a subset A. Then (PΩ(X); ·,Ω) is a BCC-algebra and
we shall call it the generalized power BCC-algebra of type 1 with respect toΩ. Let PΩ(X) = {A ∈ P(X) | A ⊆ Ω}.
Define a binary operation ∗ on PΩ(X) by putting A ∗ B = B ∪ (AC ∩Ω) for all A,B ∈ PΩ(X). Then
(PΩ(X); ∗,Ω) is a BCC-algebra and we shall call it the generalized power BCC-algebra of type 2 with respect
to Ω. In particular, (P(X); ·, ∅) is a BCC-algebra and we shall call it the power BCC-algebra of type 1, and
(P(X); ∗,X) is a BCC-algebra and we shall call it the power BCC-algebra of type 2.

Example 1.4 ([7]). Let N0 be the set of all natural numbers with zero. Define two binary operations ∗ and
• on N0 by

(∀x,y ∈ N0)

(
x ∗ y =

{
y, if x < y,
0, otherwise,

)
and

(∀x,y ∈ N0)

(
x • y =

{
y, if x > y or x = 0,
0, otherwise.

)
Then (N0; ∗, 0) and (N0; •, 0) are BCC-algebras.

For more examples of BCC-algebras, see [2, 3, 6, 12, 14, 23, 32, 33, 36, 37].
Let A = (A; ∗A, 0A) and B = (B; ∗B, 0B) be BCC-algebras. A map ϕ : A → B is called a BCC-

homomorphism if
(∀x,y ∈ A)(ϕ(x ∗A y) = ϕ(x) ∗B ϕ(y))

and an anti-BCC-homomorphism if

(∀x,y ∈ A)(ϕ(x ∗A y) = ϕ(y) ∗B ϕ(x)).

The kernel of ϕ, denoted by kerϕ, is defined to be the {x ∈ A | ϕ(x) = 0B}. The kerϕ is a BCC-
ideal of A, and kerϕ = {0A} if and only if ϕ is injective. A (anti-)BCC-homomorphism ϕ is called a
(anti-)BCC-monomorphism, (anti-)BCC-epimorphism, or (anti-)BCC-isomorphism if ϕ is injective, surjec-
tive, or bijective, respectively.

In a BCC-algebra X = (X; ∗, 0), the following assertions are valid (see [11, 12]).

(∀x ∈ X)(x ∗ x = 0), (1.1)
(∀x,y, z ∈ X)(x ∗ y = 0,y ∗ z = 0⇒ x ∗ z = 0),
(∀x,y, z ∈ X)(x ∗ y = 0⇒ (z ∗ x) ∗ (z ∗ y) = 0),
(∀x,y, z ∈ X)(x ∗ y = 0⇒ (y ∗ z) ∗ (x ∗ z) = 0),
(∀x,y ∈ X)(x ∗ (y ∗ x) = 0),
(∀x,y ∈ X)((y ∗ x) ∗ x = 0⇔ x = y ∗ x),
(∀x,y ∈ X)(x ∗ (y ∗ y) = 0),
(∀u, x,y, z ∈ X)((x ∗ (y ∗ z)) ∗ (x ∗ ((u ∗ y) ∗ (u ∗ z))) = 0),
(∀u, x,y, z ∈ X)((((u ∗ x) ∗ (u ∗ y)) ∗ z) ∗ ((x ∗ y) ∗ z) = 0),
(∀x,y, z ∈ X)(((x ∗ y) ∗ z) ∗ (y ∗ z) = 0),
(∀x,y, z ∈ X)(x ∗ y = 0⇒ x ∗ (z ∗ y) = 0),
(∀x,y, z ∈ X)(((x ∗ y) ∗ z) ∗ (x ∗ (y ∗ z)) = 0),
(∀u, x,y, z ∈ X)(((x ∗ y) ∗ z) ∗ (y ∗ (u ∗ z)) = 0).
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According to [11], the binary relation 6 on a BCC-algebra X = (X; ∗, 0) is defined as follows:

(∀x,y ∈ X)(x 6 y⇔ x ∗ y = 0).

Definition 1.5. A BCC-algebra X = (X; ∗, 0) is said to be

(i) bounded if there is an element 1 ∈ X such that 1 6 x for all x ∈ X, that is,

(∀x ∈ X)(1 ∗ x = 0); (Bounded)

(ii) meet-commutative [34] if it satisfies the identity

(∀x,y ∈ X)(x∧ y = y∧ x), (Meet-commutative)

where

(∀x,y ∈ X)(x∧ y = (y ∗ x) ∗ x). (Meet)

Example 1.6. Let X = {0, 1, 2, 3} be a set with the Cayley table as follows:

∗ 0 1 2 3
0 0 1 2 3
1 0 0 2 3
2 0 1 0 3
3 0 0 0 0

Then X = (X; ∗, 0) is a bounded BCC-algebra.

Example 1.7. Let X = {0, 1, 2, 3, 4} be a set with the Cayley table as follows:

∗ 0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 3 4
2 0 1 0 3 4
3 0 1 2 0 4
4 0 1 2 3 0

Then X = (X; ∗, 0) is a meet-commutative BCC-algebra.

Definition 1.8 ([9, 11, 13, 18–20, 38]). A nonempty subset S of a BCC-algebra X = (X; ∗, 0) is called

(i) a BCC-subalgebra of X if it satisfies the following condition:

(∀x,y ∈ S)(x ∗ y ∈ S);

(ii) a near BCC-filter of X if it satisfies the following condition:

(∀x,y ∈ X)(y ∈ S⇒ x ∗ y ∈ S); (1.2)

(iii) a BCC-filter of X if it satisfies the following conditions:

the constant 0 of X is in S, (1.3)
(∀x,y ∈ X)(x ∗ y ∈ S, x ∈ S⇒ y ∈ S); (1.4)
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(iv) an implicative BCC-filter of X if it satisfies the condition (1.3) and the following condition:

(∀x,y, z ∈ X)(x ∗ (y ∗ z) ∈ S, x ∗ y ∈ S⇒ x ∗ z ∈ S); (1.5)

(v) a comparative BCC-filter of X if it satisfies the condition (1.3) and the following condition:

(∀x,y, z ∈ X)(x ∗ ((y ∗ z) ∗ y) ∈ S, x ∈ S⇒ y ∈ S); (1.6)

(vi) a shift BCC-filter of X if it satisfies the condition (1.3) and the following condition:

(∀x,y, z ∈ X)(x ∗ (y ∗ z) ∈ S, x ∈ S⇒ ((z ∗ y) ∗ y) ∗ z ∈ S); (1.7)

(vii) a BCC-ideal of X if it satisfies the condition (1.3) and the following condition:

(∀x,y, z ∈ X)(x ∗ (y ∗ z) ∈ S,y ∈ S⇒ x ∗ z ∈ S); (1.8)

(viii) a strong BCC-ideal of X if it satisfies the condition (1.3) and the following condition:

(∀x,y, z ∈ X)((z ∗ y) ∗ (z ∗ x) ∈ S,y ∈ S⇒ x ∈ S). (1.9)

We get the diagram of the special subsets of BCC-algebras, which is shown with Figure 1.

Figure 1: Special subsets of BCC-algebras.

2. External direct product of BCC-algebras

Lingcong and Endam [25] discussed the notion of the direct product of B-algebras, 0-commutative B-
algebras, and B-homomorphisms and obtained related properties, one of which is a direct product of two
B-algebras, which is also a B-algebra. Then, they extended the concept of the direct product of B-algebra
to finite family B-algebra, and some of the related properties were investigated as follows.

Definition 2.1 ([25]). Let (Xi; ∗i) be an algebra for each i ∈ {1, 2, . . . , k}. Define the direct product of algebras
X1,X2, . . . ,Xk to be the structure (

∏k
i=1 Xi;⊗), where

k∏
i=1

Xi = X1 ×X2 × · · · ×Xk = {(x1, x2, . . . , xk) | xi ∈ Xi ∀i = 1, 2, . . . , k}

and whose operation ⊗ is given by

(x1, x2, . . . , xk)⊗ (y1,y2, . . . ,yk) = (x1 ∗1 y1, x2 ∗2 y2, . . . , xk ∗k yk)
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for all (x1, x2, . . . , xk), (y1,y2, . . . ,yk) ∈
∏k
i=1 Xi.

Now, we extend the concept of the direct product to infinite family of BCC-algebras and provide some
of its properties.

Definition 2.2. Let Xi be a nonempty set for each i ∈ I. Define the external direct product of sets Xi for all
i ∈ I to be the set

∏
i∈I Xi, where∏

i∈I
Xi = {f : I→

⋃
i∈I
Xi | f(i) ∈ Xi ∀i ∈ I}.

For convenience, we define an element of
∏
i∈I Xi with a function (xi)i∈I : I→

⋃
i∈I Xi, where i 7→ xi ∈ Xi

for all i ∈ I.

Remark 2.3. Let Xi be a nonempty set and Si a subset of Xi for all i ∈ I. Then
∏
i∈I Si is a nonempty

subset of the external direct product
∏
i∈I Xi if and only if Si is a nonempty subset of Xi for all i ∈ I.

Definition 2.4. Let Xi = (Xi; ∗i) be an algebra for all i ∈ I. Define the binary operation ⊗ on the external
direct product

∏
i∈I Xi = (

∏
i∈I Xi;⊗) as follows:

(∀(xi)i∈I, (yi)i∈I ∈
∏
i∈I

Xi)((xi)i∈I ⊗ (yi)i∈I = (xi ∗i yi)i∈I).

We shall show that ⊗ is a binary operation on
∏
i∈I Xi. Let (xi)i∈I, (yi)i∈I ∈

∏
i∈I Xi. Since ∗i is a

binary operation on Xi for all i ∈ I, we have xi ∗i yi ∈ Xi for all i ∈ I. Then (xi ∗i yi)i∈I ∈
∏
i∈I Xi such

that
(xi)i∈I ⊗ (yi)i∈I = (xi ∗i yi)i∈I.

Let (xi)i∈I, (yi)i∈I, (x′i)i∈I, (y
′
i)i∈I ∈

∏
i∈I Xi be such that (xi)i∈I = (yi)i∈I and (x′i)i∈I = (y′i)i∈I. We

shall show that (xi)i∈I ⊗ (x′i)i∈I = (yi)i∈I ⊗ (y′i)i∈I. Then

xi = yi for all i ∈ I and x′i = y
′
i for all i ∈ I.

Since ∗i is a binary operation on Xi for all i ∈ I, we have xi ∗i x′i = yi ∗i y′i for all i ∈ I. Thus

(xi)i∈I ⊗ (x′i)i∈I = (xi ∗i x′i)i∈I = (yi ∗i y′i)i∈I = (yi)i∈I ⊗ (y′i)i∈I.

Hence, ⊗ is a binary operation on
∏
i∈I Xi.

Let Xi = (Xi; ∗i, 0i) be a BCC-algebra for all i ∈ I. For i ∈ I, let xi ∈ Xi. We define the function
fxi : I→

⋃
i∈I Xi as follows:

(∀j ∈ I)

(
fxi(j) =

{
xi, if j = i,
0j, otherwise,

)
. (2.1)

Then fxi ∈
∏
i∈I Xi.

Lemma 2.5. Let Xi = (Xi; ∗i, 0i) be a BCC-algebra for all i ∈ I. For i ∈ I, let xi,yi ∈ Xi. Then fxi ⊗ fyi =
fxi∗iyi .

Proof. Now,

(∀j ∈ I)

(
(fxi ⊗ fyi)(j) =

{
xi ∗i yi, if j = i,
0j ∗j 0j, otherwise,

)
.

By (1.1), we have

(∀j ∈ I)

(
(fxi ⊗ fyi)(j) =

{
xi ∗i yi, if j = i,
0j, otherwise,

)
.

By (2.1), we have fxi ⊗ fyi = fxi∗iyi .



C. Chanmanee, et al., J. Math. Computer Sci., 29 (2023), 90–105 96

The following theorem shows that the direct product of BCC-algebras in term of infinite family of
BCC-algebras is also a BCC-algebra.

Theorem 2.6. Xi = (Xi; ∗i, 0i) is a BCC-algebra for all i ∈ I if and only if
∏
i∈I Xi = (

∏
i∈I Xi;⊗, (0i)i∈I) is a

BCC-algebra, where the binary operation ⊗ is defined in Definition 2.4.

Proof. Assume that Xi = (Xi; ∗i, 0i) is a BCC-algebra for all i ∈ I.
(BCC-1) Let (xi)i∈I, (yi)i∈I, (zi)i∈I ∈

∏
i∈I Xi. Since Xi satisfies (BCC-1), we have (yi ∗i zi) ∗i ((xi ∗i yi) ∗i

(xi ∗i zi)) = 0i for all i ∈ I. Thus

((yi)i∈I ⊗ (zi)i∈I)⊗ (((xi)i∈I ⊗ (yi)i∈I)⊗ ((xi)i∈I ⊗ (zi)i∈I))

= (yi ∗i zi)i∈I ⊗ ((xi ∗i yi)i∈I ⊗ (xi ∗i zi)i∈I)
= (yi ∗i zi)i∈I ⊗ ((xi ∗i yi) ∗i (xi ∗i zi))i∈I
= ((yi ∗i zi) ∗i ((xi ∗i yi) ∗i (xi ∗i zi)))i∈I = (0i)i∈I.

(BCC-2) Let (xi)i∈I ∈
∏
i∈I Xi. Since Xi satisfies (BCC-2), we have 0i ∗i xi = xi for all i ∈ I. Thus

(0i)i∈I ⊗ (xi)i∈I = (0i ∗i xi)i∈I = (xi)i∈I.

(BCC-3) Let (xi)i∈I ∈
∏
i∈I Xi. Since Xi satisfies (BCC-3), we have xi ∗i 0i = 0i for all i ∈ I. Thus

(xi)i∈I ⊗ (0i)i∈I = (xi ∗i 0i)i∈I = (0i)i∈I.

(BCC-4) Let (xi)i∈I, (yi)i∈I ∈
∏
i∈I Xi be such that (xi)i∈I ⊗ (yi)i∈I = (0i)i∈I and (yi)i∈I ⊗ (xi)i∈I =

(0i)i∈I. Then (xi ∗i yi)i∈I = (0i)i∈I and (yi ∗i xi)i∈I = (0i)i∈I, so xi ∗i yi = 0i and yi ∗i xi = 0i for all
i ∈ I. Since Xi satisfies (BCC-4), we have xi = yi for all i ∈ I. Therefore, (xi)i∈I = (yi)i∈I.

Hence,
∏
i∈I Xi = (

∏
i∈I Xi;⊗, (0i)i∈I) is a BCC-algebra.

Conversely, assume that
∏
i∈I Xi = (

∏
i∈I Xi;⊗, (0i)i∈I) is a BCC-algebra, where the binary operation

⊗ is defined in Definition 2.4. Let i ∈ I.
(BCC-1) Let xi,yi, zi ∈ Xi. Then fxi , fyi , fzi ∈

∏
i∈I Xi, which is defined by (2.1). Since

∏
i∈I Xi satisfies

(BCC-1), we have (fyi ⊗ fzi)⊗ ((fxi ⊗ fyi)⊗ (fxi ⊗ fzi)) = (0i)i∈I. Now,

(∀j ∈ I)

(
((fyi ⊗ fzi)⊗ ((fxi ⊗ fyi)⊗ (fxi ⊗ fzi)))(j)=

{
(yi ∗i zi) ∗i ((xi ∗i yi) ∗i (xi ∗i zi)), if j = i,
(0j ∗j 0j) ∗j ((0j ∗j 0j) ∗j (0j ∗j 0j)), otherwise,

)
,

this implies that (yi ∗i zi) ∗i ((xi ∗i yi) ∗i (xi ∗i zi)) = 0i.

(BCC-2) Let xi ∈ Xi. Then fxi ∈
∏
i∈I Xi, which is defined by (2.1). Since

∏
i∈I Xi satisfies (BCC-2), we

have (0i)i∈I ⊗ fxi = fxi . Now,

(∀j ∈ I)

(
((0i)i∈I ⊗ fxi)(j) =

{
0i ∗i xi, if j = i,
0j ∗j 0j, otherwise,

)
,

this implies that 0i ∗i xi = xi.
(BCC-3) Let xi ∈ Xi. Then fxi ∈

∏
i∈I Xi, which is defined by (2.1). Since

∏
i∈I Xi satisfies (BCC-3), we

have fxi ⊗ (0i)i∈I = (0i)i∈I. Now,

(∀j ∈ I)

(
(fxi ⊗ (0i)i∈I)(j) =

{
xi ∗i 0i, if j = i,
0j ∗j 0j, otherwise,

)
,

this implies that xi ∗i 0i = 0i.
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(BCC-4) Let xi,yi ∈ Xi be such that xi ∗i yi = 0i and yi ∗i xi = 0i for all i ∈ I. Then fxi , fyi ∈
∏
i∈I Xi,

which are defined by (2.1). Now,

(∀j ∈ I)

(
(fxi ⊗ fyi)(j) =

{
xi ∗i yi, if j = i,
0j ∗j 0j, otherwise,

)
,

and

(∀j ∈ I)

(
(fyi ⊗ fxi)(j) =

{
yi ∗i xi, if j = i,
0j ∗j 0j, otherwise,

)
.

By assumption and (1.1), we have

(∀j ∈ I)

(
(fxi ⊗ fyi)(j) =

{
0i, if j = i,
0j, otherwise,

)
,

and

(∀j ∈ I)

(
(fyi ⊗ fxi)(j) =

{
0i, if j = i,
0j, otherwise,

)
.

Thus fxi ⊗ fyi = (0i)i∈I and fyi ⊗ fxi = (0i)i∈I. Since
∏
i∈I Xi satisfies (BCC-4), we have fxi = fyi .

Therefore, xi = yi. Hence, Xi = (Xi; ∗i, 0i) is a BCC-algebra for all i ∈ I.

We call the BCC-algebra
∏
i∈I Xi = (

∏
i∈I Xi;⊗, (0i)i∈I) in Theorem 2.6 the external direct product

BCC-algebra induced by a BCC-algebra Xi = (Xi; ∗i, 0i) for all i ∈ I.

Theorem 2.7. Let Xi = (Xi; ∗i, 0i) be a BCC-algebra for all i ∈ I. Then Xi is a bounded BCC-algebra for all i ∈ I
if and only if

∏
i∈I Xi = (

∏
i∈I Xi;⊗, (0i)i∈I) is a bounded BCC-algebra, where the binary operation ⊗ is defined

in Definition 2.4.

Proof. By Theorem 2.6, we have Xi = (Xi; ∗i, 0i) is a BCC-algebra for all i ∈ I if and only if
∏
i∈I Xi =

(
∏
i∈I Xi;⊗, (0i)i∈I) is a BCC-algebra, where the binary operation ⊗ is defined in Definition 2.4. We are

left to prove that Xi is bounded for all i ∈ I if and only if
∏
i∈I Xi is bounded.

Assume that Xi is bounded for all i ∈ I. Then there exists 1i ∈ Xi be such that 1i 6 xi for all xi ∈ Xi.
That is, 1i ∗ xi = 0i for all i ∈ I. Now, (1i)i∈I ∈

∏
i∈I Xi. Let (xi)i∈I ∈

∏
i∈I Xi. Thus

(1i)i∈I ⊗ (xi)i∈I = (1i ∗i xi)i∈I = (0i)i∈I.

That is, (1i)i∈I 6 (xi)i∈I. Hence,
∏
i∈I Xi is bounded.

Conversely, assume that
∏
i∈I Xi is bounded. Then there exists (1i)i∈I ∈

∏
i∈I Xi such that (1i)i∈I 6

(xi)i∈I for all (xi)i∈I ∈
∏
i∈I Xi. That is, (1i)i∈I ⊗ (xi)i∈I = (0i)i∈I for all (xi)i∈I ∈

∏
i∈I Xi. Let i ∈ I.

Now, 1i ∈ Xi. Let xi ∈ Xi. Then fxi ∈
∏
i∈I Xi, which is defined by (2.1). Since

∏
i∈I Xi is bounded, we

have (1i)i∈I ⊗ fxi = (0i)i∈I. By Lemma 2.5, we have f1i∗ixi = (0i)i∈I. By (2.1), we have 1i ∗i xi = 0i. That
is, 1i 6 xi. Hence, Xi is bounded for all i ∈ I.

Theorem 2.8. Let Xi = (Xi; ∗i, 0i) be a BCC-algebra for all i ∈ I. Then Xi is a meet-commutative BCC-algebra
for all i ∈ I if and only if

∏
i∈I Xi = (

∏
i∈I Xi;⊗, (0i)i∈I) is a meet-commutative BCC-algebra, where the binary

operation ⊗ is defined in Definition 2.4.

Proof. By Theorem 2.6, we have Xi = (Xi; ∗i, 0i) is a BCC-algebra for all i ∈ I if and only if
∏
i∈I Xi =

(
∏
i∈I Xi;⊗, (0i)i∈I) is a BCC-algebra, where the binary operation ⊗ is defined in Definition 2.4. We are

left to prove that Xi is meet-commutative for all i ∈ I if and only if
∏
i∈I Xi is meet-commutative.
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Assume that Xi is meet-commutative for all i ∈ I. Let (xi)i∈I, (yi)i∈I ∈
∏
i∈I Xi. Since Xi is meet-

commutative, we have xi ∧ yi = yi ∧ xi for all i ∈ I. That is, (yi ∗i xi) ∗i xi = (xi ∗i yi) ∗i yi for all i ∈ I.
Thus

(xi)i∈I ∧ (yi)i∈I = ((yi)i∈I ⊗ (xi)i∈I)⊗ (xi)i∈I

= (yi ∗i xi)i∈I ⊗ (xi)i∈I

= ((yi ∗i xi) ∗i xi)i∈I
= ((xi ∗i yi) ∗i yi)i∈I
= (xi ∗i yi)i∈I ⊗ (yi)i∈I

= ((xi)i∈I ⊗ (yi)i∈I)⊗ (yi)i∈I

= (yi)i∈I ∧ (xi)i∈I.

Hence,
∏
i∈I Xi is meet-commutative.

Conversely, assume that
∏
i∈I Xi is meet-commutative. Let i ∈ I. Let xi,yi ∈ Xi. Then fxi , fyi ∈∏

i∈I Xi, which are defined by (2.1). Since
∏
i∈I Xi is meet-commutative, we have fxi ∧ fyi = fyi ∧ fxi .

That is, (fyi ⊗ fxi)⊗ fxi = (fxi ⊗ fyi)⊗ fyi . By Lemma 2.5, we have f(yi∗ixi)∗ixi = f(xi∗iyi)∗iyi . By (2.1),
we have (yi ∗i xi) ∗i xi = (xi ∗i yi) ∗i yi. Hence, Xi is meet-commutative for all i ∈ I.

Next, we introduce the concept of the weak direct product of infinite family of BCC-algebras and
obtain some of its properties as follows.

Definition 2.9. Let Xi = (Xi; ∗i, 0i) be a BCC-algebra for all i ∈ I. Define the weak direct product of a
BCC-algebra Xi for all i ∈ I to be the structure

∏w
i∈I Xi = (

∏w
i∈I Xi;⊗), where

w∏
i∈I

Xi = {(xi)i∈I ∈
∏
i∈I

Xi | xi 6= 0i, where the number of such i is finite}.

Then (0i)i∈I ∈
∏w
i∈I Xi ⊆

∏
i∈I Xi.

Theorem 2.10. Let Xi = (Xi; ∗i, 0i) be a BCC-algebra for all i ∈ I. Then
∏w
i∈I Xi is a BCC-subalgebra of the

external direct product BCC-algebra
∏
i∈I Xi = (

∏
i∈I Xi;⊗, (0i)i∈I).

Proof. We see that (0i)i∈I ∈
∏w
i∈I Xi 6= ∅. Let (xi)i∈I, (yi)i∈I ∈

∏w
i∈I Xi, where I1 = {i ∈ I | xi 6= 0i} and

I2 = {i ∈ I | yi 6= 0i} are finite. Then |I1 ∪ I2| is finite. Thus

(∀j ∈ I)

((xi)i∈I ⊗ (yi)i∈I)(j) =


xj ∗j 0j, if j ∈ I1 − I2,
xj ∗j yj, if j ∈ I1 ∩ I2,
0j ∗j yj, if j ∈ I2 − I1,
0j ∗j 0j, otherwise,

 .

By (BCC-2) and (BCC-3), we have

(∀j ∈ I)

((xi)i∈I ⊗ (yi)i∈I)(j) =


0j, if j ∈ I1 − I2,
xj ∗j yj, if j ∈ I1 ∩ I2,
yj, if j ∈ I2 − I1,
0j, otherwise,

 .

This implies that the number of such ((xi)i∈I ⊗ (yi)i∈I)(j) is not more than |I1 ∪ I2|, that is, it is finite.
Thus (xi)i∈I ⊗ (yi)i∈I ∈

∏w
i∈I Xi. Hence,

∏w
i∈I Xi is a BCC-subalgebra of

∏
i∈I Xi.
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Theorem 2.11. Let Xi = (Xi; ∗i, 0i) be a BCC-algebra and Si a subset of Xi for all i ∈ I. Then Si is a BCC-
subalgebra of Xi for all i ∈ I if and only if

∏
i∈I Si is a BCC-subalgebra of the external direct product BCC-algebra∏

i∈I Xi = (
∏
i∈I Xi;⊗, (0i)i∈I).

Proof. Assume that Si is a BCC-subalgebra of Xi for all i ∈ I. Since Si is a nonempty subset of Xi for all
i ∈ I and by Remark 2.3, we have

∏
i∈I Si is a nonempty subset of

∏
i∈I Xi. Let (xi)i∈I, (yi)i∈I ∈

∏
i∈I Si.

Then xi,yi ∈ Si for all i ∈ I. Thus xi ∗i yi ∈ Si for all i ∈ I, so (xi)i∈I ⊗ (yi)i∈I = (xi ∗i yi)i∈I ∈
∏
i∈I Si.

Hence,
∏
i∈I Si is a BCC-subalgebra of

∏
i∈I Xi.

Conversely, assume that
∏
i∈I Si is a BCC-subalgebra of

∏
i∈I Xi. Since

∏
i∈I Si is a nonempty subset

of
∏
i∈I Xi and by Remark 2.3, we have Si is a nonempty subset of Xi for all i ∈ I. Let i ∈ I and let

xi,yi ∈ Si. Then fxi , fyi ∈
∏
i∈I Si, which are defined by (2.1). Since

∏
i∈I Si is a BCC-subalgebra of∏

i∈I Xi and by Lemma 2.5, we have fxi∗iyi = fxi ⊗ fyi ∈
∏
i∈I Si. By (2.1), we have xi ∗i yi ∈ Si. Hence,

Si is a BCC-subalgebra of Xi for all i ∈ I.

Theorem 2.12. Let Xi = (Xi; ∗i, 0i) be a BCC-algebra and Si a subset of Xi for all i ∈ I. Then Si is a near
BCC-filter of Xi for all i ∈ I if and only if

∏
i∈I Si is a near BCC-filter of the external direct product BCC-algebra∏

i∈I Xi = (
∏
i∈I Xi;⊗, (0i)i∈I).

Proof. Assume that Si is a near BCC-filter of Xi for all i ∈ I. Since Si is a nonempty subset of Xi for all
i ∈ I and by Remark 2.3, we have

∏
i∈I Si is a nonempty subset of

∏
i∈I Xi. Let (xi)i∈I, (yi)i∈I ∈

∏
i∈I Xi

be such that (yi)i∈I ∈
∏
i∈I Si. Thus yi ∈ Si for all i ∈ I, it follows from (1.2) that xi ∗i yi ∈ Si for all

i ∈ I. Thus (xi)i∈I ⊗ (yi)i∈I = (xi ∗i yi)i∈I ∈
∏
i∈I Si. Hence,

∏
i∈I Si is a near BCC-filter of

∏
i∈I Xi.

Conversely, assume that
∏
i∈I Si is a near BCC-filter of

∏
i∈I Xi. Since

∏
i∈I Si is a nonempty subset

of
∏
i∈I Xi and by Remark 2.3, we have Si is a nonempty subset of Xi for all i ∈ I. Let i ∈ I and let

xi,yi ∈ Xi be such that yi ∈ Si. Then fxi , fyi ∈
∏
i∈I Xi and fyi ∈

∏
i∈I Si, which are defined by (2.1).

Since
∏
i∈I Si is a near BCC-filter of

∏
i∈I Xi and by Lemma 2.5, we have fxi∗iyi = fxi ⊗ fyi ∈

∏
i∈I Si.

By (2.1), we have xi ∗i yi ∈ Si. Hence, Si is a near BCC-filter of Xi for all i ∈ I.

Theorem 2.13. Let Xi = (Xi; ∗i, 0i) be a BCC-algebra and Si a subset of Xi for all i ∈ I. Then Si is a BCC-filter
of Xi for all i ∈ I if and only if

∏
i∈I Si is a BCC-filter of the external direct product BCC-algebra

∏
i∈I Xi =

(
∏
i∈I Xi;⊗, (0i)i∈I).

Proof. Assume that Si is a BCC-filter of Xi for all i ∈ I. Then 0i ∈ Si for all i ∈ I, so (0i)i∈I ∈
∏
i∈I Si 6= ∅.

Let (xi)i∈I, (yi)i∈I ∈
∏
i∈I Xi be such that (xi)i∈I ⊗ (yi)i∈I ∈

∏
i∈I Si and (xi)i∈I ∈

∏
i∈I Si. Then

(xi ∗i yi)i∈I ∈
∏
i∈I Si. Thus xi ∗i yi ∈ Si and xi ∈ Si, it follows from (1.4) that yi ∈ Si for all i ∈ I. Thus

(yi)i∈I ∈
∏
i∈I Si. Hence,

∏
i∈I Si is a BCC-filter of

∏
i∈I Xi.

Conversely, assume that
∏
i∈I Si is a BCC-filter of

∏
i∈I Xi. Then (0i)i∈I ∈

∏
i∈I Si, so 0i ∈ Si 6= ∅

for all i ∈ I. Let i ∈ I and let xi,yi ∈ Xi be such that xi ∗i yi ∈ Si and xi ∈ Si. Then fxi , fyi ∈
∏
i∈I Xi

and fxi∗iyi ∈
∏
i∈I Si and fxi ∈

∏
i∈I Si, which are defined by (2.1). By Lemma 2.5, we have fxi ⊗ fyi =

fxi∗iyi ∈
∏
i∈I Si. By (1.4), we have fyi ∈

∏
i∈I Si. By (2.1), we have yi ∈ Si. Hence, Si is a BCC-filter of

Xi for all i ∈ I.

Theorem 2.14. Let Xi = (Xi; ∗i, 0i) be a BCC-algebra and Si a subset of Xi for all i ∈ I. Then Si is an implicative
BCC-filter of Xi for all i ∈ I if and only if

∏
i∈I Si is an implicative BCC-filter of the external direct product

BCC-algebra
∏
i∈I Xi = (

∏
i∈I Xi;⊗, (0i)i∈I).

Proof. Assume that Si is an implicative BCC-filter of Xi for all i ∈ I. Then 0i ∈ Si for all i ∈ I, so
(0i)i∈I ∈

∏
i∈I Si 6= ∅. Let (xi)i∈I, (yi)i∈I, (zi)i∈I ∈

∏
i∈I Xi be such that (xi)i∈I ⊗ ((yi)i∈I ⊗ (zi)i∈I) ∈∏

i∈I Si and (xi)i∈I ⊗ (yi)i∈I ∈
∏
i∈I Si. Then (xi ∗i (yi ∗i zi))i∈I ∈

∏
i∈I Si and (xi ∗i yi)i∈I ∈

∏
i∈I Si.

Thus xi ∗i (yi ∗i zi) ∈ Si and xi ∗i yi ∈ Si, it follows from (1.5) that xi ∗i zi ∈ Si for all i ∈ I. Thus
(xi)i∈I ⊗ (zi)i∈I = (xi ∗i zi)i∈I ∈

∏
i∈I Si. Hence,

∏
i∈I Si is an implicative BCC-filter of

∏
i∈I Xi.

Conversely, assume that
∏
i∈I Si is an implicative BCC-filter of

∏
i∈I Xi. Then (0i)i∈I ∈

∏
i∈I Si, so

0i ∈ Si 6= ∅ for all i ∈ I. Let i ∈ I and let xi,yi, zi ∈ Xi be such that xi ∗i (yi ∗i zi) ∈ Si and xi ∗i yi ∈ Si.
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Then fxi , fyi , fzi ∈
∏
i∈I Xi and fxi∗i(yi∗izi) ∈

∏
i∈I Si and fxi∗iyi ∈

∏
i∈I Si, which are defined by (2.1).

By Lemma 2.5, we have fxi ⊗ (fyi ⊗ fzi) = fxi∗i(yi∗izi) ∈
∏
i∈I Si and fxi ⊗ fyi = fxi∗iyi ∈

∏
i∈I Si. Since∏

i∈I Si is an implicative BCC-filter of
∏
i∈I Xi and by Lemma 2.5, we have fxi∗izi = fxi ⊗ fzi ∈

∏
i∈I Si.

By (2.1), we have xi ∗i zi ∈ Si. Hence, Si is an implicative BCC-filter of Xi for all i ∈ I.

Theorem 2.15. Let Xi = (Xi; ∗i, 0i) be a BCC-algebra and Si a subset of Xi for all i ∈ I. Then Si is a comparative
BCC-filter of Xi for all i ∈ I if and only if

∏
i∈I Si is a comparative BCC-filter of the external direct product

BCC-algebra
∏
i∈I Xi = (

∏
i∈I Xi;⊗, (0i)i∈I).

Proof. Assume that Si is a comparative BCC-filter of Xi for all i ∈ I. Then 0i ∈ Si for all i ∈ I, so (0i)i∈I ∈∏
i∈I Si 6= ∅. Let (xi)i∈I, (yi)i∈I, (zi)i∈I ∈

∏
i∈I Xi be such that (xi)i∈I ⊗ (((yi)i∈I ⊗ (zi)i∈I)⊗ (yi)i∈I) ∈∏

i∈I Si and (xi)i∈I ∈
∏
i∈I Si. Then (xi ∗i ((yi ∗i zi) ∗i yi))i∈I ∈

∏
i∈I Si. Thus xi ∗i ((yi ∗i zi) ∗i yi) ∈ Si

and xi ∈ Si, it follows from (1.6) that yi ∈ Si for all i ∈ I. Thus (yi)i∈I ∈
∏
i∈I Si. Hence,

∏
i∈I Si is a

comparative BCC-filter of
∏
i∈I Xi.

Conversely, assume that
∏
i∈I Si is a comparative BCC-filter of

∏
i∈I Xi. Then (0i)i∈I ∈

∏
i∈I Si, so

0i ∈ Si 6= ∅ for all i ∈ I. Let i ∈ I and let xi,yi, zi ∈ Xi be such that xi ∗i ((yi ∗i zi) ∗i yi) ∈ Si and
xi ∈ Si. Then fxi , fyi , fzi ∈

∏
i∈I Xi and fxi∗i((yi∗izi)∗iyi) ∈

∏
i∈I Si and fxi ∈

∏
i∈I Si, which are defined

by (2.1). By Lemma 2.5, we have fxi ⊗ ((fyi ⊗ fzi)⊗ fyi) = fxi∗i((yi∗izi)∗iyi) ∈
∏
i∈I Si. Since

∏
i∈I Si is

a comparative BCC-filter of
∏
i∈I Xi, we have fyi ∈

∏
i∈I Si. By (2.1), we have yi ∈ Si. Hence, Si is a

comparative BCC-filter of Xi for all i ∈ I.

Theorem 2.16. Let Xi = (Xi; ∗i, 0i) be a BCC-algebra and Si a subset of Xi for all i ∈ I. Then Si is a shift
BCC-filter of Xi for all i ∈ I if and only if

∏
i∈I Si is a shift BCC-filter of the external direct product BCC-algebra∏

i∈I Xi = (
∏
i∈I Xi;⊗, (0i)i∈I).

Proof. Assume that Si is a shift BCC-filter of Xi for all i ∈ I. Then 0i ∈ Si for all i ∈ I, so (0i)i∈I ∈∏
i∈I Si 6= ∅. Let (xi)i∈I, (yi)i∈I, (zi)i∈I ∈

∏
i∈I Xi be such that (xi)i∈I ⊗ ((yi)i∈I ⊗ (zi)i∈I) ∈

∏
i∈I Si

and (xi)i∈I ∈
∏
i∈I Si. Then (xi ∗i (yi ∗i zi))i∈I ∈

∏
i∈I Si. Thus xi ∗i (yi ∗i zi) ∈ Si and xi ∈ Si, it follows

from (1.7) that ((zi ∗i yi) ∗i yi) ∗i zi ∈ Si for all i ∈ I. Thus (((zi)i∈I ⊗ (yi)i∈I)⊗ (yi)i∈I)⊗ (zi)i∈I =
(((zi ∗i yi) ∗i yi) ∗i zi)i∈I ∈

∏
i∈I Si. Hence,

∏
i∈I Si is a shift BCC-filter of

∏
i∈I Xi.

Conversely, assume that
∏
i∈I Si is a shift BCC-filter of

∏
i∈I Xi. Then (0i)i∈I ∈

∏
i∈I Si, so 0i ∈ Si 6= ∅

for all i ∈ I. Let i ∈ I and let xi,yi, zi ∈ Xi be such that xi ∗i (yi ∗i zi) ∈ Si and xi ∈ Si. Then
fxi , fyi , fzi ∈

∏
i∈I Xi and fxi∗i(yi∗izi) ∈

∏
i∈I Si and fxi ∈

∏
i∈I Si, which are defined by (2.1). By

Lemma 2.5, we have fxi ⊗ (fyi ⊗ fzi) = fxi∗i(yi∗izi) ∈
∏
i∈I Si. Since

∏
i∈I Si is a shift BCC-filter of∏

i∈I Xi and by Lemma 2.5, we have f((zi∗iyi)∗iyi)∗izi = ((fzi ⊗ fyi)⊗ fyi)⊗ fzi ∈
∏
i∈I Si. By (2.1), we

have ((zi ∗i yi) ∗i yi) ∗i zi ∈ Si. Hence, Si is a shift BCC-filter of Xi for all i ∈ I.

Theorem 2.17. Let Xi = (Xi; ∗i, 0i) be a BCC-algebra and Si a subset of Xi for all i ∈ I. Then Si is a BCC-ideal
of Xi for all i ∈ I if and only if

∏
i∈I Si is a BCC-ideal of the external direct product BCC-algebra

∏
i∈I Xi =

(
∏
i∈I Xi;⊗, (0i)i∈I).

Proof. Assume that Si is a BCC-ideal of Xi for all i ∈ I. Then 0i ∈ Si for all i ∈ I, so (0i)i∈I ∈
∏
i∈I Si 6= ∅.

Let (xi)i∈I, (yi)i∈I, (zi)i∈I ∈
∏
i∈I Xi be such that (xi)i∈I ⊗ ((yi)i∈I ⊗ (zi)i∈I) ∈

∏
i∈I Si and (yi)i∈I ∈∏

i∈I Si. Then (xi ∗i (yi ∗i zi))i∈I ∈
∏
i∈I Si. Thus xi ∗i (yi ∗i zi) ∈ Si and yi ∈ Si, it follows from (1.8)

that xi ∗i zi ∈ Si for all i ∈ I. Thus (xi)i∈I ⊗ (zi)i∈I = (xi ∗i zi)i∈I ∈
∏
i∈I Si. Hence,

∏
i∈I Si is a

BCC-ideal of
∏
i∈I Xi.

Conversely, assume that
∏
i∈I Si is a BCC-ideal of

∏
i∈I Xi. Then (0i)i∈I ∈

∏
i∈I Si, so 0i ∈ Si 6= ∅

for all i ∈ I. Let i ∈ I and let xi,yi, zi ∈ Xi be such that xi ∗i (yi ∗i zi) ∈ Si and yi ∈ Si. Then
fxi , fyi , fzi ∈

∏
i∈I Xi and fxi∗i(yi∗izi) ∈

∏
i∈I Si and fyi ∈

∏
i∈I Si, which are defined by (2.1). By

Lemma 2.5, we have fxi ⊗ (fyi ⊗ fzi) = fxi∗i(yi∗izi) ∈
∏
i∈I Si. Since

∏
i∈I Si is a BCC-ideal of

∏
i∈I Xi

and by Lemma 2.5, we have fxi∗izi = fxi ⊗ fzi ∈
∏
i∈I Si. By (2.1), we have xi ∗i zi ∈ Si. Hence, Si is a

BCC-ideal of Xi for all i ∈ I.
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Theorem 2.18. Let Xi = (Xi; ∗i, 0i) be a BCC-algebra and Si a subset of Xi for all i ∈ I. Then Si is a strong
BCC-ideal of Xi for all i ∈ I if and only if

∏
i∈I Si is a strong BCC-ideal of the external direct product BCC-algebra∏

i∈I Xi = (
∏
i∈I Xi;⊗, (0i)i∈I).

Proof. Assume that Si is a strong BCC-ideal of Xi for all i ∈ I. Then 0i ∈ Si for all i ∈ I, so (0i)i∈I ∈∏
i∈I Si 6= ∅. Let (xi)i∈I, (yi)i∈I, (zi)i∈I ∈

∏
i∈I Xi be such that ((zi)i∈I ⊗ (yi)i∈I)⊗ ((zi)i∈I ⊗ (xi)i∈I) ∈∏

i∈I Si and (yi)i∈I ∈
∏
i∈I Si. Then ((zi ∗i yi) ∗i (zi ∗i xi))i∈I ∈

∏
i∈I Si. Thus (zi ∗i yi) ∗i (zi ∗i xi) ∈ Si

and yi ∈ Si, it follows from (1.9) that xi ∈ Si for all i ∈ I. Thus (xi)i∈I ∈
∏
i∈I Si. Hence,

∏
i∈I Si is a

strong BCC-ideal of
∏
i∈I Xi.

Conversely, assume that
∏
i∈I Si is a strong BCC-ideal of

∏
i∈I Xi. Then (0i)i∈I ∈

∏
i∈I Si, so 0i ∈

Si 6= ∅ for all i ∈ I. Let i ∈ I and let xi,yi, zi ∈ Xi be such that (zi ∗i yi) ∗i (zi ∗i xi) ∈ Si and yi ∈ Si.
Then fxi , fyi , fzi ∈

∏
i∈I Xi and f(zi∗iyi)∗i(zi∗ixi) ∈

∏
i∈I Si and fyi ∈

∏
i∈I Si, which are defined by (2.1).

By Lemma 2.5, we have (fzi ⊗ fyi)⊗ (fzi ⊗ fxi) = f(zi∗iyi)∗i(zi∗ixi) ∈
∏
i∈I Si. Since

∏
i∈I Si is a strong

BCC-ideal of
∏
i∈I Xi, we have fxi ∈

∏
i∈I Si. By (2.1), we have xi ∈ Si. Hence, Si is a strong BCC-ideal

of Xi for all i ∈ I.

Moreover, we discuss several BCC-homomorphism theorems in view of the external direct product of
BCC-algebras.

Definition 2.19 ([5]). Let Xi = (Xi; ∗i) and Si = (Si; ◦i) be algebras and ψi : Xi → Si be a function for all
i ∈ I. Define the function ψ :

∏
i∈I Xi →

∏
i∈I Si given by

(∀(xi)i∈I ∈
∏
i∈I

Xi)(ψ(xi)i∈I = (ψi(xi))i∈I).

Then ψ :
∏
i∈I Xi →

∏
i∈I Si is a function (see [5]).

Theorem 2.20 ([5]). Let Xi = (Xi; ∗i) and Si = (Si; ◦i) be algebras and ψi : Xi → Si be a function for all i ∈ I.

(i) ψi is injective for all i ∈ I if and only if ψ is injective which is defined in Definition 2.19;

(ii) ψi is surjective for all i ∈ I if and only if ψ is surjective;

(iii) ψi is bijective for all i ∈ I if and only if ψ is bijective.

Theorem 2.21. Let Xi = (Xi; ∗i, 0i) and Si = (Si; ◦i, 1i) be BCC-algebras and ψi : Xi → Si be a function for all
i ∈ I. Then

(i) ψi is a BCC-homomorphism for all i ∈ I if and only if ψ is a BCC-homomorphism which is defined in
Definition 2.19;

(ii) ψi is a BCC-monomorphism for all i ∈ I if and only if ψ is a BCC-monomorphism;

(iii) ψi is a BCC-epimorphism for all i ∈ I if and only if ψ is a BCC-epimorphism;

(iv) ψi is a BCC-isomorphism for all i ∈ I if and only if ψ is a BCC-isomorphism;

(v) kerψ =
∏
i∈I kerψi and ψ(

∏
i∈I Xi) =

∏
i∈Iψi(Xi).

Proof.

(i) Assume that ψi is a BCC-homomorphism for all i ∈ I. Let (xi)i∈I, (x′i)i∈I ∈
∏
i∈I Xi. Then

ψ((xi)i∈I ⊗ (x′i)i∈I) = ψ(xi ∗i x′i)i∈I
= (ψi(xi ∗i x′i))i∈I
= (ψi(xi) ∗i ψi(x′i))i∈I = (ψi(xi))i∈I ⊗ (ψi(x

′
i))i∈I = ψ(xi)i∈I ⊗ψ(x′i)i∈I.
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Hence, ψ is a BCC-homomorphism.
Conversely, assume that ψ is a BCC-homomorphism. Let i ∈ I. Let xi,yi ∈ Xi. Then fxi , fyi ∈

∏
i∈I Xi,

which is defined by (2.1). Since ψ is a BCC-homomorphism, we have ψ(fxi ⊗ fyi) = ψ(fxi)⊗ψ(fyi). Since

(∀j ∈ I)

(
(fxi ⊗ fyi)(j) =

{
xi ∗i yi, if j = i,
0j ∗j 0j, otherwise,

)
,

we have

(∀j ∈ I)

(
ψ(fxi ⊗ fyi)(j) =

{
ψi(xi ∗i yi), if j = i,
ψj(0j ∗j 0j), otherwise,

)
. (2.2)

Since

(∀j ∈ I)

(
ψ(fxi)(j) =

{
ψi(xi), if j = i,
ψj(0j), otherwise,

)
and

(∀j ∈ I)

(
ψ(fyi)(j) =

{
ψi(yi), if j = i,
ψj(0j), otherwise,

)
,

we have

(∀j ∈ I)

(
(ψ(fxi)⊗ψ(fyi))(j) =

{
ψi(xi) ◦i ψi(yi), if j = i,
ψj(0j) ◦j ψj(0j), otherwise,

)
. (2.3)

By (2.2) and (2.3), we have ψi(xi ∗i yi) = ψi(xi) ◦i ψi(yi). Hence, ψi is a BCC-homomorphism for all
i ∈ I.
(ii) It is straightforward from (i) and Theorem 2.20 (i).

(iii) It is straightforward from (i) and Theorem 2.20 (ii).

(iv) It is straightforward from (i) and Theorem 2.20 (iii).

(v) Let (xi)i∈I ∈
∏
i∈I Xi. Then

(xi)i∈I ∈ kerψ⇔ ψ(xi)i∈I = (1i)i∈I
⇔ (ψi(xi))i∈I = (1i)i∈I
⇔ ψi(xi) = 1i ∀i ∈ I
⇔ xi ∈ kerψi ∀i ∈ I

⇔ (xi)i∈I ∈
∏
i∈I

kerψi.

Hence, kerψ =
∏
i∈I kerψi. Now,

(yi)i∈I ∈ ψ(
∏
i∈I

Xi)⇔ ∃(xi)i∈I ∈
∏
i∈I

Xi s.t. (yi)i∈I = ψ(xi)i∈I

⇔ ∃(xi)i∈I ∈
∏
i∈I

Xi s.t. (yi)i∈I = (ψi(xi))i∈I

⇔ ∃xi ∈ Xi s.t. yi = ψi(xi) ∈ ψ(Xi) ∀i ∈ I

⇔ (yi)i∈I ∈
∏
i∈I

ψi(Xi).

Hence, ψ(
∏
i∈I Xi) =

∏
i∈Iψi(Xi).
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Finally, we discuss several anti-BCC-homomorphism theorems in view of the external direct product
of BCC-algebras.

Theorem 2.22. Let Xi = (Xi; ∗i, 0i) and Si = (Si; ◦i, 1i) be BCC-algebras and ψi : Xi → Si be a function for all
i ∈ I. Then

(i) ψi is an anti-BCC-homomorphism for all i ∈ I if and only if ψ is an anti-BCC-homomorphism which is
defined in Definition 2.19;

(ii) ψi is an anti-BCC-monomorphism for all i ∈ I if and only if ψ is an anti-BCC-monomorphism;

(iii) ψi is an anti-BCC-epimorphism for all i ∈ I if and only if ψ is an anti-BCC-epimorphism;

(iv) ψi is an anti-BCC-isomorphism for all i ∈ I if and only if ψ is an anti-BCC-isomorphism.

Proof.

(i) Assume that ψi is an anti-BCC-homomorphism for all i ∈ I. Let (xi)i∈I, (x′i)i∈I ∈
∏
i∈I Xi. Then

ψ((xi)i∈I ⊗ (x′i)i∈I) = ψ(xi ∗i x′i)i∈I
= (ψi(xi ∗i x′i))i∈I
= (ψi(x

′
i) ∗i ψi(xi))i∈I = (ψi(x

′
i))i∈I ⊗ (ψi(xi))i∈I = ψ(x

′
i)i∈I ⊗ψ(xi)i∈I.

Hence, ψ is an anti-BCC-homomorphism.
Conversely, assume that ψ is an anti-BCC-homomorphism. Let i ∈ I. Let xi,yi ∈ Xi. Then fxi , fyi ∈∏
i∈I Xi, which are defined by (2.1). Since ψ is an anti-BCC-homomorphism, we have ψ(fxi ⊗ fyi) =

ψ(fyi)⊗ψ(fxi). Since

(∀j ∈ I)

(
(fxi ⊗ fyi)(j) =

{
xi ∗i yi, if j = i,
0j ∗j 0j, otherwise,

)
,

we have

(∀j ∈ I)

(
ψ(fxi ⊗ fyi)(j) =

{
ψi(xi ∗i yi), if j = i,
ψj(0j ∗j 0j), otherwise,

)
. (2.4)

Since

(∀j ∈ I)

(
ψ(fyi)(j) =

{
ψi(yi), if j = i,
ψj(0j), otherwise,

)
and

(∀j ∈ I)

(
ψ(fxi)(j) =

{
ψi(xi), if j = i,
ψj(0j), otherwise,

)
,

we have

(∀j ∈ I)

(
(ψ(fyi)⊗ψ(fxi))(j) =

{
ψi(yi) ◦i ψi(xi), if j = i,
ψj(0j) ◦j ψj(0j), otherwise,

)
. (2.5)

By (2.4) and (2.5), we have ψi(xi ∗i yi) = ψi(yi) ◦i ψi(xi). Hence, ψi is an anti-BCC-homomorphism for
all i ∈ I.
(ii) It is straightforward from (i) and Theorem 2.20 (i).

(iii) It is straightforward from (i) and Theorem 2.20 (ii).

(iv) It is straightforward from (i) and Theorem 2.20 (iii).
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3. Conclusions and Future Work

In this paper, we have introduced the concept of the direct product of infinite family of BCC-algebras,
we call the external direct product, which is a general concept of the direct product in the sense of Ling-
cong and Endam [25]. We proved that the external direct product of BCC-algebras is also a BCC-algebra,
the external direct product of a bounded BCC-algebra is also a bounded BCC-algebra, and the external
direct product of meet-commutative BCC-algebra is also a meet-commutative BCC-algebra. Also, we have
introduced the concept of the weak direct product of BCC-algebras. We proved that the weak direct prod-
uct of BCC-algebras is a BCC-subalgebra and the external direct product of BCC-subalgebras (resp., near
BCC-filters, BCC-filters, comparative BCC-filters, shift BCC-filters, implicative BCC-filters, BCC-ideals,
strong BCC-ideals) is also a BCC-subalgebra (resp., near BCC-filter, BCC-filter, comparative BCC-filter,
shift BCC-filter, implicative BCC-filter, BCC-ideal, strong BCC-ideal) of the external direct product BCC-
algebras. Finally, we have provided several fundamental theorems of (anti-)BCC-homomorphisms in view
of the external direct product BCC-algebras.

Based on the concept of the external direct product of BCC-algebras in this article, we can apply it to
the study of the external direct product in other algebraic systems. Researching the external and weak
direct products that we will study in the future will be the internal direct products of BCC-algebras.

The research topics of interest by our research team being studied in the external direct product of
BCC-algebras are as follows.

(1) To study fuzzy set theory (with respect to a triangular norm) based on the concept of Somjanta et
al. [38] and Thongarsa et al. [4, 39].

(2) To study bipolar fuzzy set theory based on the concept of Muhiuddin [27].

(3) To study interval-valued fuzzy set theory based on the concept of Muhiuddin et al. [28].

(4) To study interval-valued intuitionistic fuzzy set theory based on the concept of Senapati et al. [37].
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