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Abstract
In this paper, we define θ-φ-contraction on a b-metric space into itself by extending θ-φ-contraction introduced by Zheng

et al. [D. W. Zheng, Z. Y. Cai, P. Wang, J. Nonlinear Sci. Appl., 10 (2017), 2662–2670] in metric space and also, we prove θ-type
theorem in the setting of b-metric spaces as well as θ-φ-type theorem in the framework of b-rectangular metric spaces. Moreover,
we give some applications to nonlinear integral equations. We also give illustrative examples to exhibit the utility of our results.
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1. Introduction

The Banach contraction principle is a fundamental result in fixed point theory [3]. Due to its impor-
tance, various mathematics studied many interesting extensions and generalizations, (see [4, 12, 16, 20]).
In 2014, Jleli and Samet [11] analyzed a generalization of the Banach fixed point theorem on generalized
metric spaces in a new type of contraction mappings called θ-contraction (or JS-contraction) and proved
a fixed point result in generalized metric spaces. This direction has been studied and generalized in
different spaces and various fixed point theorems have been developed (see [13–15]).

Many generalizations of the concept of metric spaces are defined and some fixed point theorems were
proved in these spaces. In particular, b-metric spaces were introduced by Bakhtin [2] and Czerwik [5], in
such a way that triangle inequality is replaced by the b-triangle inequality: d(x,y) 6 s (d(x, z) + d(z,y))
for all pairwise distinct points x,y, z and s > 1. Any metric space is a b-metric space but in general, b-
metric space might not be a metric space. Various fixed point results were established on such spaces. For
more information on b-metric spaces and b-metric-like spaces, the readers can refer to (see [6–10, 17–19].
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Very recently, Zheng et al. [22] introduced a new concept of θ-φ-contraction and established some
fixed point results for such mappings in complete metric space and generalized the results of Brower and
Kannan.

In this paper, we introduce a new notion of generalized θ-φ-contraction and establish some results
of fixed point for such mappings in complete b-metric space. The results presented in the paper extend
the corresponding results of Kannan [12] and Reich [20] on b-rectangular metric space. Various examples
are constructed to illustrate our results. As an application, we prove the existence and uniqueness of a
solution for the nonlinear Fredholm integral equations. Also, we derive some useful corollaries of these
results.

2. Preliminaries

Definition 2.1 ([5]). Let X be a nonempty set, s > 1 be a given real number, and let d: X×X→ [0,+∞[ be
a function such that for all x,y ∈ X and all distinct points u, v ∈ X, each distinct from x and y:

1. d (x,y) = 0, if only if x = y;
2. d (x,y) = d (y, x) ;
3. d (x,y) 6 s [d (x, z) + d (z,y)], (b-rectangular inequality).

Then (X,d) is called a b-metric space.

Lemma 2.2 ([1]). Let (X,d) be a b-metric space.

(a) Suppose that sequences {xn} and {yn} in X are such that xn → x and yn → y as n→∞, with x 6= y, xn 6= x
and yn 6= y for all n ∈N. Then we have

1
s2d (x,y) 6 lim

n→∞ infd (xn,yn) 6 lim
n→∞ supd (xn,yn) 6 s2d (x,y) .

(b) In particular, if x = y, then we have limn→∞ d (xn,yn) = 0. Moreover, for each z ∈ X, we have

1
s
d (x, z) 6 lim

n→∞ infd (xn, z) 6 lim
n→∞ supd (xn, z) 6 sd (x, z) ,

for all x ∈ X.

Lemma 2.3 ([21]). Let (X,d) be a b-metric space and let {xn} be a sequence in X such that

lim
n→∞d (xn, xn+1) = 0.

If {xn} is not a Cauchy sequence, then there exist ε > 0 and two sequences {m(k)} and {n(k)} of positive integers
such that

ε 6 lim
k→∞ infd

(
xm(k)

, xn(k)

)
6 lim
k→∞ supd

(
xm(k)

, xn(k)

)
6 sε,

ε 6 lim
k→∞ infd

(
xn(k)

, xm(k)+1

)
6 lim
k→∞ supd

(
xn(k)

, xm(k)+1

)
6 sε,

ε 6 lim
k→∞ infd

(
xm(k)

, xn(k)+1

)
6 lim
k→∞ supd

(
xm(k)

, xn(k)+1

)
6 sε,

ε

s
6 lim
k→∞ infd

(
xm(k)+1 , xn(k)+1

)
6 lim
k→∞ supd

(
xm(k)+1 , xn(k)+1

)
6 s2ε.

The following definition was given by Jleli et al. in [11].

Definition 2.4 ([11]). Let Θ be the family of all functions θ : ]0,+∞[→ ]1,+∞[ such that

(θ1) θ is increasing,
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(θ2) for each sequence (xn) ⊂ ]0,+∞[;

lim
n→0

xn = 0 if and only if lim
n→∞ θ (xn) = 1;

(θ3) θ is continuous.

In [22], Zheng et al. presented the concept of θ-φ-contraction on metric spaces and proved the follow-
ing nice result.

Definition 2.5 ([22]). Let Φ be the family of all functions φ: [1,+∞[→ [1,+∞[, such that

(φ1) φ is nondecreasing;
(φ2) for each t ∈ ]1,+∞[, limn→∞φn(t) = 1;
(φ3) φ is continuous.

Lemma 2.6 ([22]). If φ ∈ Φ, then φ(1)=1, and φ(t) < t for all t ∈ ]1,∞[ .

Definition 2.7 ([22]). Let (X,d) be a metric space and T : X → X be a mapping. Then T is said to be a
θ-φ-contraction if there exist θ ∈ Θ and φ ∈ Φ such that for any x,y ∈ X,

d (Tx, Ty) > 0⇒ θ [d (Tx, Ty)] 6 φ (θ [N (x,y)]) ,

where
N (x,y) = max {d (x,y) ,d (x, Tx) ,d (y, Ty)} .

Theorem 2.8 ([22]). Let (X,d) be a complete metric space and let T : X → X be a θ-φ-contraction. Then T has a
unique fixed point.

3. Main results

In this paper, using the idea introduced by Zheng et al., we present the concept θ-φ-contraction in
b-metric spaces and we prove some fixed point results for such spaces.

Definition 3.1. Let (X,d) be a b-metric space with parameter s > 1 space and T : X→ X be a mapping.

(1) T is said to be a θ−contraction if there exist θ ∈ Θ and r ∈ ]0, 1[ such that

d (Tx, Ty) > 0⇒ θ
[
s3d (Tx, Ty)

]
6 θ [M (x,y)]r ,

where

M (x,y) = max
{
d (x,y) ,d (x, Tx) ,d (y, Ty) ,

d (x, Ty) + d (Tx,y)
2s2

}
.

(2) T is said to be a θ-φ-contraction if there exist θ ∈ Θ and φ ∈ Φ such that

d (Tx, Ty) > 0⇒ θ
[
s3d (Tx, Ty)

]
6 φ [θ (M (x,y))] ,

where

M (x,y) = max
{
d (x,y) ,d (x, Tx) ,d (y, Ty)

d (x, Ty) + d (Tx,y)
2s2

}
.

(3) T is said to be a θ-φ- Kannan-type contraction if there exist θ ∈ Θ and φ ∈ Φ such that for all
x,y ∈ X with d (Tx, Ty) > 0, we have

θ
[
s3d (Tx, Ty)

)
] 6 φ

[
θ

(
d (x, Tx) + d (y, Ty)

2

)]
.
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(4) T is said to be a θ-φ-Reich-type contraction if there exist exist θ ∈ Θ and φ ∈ Φ such that for all
x,y ∈ X with d (Tx, Ty) > 0, we have

θ
[
s3d (Tx, Ty)

)
] 6 φ

[
θ

(
d (x,y) + d (x, Tx) + d (y, Ty)

3

)]
.

Theorem 3.2. Let (X,d) be a complete b-metric space and T : X→ X be a θ-contraction, i.e, there exist θ ∈ Θ and
r ∈ ]0, 1[ such that for any x,y ∈ X, we have

d (Tx, Ty) > 0⇒ θ
[
s3d (Tx, Ty)

]
6 θ [M (x,y)]r . (3.1)

Then T has a unique fixed point.

Proof. Let x0 ∈ X be an arbitrary point in X and define a sequence {xn} by

xn+1 = Txn = Tn+1x0,

for all n ∈N. If there exists n0 ∈N such that d (xn0 , xn0+1) = 0, then the proof is finished.
We can suppose that d (xn, xn+1) > 0 for all n ∈N. Letting x = xn−1 and y = xn in (3.1), we have

θ [d (xn, xn+1)] 6 θ
[
s3d (xn, xn+1)

]
6 [θ (M (xn−1, xn))]

r , ∀n ∈N, (3.2)

where

M (xn−1, xn) = max{d (xn−1, xn) ,d (xn−1, xn) ,d (xn, xn+1) ,
d (xn, xn) + d (xn−1, xn+1)

2s2 }

= max{d (xn−1, xn) ,d (xn, xn+1) ,
d (xn−1, xn+1)

2s2 }.

Since

1
2s2d (xn−1, xn+1) 6

1
2s2 [s (d (xn−1, xn) + d (xn, xn+1))]

=
1
2s

(d (xn−1, xn) + d (xn, xn+1))

6
1
2
(d (xn−1, xn) + d (xn, xn+1)) 6 max{d (xn−1, xn) ,d (xn, xn+1)},

we obtain

M (xn−1, xn) = max{d (xn−1, xn) ,d (xn, xn+1)}.

If M (xn−1, xn) = d (xn, xn+1) , then by (3.2), we have

θ (d (xn, xn+1)) 6 (θ (d (xn, xn+1)))
r < θ (d (xn, xn+1)) ,

which is a contradiction. Hence M (xn−1, xn) = d (xn−1, xn) . Thus

θ (d (xn, xn+1)) 6 (θ (d (xn−1, xn)))
r . (3.3)

Repeating this step, we conclude that

θ (d (xn, xn+1)) 6 (θ (d (xn−1, xn)))
r 6 (θ (d (xn−2, xn−1)))

r2
6 · · · 6 θ (d (x0, x1))

rn .

From (3.3) and using (θ1) we get
d (xn, xn+1) < d (xn−1, xn) .
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Therefore, d (xn,xn+1)n∈N is a monotone strictly decreasing sequence of nonnegative real numbers. Con-
sequently, there exists α > 0 such that

lim
n→∞d (xn+1,xn) = α.

Now, we claim that α = 0. Arguing by contraction, we assume that α > 0. Since d (xn,xn+1)n∈N is a
nonnegative decreasing sequence, we have

d (xn,xn+1) > α, ∀n ∈N.

By the property of θ, we get
1 < θ (α) 6 θ (d (x0, x1))

rn . (3.4)

Letting n→∞ in (3.4), we obtain
1 < θ (α) 6 1.

This is a contradiction. Therefore,
lim
n→∞d (xn,xn+1) = 0. (3.5)

Next, we shall prove that {xn}n∈N is a Cauchy sequence, i.e., limn,m→∞ d (xn,xm) = 0. Suppose to the
contrary. By Lemma 2.3, there is an ε > 0 such that for an integer k there exist two sequences

{
n(k)

}
and{

m(k)

}
such that

i) ε 6 limk→∞ infd
(
xm(k)

, xn(k)

)
6 limk→∞ supd

(
xm(k)

, xn(k)

)
6 sε;

ii) ε
s 6 limk→∞ infd

(
xn(k)

, xm(k)+1

)
6 limk→∞ supd

(
xn(k)

, xm(k)+1

)
6 s2ε;

iii) ε
s 6 limk→∞ infd

(
xm(k)

, xn(k)+1

)
6 limk→∞ supd

(
xm(k)

, xn(k)+1

)
6 s2ε;

vi) ε
s2 6 limk→∞ infd

(
xm(k)+1 , xn(k)+1

)
6 limk→∞ supd

(
xm(k)+1 , xn(k)+1

)
6 s3ε.

From (3.1) and by setting x = xm(k)
and y = xn(k)

we have

M
(
xm(k)

, xn(k)

)
= max

{
d
(
xm(k)

, xn(k)

)
,d
(
xm(k)

, xm(k)+1

)
,d
(
xn(k)

, xn(k)+1

)
,

1
2s2

(
d
(
xn(k)

, xm(k)+1

)
+ d

(
xm(k)

, xn(k)+1

))}
.

Taking the limit as k→∞ and using (3.5) and Lemma 2.3, we have

lim
k→∞M

(
xm(k)

, xn(k)

)
= lim
k→∞max

{
d
(
xm(k)

, xn(k)

)
,d
(
xm(k)

, xm(k)+1

)
,d
(
xn(k)

, xn(k)+1

)
,

1
2s2

(
d
(
xn(k)

, xm(k)+1

)
+ d

(
xm(k)

, xn(k)+1

))}
6 max{sε, 0, 0,

1
2s2 (s

2ε+ s2ε)} = sε.

So we have
lim
k→∞M

(
xm(k)

, xn(k)

)
6 sε. (3.6)

Now, letting x = xm(k)
and y = xn(k)

in (3.1), we obtain

θ
[
s3d

(
xm(k)+1 , xn(k)+1

)]
6
[
θ
(
M
(
xm(k)

, xn(k)

))]r
.

Letting k→∞ the above inequality, applying the continuity of θ and using (3.6), we obtain

θ
( ε
s2 s

3
)
= θ (εs) 6 θ

(
s3 lim
k→∞d

(
xm(k)+1 , xn(k)+1

))
6

[
θ

(
lim
k→∞M

(
xm(k)

, xn(k)

))]r
.
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Therefore,
θ(sε) 6 [θ(sε)]r < θ(sε).

Since θ is increasing, we get
sε < sε,

which is a contradiction. Thus
lim

n,m→∞d (xm, xn) = 0.

Hence {xn} is a Cauchy sequence in X. By completeness of (X,d), there exists z ∈ X such that

lim
n→∞d (xn, z) = 0.

Now, we show that d (Tz, z) = 0 by contradiction. Assume that

d (Tz, z) > 0.

Since xn → z as n→∞, from Lemma 2.2, we conclude that

1
s2d (z, Tz) 6 lim

n→∞ supd (Txn, Tz) 6 s2d (z, Tz) .

Now, letting x = xn and y = z in (3.1), we have

θ
(
s3d (Txn, Tz)

)
6 [θ (M (xn, z))]r , ∀n ∈N,

where

M (xn, z) = max
{
d (xn, z) ,d (xn, Txn) ,d (z, Tz) ,

1
2s2 (d (z, Txn) + d (xn, Tz))

}
.

Taking the limit as n→∞, we have

lim
n→∞ supM (xn, z) = lim

n→∞ sup max
{
d (xn, z) ,d (xn, Txn) ,d (z, Tz) ,

1
2s2 (d (z, Txn) + d (xn, Tz))

}
= d(z, Tz).

Therefore,

θ
(
s3d (Txn, Tz)

)
6

[
θ

(
max

{
d (xn, z) ,d (xn, Txn) ,d (z, Tz) ,

1
2s2 (d (z, Txn) + d (xn, Tz))

})]r
. (3.7)

Taking n→∞ in (3.7) and using (3.5) and θ3, we obtain

θ

[
s3 1
s
d (z, Tz)

]
= θ [sd (z, Tz)] 6 θ

[
s3 lim
n→∞d (Txn, Tz)

]
6 [θ (d (z, Tz))]r < θ (d (z, Tz)) .

By (θ1), we get
sd(z, Tz) < d(z, Tz).

This implies that
d(z, Tz)(s− 1) < 0⇒ s < 1,

which is a contradiction. Hence Tz = z.
Now, suppose that z,u ∈ X are two fixed points of T such that u 6= z. Then we have

d (z,u) = d (Tz, Tu) > 0.
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Letting x = z and y = u in (3.1), we have

θ (d (z,u)) = θ (d (Tu, Tz)) 6 θ
(
s3d (Tu, Tz)

)
6 [θ (M (z,u))]r ,

where

M (z,u) = max
{
d (z,u) ,d (z, Tz) ,d (u, Tu) ,

1
2s2 (d (u, Tz) + d (z, Tu))

}
= d (z,u) .

Therefore, we have
θ (d (z,u)) 6 [θ (d (z,u))]r < θ (d (z,u)) ,

which implies that
d (z,u) < d (z,u) ,

which is a contradiction. Therefore u = z.

Corollary 3.3. Let (X,d) be a complete b-metric space and T : X → X be a given mapping. Suppose that there
exist θ ∈ Θ and k ∈ ]0, 1[ such that for any x,y ∈ X, we have

d (Tx, Ty) > 0⇒ θ
[
s3d (Tx, Ty)

]
6 [θ (d (x,y))]k .

Then T has a unique fixed point.

Example 3.4. Let X = [1,+∞[. Define d : X× X → [0,+∞[ by d (x,y) = |x− y|2. Then (X,d) is a b-metric
space with coefficient s = 2. Define a mapping T : X→ X by

T(x) = x
1
4 .

Evidently, T(x) ∈ X. Let θ (t) = e
√
t, r = 1√

2
. It is obvious that θ ∈ Θ and r ∈ ]0, 1[ . Consider the following

possibilities:

1. x,y ∈ [1,+∞[, y < x. Then

T(x) = x
1
4 , T(y) = y

1
4 , d (Tx, Ty) = (x

1
4 − y

1
4 )2.

On the other hand
θ
[
s3d (Tx, Ty)

]
= e
√

8(x
1
4 −y

1
4 )

and

M(x,y) = max
{
d (x,y) ,d (x, Tx) ,d (y, Ty) ,

1
2s2 (d (y, Tx) + d (x, Ty))

}
> d(x,y) = (x− y)2 =

[
(x

1
4 − y

1
4 )(x

1
4 + y

1
4 )(x

1
2 + y

1
2 )
]2

>
[
4(x

1
4 − y

1
4 )
]2

.

Hence

[θ (d(x,y))]
1√
2 =

[
e

[
(x

1
4 −y

1
4 )(x

1
4 +y

1
4 )(x

1
2 +y

1
2 )

]] 1√
2

>

[
e

[
4(x

1
4 −y

1
4 )

]] 1√
2

=

[
e

[
x

1
4 −y

1
4

]] 4√
2

=

[
e

√
8
[
x

1
4 −y

1
4

]]
.

This implies that

θ(s3d(Tx, Ty) 6 φ [θ(d(x, Tx))]
1√
2 6 [θ(max {d (x,y) ,d (x, Tx) ,d (y, Ty)} ,d (y, Tx))]

1√
2 .
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2. x < y with x,y ∈ [1,+∞[. By a similar method, we conclude that

θ(s3d(Tx, Ty) 6 [θ(max {d (x,y) ,d (x, Tx) ,d (y, Ty)} ,d (y, Tx))]
1√
2 .

Hence, the condition (3.1) is satisfied. Therefore, T has a unique fixed point z = 1.

Theorem 3.5. Let (X,d) be a complete b-metric space and T : X→ X be a mapping. Suppose that there exist θ ∈ Θ
and φ ∈ Φ such that for all x,y ∈ X,

d (Tx, Ty) > 0⇒ θ
[
s3d (Tx, Ty)

]
6 φ [θ (M (x,y))] (3.8)

where

M (x,y) = max
{
d (x,y) ,d (x, Tx) ,d (y, Ty) ,

1
2s2d (y, Tx)

}
.

Then T has a unique fixed point.

Proof. Let x0 ∈ X be an arbitrary point in X and define a sequence {xn} by

xn+1 = Txn = Tn+1x0,

for all n ∈N. If there exists n0 ∈N such that d (xn0 , xn0+1) = 0, then the proof is finished.
We can suppose that d (xn, xn+1) > 0 for all n ∈N. Letting x = xn−1 and y = xn in (3.8), we have

θ [d (xn, xn+1)] 6 θ
[
s3d (xn, xn+1)

]
6 φ [θ (M (xn−1, xn))] , ∀n ∈N, (3.9)

where

M (xn−1, xn) = max
{
d (xn−1, xn) ,d (xn−1, xn) ,d (xn, xn+1) ,

d (xn, xn) + d (xn−1, xn+1)

2s2

}
= max

{
d (xn−1, xn) ,d (xn, xn+1) ,

d (xn−1, xn+1)

2s2

}
.

Since

1
2s2d (xn−1, xn+1) 6

1
2s2 [s (d (xn−1, xn) + d (xn, xn+1))]

=
1
2s

(d (xn−1, xn) + d (xn, xn+1))

6
1
2
(d (xn−1, xn) + d (xn, xn+1)) 6 max{d (xn−1, xn) ,d (xn, xn+1)},

we obtain

M (xn−1, xn) = max{d (xn−1, xn) ,d (xn, xn+1)}.

If M (xn−1, xn) = d (xn, xn+1) , then by (3.9), we have

θ (d (xn, xn+1)) 6 φ (θ (d (xn, xn+1))) < θ (d (xn, xn+1)) ,

which is a contradiction. Hence M (xn−1, xn) = d (xn−1, xn) . Thus

θ (d (xn, xn+1)) 6 φ (θ (d (xn−1, xn))) .

Repeating this step, we conclude that

θ (d (xn, xn+1)) 6 φ (θ (d (xn−1, xn))) 6 φ2 (θ (d (xn−2, xn−1))) 6 · · · 6 φnθ (d (x0, x1)) .
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From (3.3) and using Lemma 2.6 and (θ1), we get

d (xn, xn+1) < d (xn−1, xn) .

Therefore, d (xn,xn+1)n∈N is a monotone strictly decreasing sequence of nonnegative real numbers. Con-
sequently, there exists α > 0 such that

lim
n→∞d (xn+1,xn) = α.

Now, we claim that α = 0. Arguing by contraction, we assume that α > 0. Since d (xn,xn+1)n∈N is a
nonnegative decreasing sequence, we have

d (xn,xn+1) > α, ∀n ∈N.

This implies that

1 < θ (α) 6 θ (d (xn+1, xn)) 6 φ [θ (d (xn, xn−1))] 6 · · · 6 φnθ (d (x0, x1)) .

Letting n→∞ and using the properties of φ and θ, we get

1 < θ (α) 6 lim
n→∞φnθ (d (x0, x1)) = 1,

which is a contradictions. Thus α = 0 and so we have

lim
n→∞d (xn,xn+1) = 0.

Next, we shall prove that {xn}n∈N is a Cauchy sequence, i.e., limn,m→∞ d (xn,xm) = 0. Suppose to the
contrary. By Lemma 2.3, there is an ε > 0 such that for an integer k there exist two sequences

{
n(k)

}
and{

m(k)

}
such that

i) ε 6 limk→∞ infd
(
xm(k)

, xn(k)

)
6 limk→∞ supd

(
xm(k)

, xn(k)

)
6 sε;

ii) ε
s 6 limk→∞ infd

(
xn(k)

, xm(k)+1

)
6 limk→∞ supd

(
xn(k)

, xm(k)+1

)
6 s2ε;

iii) ε
s 6 limk→∞ infd

(
xm(k)

, xn(k)+1

)
6 limk→∞ supd

(
xm(k)

, xn(k)+1

)
6 s2ε;

vi) ε
s2 6 limk→∞ infd

(
xm(k)+1 , xn(k)+1

)
6 limk→∞ supd

(
xm(k)+1 , xn(k)+1

)
6 s3ε.

From (3.8) and by setting x = xm(k)
and y = xn(k)

we have:

lim
k→∞M

(
xm(k)

, xn(k)

)
6 sε. (3.10)

Now, letting x = xm(k)
and y = xn(k)

in (3.8), we obtain

θ
[
s3d

(
xm(k)+1 , xn(k)+1

)]
6 φ

[
θ
(
M
(
xm(k)

, xn(k)

))]
.

Letting k→∞ in the above inequality and applying the continuity of θ and φ and using (3.10), we obtain

θ
( ε
s2 s

3
)
= θ (εs) 6 θ

(
s3 lim
k→∞d

(
xm(k)+1 , xn(k)+1

))
6 φ

[
θ

(
lim
k→∞M

(
xm(k)

, xn(k)

))]
.

By Lemma 2.6, we get
θ(sε) 6 φ [θ(sε)] < θ(sε).
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Since θ is increasing, we get
sε < sε,

which is a contradiction. Thus
lim

n,m→∞d (xm, xn) = 0.

Hence {xn} is a Cauchy sequence in X. By completeness of (X,d) , there exists z ∈ X such that

lim
n→∞d (xn, z) = 0.

Now, we show that d (Tz, z) = 0 by contradiction, we assume that

d (Tz, z) > 0.

Since xn → z as n→∞, from Lemma 2.2, we conclude that

1
s2d (z, Tz) 6 lim

n→∞ supd (Txn, Tz) 6 s2d (z, Tz) .

Now, letting x = xn and y = z in (3.8), we have

θ
(
s3d (Txn, Tz)

)
6 [θ (M (xn, z))]r , ∀n ∈N,

where

M (xn, z) = max
{
d (xn, z) ,d (xn, Txn) ,d (z, Tz) ,

1
2s2 (d (z, Txn) + d (xn, Tz))

}
.

As in the proof of Theorem 3.2, we have

lim
n→∞ supM (xn, z) = d(z, Tz).

Therefore,

θ
(
s3d (Txn, Tz)

)
6 φ

[
θ

(
max

{
d (xn, z) ,d (xn, Txn) ,d (z, Tz) ,

1
2s2 (d (z, Txn) + d (xn, Tz))

})]
. (3.11)

Letting n→∞ in (3.11) and using the properties of φ and θ, we obtain

θ

[
s3 1
s
d (z, Tz)

]
= θ [sd (z, Tz)] 6 θ

[
s3 lim
n→∞d (Txn, Tz)

]
6 φ [θ (d (z, Tz))] < θ (d (z, Tz)) .

By (θ1), we get
sd(z, Tz) < d(z, Tz).

This implies that
d(z, Tz)(s− 1) < 0⇒ s < 1,

which is a contradiction. Hence Tz = z.
Now, suppose that z,u ∈ X are two fixed points of T such that u 6= z. Therefore, we have

d (z,u) = d (Tz, Tu) > 0.

Letting x = z and y = u in (3.8), we have

θ (d (z,u)) = θ (d (Tu, Tz)) 6 θ
(
s3d (Tu, Tz)

)
6 φ [θ (M (z,u))] ,

where

M (z,u) = max
{
d (z,u) ,d (z, Tz) ,d (u, Tu) ,

1
2s2 (d (u, Tz) + d (z, Tu))

}
= d (z,u) .
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Therefore, we have
θ (d (z,u)) 6 φ [θ (d (z,u))] < θ (d (z,u)) ,

which implies that
d (z,u) < d (z,u) .

This is a contradiction. Therefore u = z.

It follows from Theorem 3.5 that we obtain the followed fixed point theorems for θ-φ-Kannan-type
contraction and θ-φ-Reich-type contraction. The results presented in the paper improve and extend the
corresponding results due to Kannan-type contraction and Reich-type contraction on rectangular b-metric
space.

Theorem 3.6. Let (X,d) be a complete b-metric space and T : X→ X be a Kannan-type contraction. Then T has a
unique fixed point.

Proof. Since T is a Kannan-type contraction, there exist θ ∈ Θ and φ ∈ Φ such that

θ
[
s3d (Tx, Ty)

]
6 φ

[
θ

(
d (Tx, x) + d (Ty,y)

2

)]
6 φ [θ (max {d (x, Tx) ,d (y, Ty)})]

6 φ

[
θ

(
max

{
d(x,y),d (x, Tx) ,d (y, Ty) ,

1
2s2 (d (y, Tx) + d (x, Ty))

})]
.

Therefore, T is a θ-φ-contraction. As in the proof of Theorem 3.4, we conclude that T has a unique fixed
point.

Theorem 3.7. Let (X,d) be a complete b-metric space and T : X → X be a Reich-type contraction. Then T has a
unique fixed point.

Proof. Since T is a Reich-type contraction, there exist θ ∈ Θ and φ ∈ Φ such that

θ
[
s3d (Tx, Ty)

]
6 φ

[
θ

(
d (x,y) + d (Tx, x) + d (Ty,y)

3

)]
6 φ

[
θ

(
max

{
d(x,y),d (x, Tx) ,d (y, Ty) ,

1
2s2 (d (y, Tx) + d (x, Ty))

})]
.

Therefore, T is a θ-φ-contraction. As in the proof of Theorem 3.5, we conclude that T has a unique fixed
point.

Corollary 3.8. Let (X,d) be a complete b-rectangular metric space and T : X→ X be a Kannan type mapping, i.e.,
there exists α ∈

]
0, 1

2

[
such that for all x,y ∈ X,

d (Tx, Ty) > 0⇒ s3d (Tx, Ty) 6 α [(d (Tx, x) + d (Ty,y))] .

Then T has a unique fixed point.

Proof. Let θ(t) = et for all t ∈ ]0,+∞[, and φ (t) = t2α for all t ∈ [1,+∞[. Clearly φ ∈ Φ and θ ∈ Θ. We
prove that T is a θ-φ-Kannan-type contraction. Indeed,

θ
(
s3d (Tx, Ty)

)
= es

3d (Tx, Ty) 6 eα (d (Tx, x) + d (Ty,y))

= e
2α
(
d (Tx, x) + d (Ty,y)

2

)
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=

e
(
d (Tx, x) + d (Ty,y)

2

)
2α

= φ

[
θ

(
d (Tx, x) + d (Ty,y)

2

)]
.

As in the proof of Theorem 3.6, T has a unique fixed point x ∈ X.

Corollary 3.9. Let (X,d) be a complete b-rectangular metric space and T : X → X be a Reich type mapping, i.e.,
there exists λ ∈

]
0, 1

3

[
such that for all x,y ∈ X,

d (x,y) > 0⇒ s3d (Tx, Ty) 6 λ [(d (x,y) + d (Tx, x) + d (Ty,y))] .

Then T has a unique fixed point.

Proof. Let θ(t) = et for all t ∈ ]0,+∞[, and φ (t) = t3λ for all t ∈ [1,+∞[.
We prove that T is a θ-φ-Reich type contraction. Indeed,

θ
(
s2d (Tx, Ty)

)
= es

2d(Tx,Ty) 6 eλ (d (x,y) + d (Tx, x) + d (Ty,y))

= e
3λ
(
d (x,y) + d (Tx, x) + d (Ty,y)

3

)
= φ

[
θ

(
d (x,y) + d (Tx, x) + d (Ty,y)

3

)]
.

As in the proof of Theorem 3.6, T has a unique fixed point x ∈ X.

Corollary 3.10. Let (X,d) be a complete b-metric space and T : X → X be a mapping. Suppose that there exist
θ ∈ Θ and r ∈ ]0, 1[ such that for all x,y ∈ X,

d (Tx, Ty) > 0⇒ θ
[
s2d (Tx, Ty)

]
6 [θ (M (x,y))]r ,

where

M (x,y) = max
{
d (x,y) ,d (x, Tx) ,d (y, Ty) ,

1
2s2 (d (y, Tx) + d (x, Ty))

}
.

Then T has a unique fixed point.

Proof. Taking φ(t) = tr ∈ Φ with r ∈ ]0, 1[, we conclude that T is a θ-φ-contraction. As in the proof of
Theorem 3.4, T has a unique fixed point.

Very recently, Kari et al. [14, Theorem 1] proved the result on (α,η)-complete rectangular b-metric
spaces. In this paper, we prove this result in complete b-metric spaces.

Corollary 3.11. Let d (X,d) be a complete b-rectangular metric space with parameter s > 1 and let T be a self
mapping on X. If for all x,y ∈ X with d (Tx, Ty) > 0 we have

θ
(
s3.d (Tx, Ty)

)
6 φ [θ (β1d (x,y) +β2d (Tx, x) +β3d (Ty,y) +β4d (y, Tx))] ,

where θ ∈ Θ, φ ∈ Φ, βi > 0 for i ∈ {1, 2, 3, 4},
i=4∑
i=0

βi 6 1, then T has a unique fixed point.

Proof. We prove that T is a θ-φ-contraction. Indeed,

θ
(
s2 · d (Tx, Ty)

)
6 φ

[
θ

(
β1d (x,y) +β2d (Tx, x) +β3d (Ty,y) +

β4

2s2 (d (y, Tx) + d (x, Ty))
)]

6 φ

[
θ (β1 +β2 +β3 +β4)

(
max{d (x,y) ,d (Tx, x) ,d (Ty,y) ,

1
2s2 (d (y, Tx) + d (x, Ty))}

)]
6 φ

[
θ

(
max{d (x,y) ,d (Tx, x) ,d (Ty,y) ,

1
2s2 (d (y, Tx) + d (x, Ty))}

)]
.

As in the proof of Theorem 3.4, T has a unique fixed point.
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Example 3.12. Let X = A∪B, where A = { 1
6n−1 ;n ∈N} and B = {0}. Define d : X×X→ [0,+∞[ by

d (x,y) = (|x− y|)2 .

Then (X,d) is a b-metric space with coefficient s = 2.
Define a mapping T : X→ X by

T(x) =

{
1

6n , if x ∈ { 1
6n−1 },

1, if x = 0.

Then T(x) ∈ X. Let θ (t) =
√
t+ 1, φ (t) = t+1

2 . It is obvious that θ ∈ Θ and φ ∈ Φ. Consider the following
possibilities.

Case 1: x = 1
6n−1 ,y = 1

6n−1 for m > n > 0. Then

d(Tx, Ty) =
(

1
6n

−
1

6m

)2

=

(
6m − 6n

6m+n

)2

.

So

θ
(
s3d(Tx, Ty)

)
=
√

8
(

6m − 6n

6m+n

)
+ 1

and

φ [θ(d(x,y))] = φ

[
θ

(
6m−1 − 6n−1

6m+n−2

)2
]
= 3

(
6m − 6n

6m+n−2

)
+ 1.

On the other hand,

θ(s3d(Tx, Ty) −φ [θ(d(x,y))] =
√

8
(

6m − 6n

6m+n

)
+ 1 − 3

(
6m − 6n

6m+n

)
+ 12 =

√
8 − 3

[(
6m − 6n

6m+n

)]
6 0.

This implies that

θ(s3d(Tx, Ty) 6 φ [θ(d(x,y))] 6 φ
[
θ(max

{
d (x,y) ,d (x, Tx) ,d (y, Ty) ,

d (y, Tx) + d (x, Ty)
2s2

}
)

]
.

Case 2: x = 1
6n−1 ,y = 0.

Then T(x) = 1
6n , T(y)0, then d(Tx, Ty) =

( 1
6n
)2

. So we have

θ(s3d(Tx, Ty) =
√

8
6n

+ 1.

Thus

M(x,y) = φ
[
θ(max

{
d (x,y) ,d (x, Tx) ,d (y, Ty) ,

d (y, Tx) + d (x, Ty)
2s2

}
)

]
> d(x,y) =

(
1

6n−1

)2

and
φ [θ (d(x,y))] =

3
6n

+ 1.

On the other hand,

θ(s3d(Tx, Ty) −φ [θ (d(x,y))] =
√

8
6n

+ 1 −
3

6n
+ 1 =

√
8 − 3
6n

6 0.

This implies that

θ(s3d(Tx, Ty) 6 φ [θ(d(y, Ty))] 6 φ
[
θ(d(1,

1
3
))

]
6 φ [θ(d(y, Ty)]

6 φ [θ(max {d (x,y) ,d (x, Tx) ,d (y, Ty)} ,d (y, Tx))] .

Hence the condition (3.8) is satisfied. Therefore, T has a unique fixed point z = 1.
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4. Application to nonlinear integral equations

In this section, we endeavor to apply Theorems 3.2 and 3.4 to prove the existence and uniqueness of
the integral equation of Fredholm type:

x(t) = λ

∫b
a

K(t, r, x(r))ds, (4.1)

where a,b ∈ R, x ∈ C([a,b] , R) and K : [a,b]2 ×R→ R is a given continuous function.

Theorem 4.1. Consider the nonlinear integral equation problem (4.1) and assume that the kernel function K satisfies
the condition |K(t, r, x(r)) −K(t, r,y(r))| 6 1

s2 (|x(t) − y(t)|) for all t, r ∈ [a,b] and x,y ∈ R. Then the equation
(4.1) has a unique solution x ∈ C([a,b] for some constant λ depending on the constant s.

Proof. Let X = C([a,b] and T : X→ X be defined by

T(x)(t) = λ

∫b
a

K(t, r, x(r))ds,

for all x ∈ X. Let d : X×X→ [0,+∞[ be given by

d(x,y) =
(

max
t∈[a,b]

|x(t) − y(t)|

)2

for all x,y ∈ X. It is clear that (X,d) is a complete b-metric space.
We will find the condition on λ under which the operator has a unique fixed point which will the

solution of the integral equation (4.1). Assume that x,y ∈ X and t, r ∈ [a,b]. Then we get

|Tx(t) − Ty(t)|2 = |λ|s

(
|

∫b
a

K(t, r, x(r))dr−
∫b
a

K(t, r,y(r))dr|

)2

= |λ2||

∫b
a

K(t, r, x(r)) −K(t, r,y(r))dr|2

6 |λ|2
∫b
a

|K(t, r, x(r)) −K(t, r,y(r))dr|2

6 |λ|2
∫b
a

(
1
s2 (|x(r) − y(r)|)dr

)2

= |λ|2
1
s4

[∫b
a

((|x(r)|− |y(r)|))dr

]2

.

This implies that

max
t∈[a,b]

(|Tx(t) − Ty(t)|) = max
t∈[a,b]

|λ|2
∫b
a

|K(t, r, x(r)) −K(t, r,y(r))dr|s

6 max
t∈[a,b]

1
s2 |λ|

2
∫b
a

((|x(r) − y(r)|)dr)2 6 |λ|2
1
s4

∫b
a

((
max
r∈[a,b]

|x(r) − y(r)|

)
dr

)2

.

Since by the definition of the b-rectangular metric space, we have d(Tx, Ty) > 0 and d(x,y) > 0 for all
x 6= y, we can take natural exponential sides and get

e[s
3d(Tx,Ty)] = e

[
s3|λ|2 maxt∈[a,b]

∫b
a |K(t,r,x(r))−K(t,r,y(r))dr|2

]
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6 e

[
(
|λ|
s )2 ∫b

a((maxr∈[a,b] |x(r)−y(r)|)dr)
2
]
=

[
e

[∫b
a((maxr∈[a,b] |x(r)−y(r)|)dr)

2
]]( |λ|

s )2

,

provided that |λ| < s, which implies that

e[s
3d(Tx,Ty)] 6

[
e

[∫b
a((maxr∈[a,b] |x(r)−y(r)|)dr)

2
]]k

.

Hence

F
(
s3d(Tx, Ty)

)
+φ(d(x,y)) 6 F (d(x,y))

for all x,y ∈ X with θ(t) = et, φ(t) = tk and k = (
|λ|
s )

2 . It follows that T satisfies the conditions (3.1) and
(3.8). Therefore there exists a unique solution of the nonlinear Fredholm inequality (4.1).

5. Conclusion

We defined θ-φ-contraction on a b-metric space into itself by extending θ-φ-contraction introduced
Zheng et al. in metric space and also we proved θ-type theorem in the setting of b-metric spaces as well as
θ-φ-type theorem in the framework of b-rectangular metric spaces. Moreover, we gave some applications
to nonlinear integral equations. We also gave illustrative examples to exhibit the utility of our results.
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