New fixed point theorems for $\theta-\phi$-contraction on b-metric spaces

Mohamed Rossafia ${ }^{\text {a }}$, Abdelkarim Kari ${ }^{\text {b }}$, Choonkil Park ${ }^{\text {c }}$, Jung Rye Lee ${ }^{\text {d,* }}$
 1796 Fes Atlas, Morocco.
${ }^{b}$ AMS Laboratory, Faculty of Sciences, Ben M'Sik, Hassan II University, Casablanca, Morocco.
${ }^{c}$ Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.
${ }^{d}$ Department of Data Science, Daejin University, Kyunggi 11159, Korea.

Abstract

In this paper, we define θ - ϕ-contraction on a b-metric space into itself by extending $\theta-\phi$-contraction introduced by Zheng et al. [D. W. Zheng, Z. Y. Cai, P. Wang, J. Nonlinear Sci. Appl., 10 (2017), 2662-2670] in metric space and also, we prove θ-type theorem in the setting of b-metric spaces as well as θ - ϕ-type theorem in the framework of b-rectangular metric spaces. Moreover, we give some applications to nonlinear integral equations. We also give illustrative examples to exhibit the utility of our results.

Keywords: Fixed point, rectangular b-metric space, $\theta-\phi$-contraction.
2020 MSC: MSC 47H10, 54H25.
©2023 All rights reserved.

1. Introduction

The Banach contraction principle is a fundamental result in fixed point theory [3]. Due to its importance, various mathematics studied many interesting extensions and generalizations, (see [4, 12, 16, 20]). In 2014, Jleli and Samet [11] analyzed a generalization of the Banach fixed point theorem on generalized metric spaces in a new type of contraction mappings called θ-contraction (or JS-contraction) and proved a fixed point result in generalized metric spaces. This direction has been studied and generalized in different spaces and various fixed point theorems have been developed (see [13-15]).

Many generalizations of the concept of metric spaces are defined and some fixed point theorems were proved in these spaces. In particular, b-metric spaces were introduced by Bakhtin [2] and Czerwik [5], in such a way that triangle inequality is replaced by the b-triangle inequality: $d(x, y) \leqslant s(d(x, z)+d(z, y))$ for all pairwise distinct points x, y, z and $s \geqslant 1$. Any metric space is a b-metric space but in general, b metric space might not be a metric space. Various fixed point results were established on such spaces. For more information on b-metric spaces and b-metric-like spaces, the readers can refer to (see [6-10, 17-19].

[^0]Very recently, Zheng et al. [22] introduced a new concept of θ - ϕ-contraction and established some fixed point results for such mappings in complete metric space and generalized the results of Brower and Kannan.

In this paper, we introduce a new notion of generalized $\theta-\phi$-contraction and establish some results of fixed point for such mappings in complete b-metric space. The results presented in the paper extend the corresponding results of Kannan [12] and Reich [20] on b-rectangular metric space. Various examples are constructed to illustrate our results. As an application, we prove the existence and uniqueness of a solution for the nonlinear Fredholm integral equations. Also, we derive some useful corollaries of these results.

2. Preliminaries

Definition 2.1 ([5]). Let X be a nonempty set, $s \geqslant 1$ be a given real number, and let $d: X \times X \rightarrow[0,+\infty[$ be a function such that for all $x, y \in X$ and all distinct points $u, v \in X$, each distinct from x and y :

1. $d(x, y)=0$, if only if $x=y$;
2. $d(x, y)=d(y, x)$;
3. $d(x, y) \leqslant s[d(x, z)+d(z, y)]$, (b-rectangular inequality).

Then (X, d) is called a b-metric space.
Lemma 2.2 ([1]). Let (X, d) be a b-metric space.
(a) Suppose that sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X are such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$, with $x \neq y, x_{n} \neq x$ and $y_{n} \neq \mathrm{y}$ for all $\mathrm{n} \in \mathbb{N}$. Then we have

$$
\frac{1}{s^{2}} d(x, y) \leqslant \lim _{n \rightarrow \infty} \inf d\left(x_{n}, y_{n}\right) \leqslant \lim _{n \rightarrow \infty} \sup d\left(x_{n}, y_{n}\right) \leqslant s^{2} d(x, y)
$$

(b) In particular, if $x=y$, then we have $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0$. Moreover, for each $z \in X$, we have

$$
\frac{1}{s} d(x, z) \leqslant \lim _{n \rightarrow \infty} \inf d\left(x_{n}, z\right) \leqslant \lim _{n \rightarrow \infty} \sup d\left(x_{n}, z\right) \leqslant s d(x, z)
$$

for all $x \in X$.
Lemma 2.3 ([21]). Let (X, d) be a b-metric space and let $\left\{x_{n}\right\}$ be a sequence in X such that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0
$$

If $\left\{x_{n}\right\}$ is not a Cauchy sequence, then there exist $\varepsilon>0$ and two sequences $\{m(k)\}$ and $\{n(k)\}$ of positive integers such that

$$
\begin{aligned}
& \varepsilon \leqslant \lim _{k \rightarrow \infty} \operatorname{infd}\left(x_{m_{(k)}}, x_{n_{(k)}}\right) \leqslant \lim _{k \rightarrow \infty} \operatorname{supd}\left(x_{m_{(k)}}, x_{n_{(k)}}\right) \leqslant s \varepsilon \\
& \varepsilon \leqslant \lim _{k \rightarrow \infty} \operatorname{infd}\left(x_{n_{(k)}}, x_{m_{(k)+1}}\right) \leqslant \lim _{k \rightarrow \infty} \operatorname{supd}\left(x_{n_{(k)}}, x_{m_{(k)+1}}\right) \leqslant s \varepsilon \\
& \varepsilon \leqslant \lim _{k \rightarrow \infty} \operatorname{infd}\left(x_{m_{(k)}}, x_{n_{(k)+1}}\right) \leqslant \lim _{k \rightarrow \infty} \operatorname{supd}\left(x_{m_{(k)}}, x_{n_{(k)+1}}\right) \leqslant s \varepsilon \\
& \frac{\varepsilon}{s} \leqslant \lim _{k \rightarrow \infty} \operatorname{infd}\left(x_{m_{(k)+1}}, x_{n_{(k)+1}}\right) \leqslant \lim _{k \rightarrow \infty} \operatorname{supd}\left(x_{m_{(k)+1}}, x_{n_{(k)+1}}\right) \leqslant s^{2} \varepsilon
\end{aligned}
$$

The following definition was given by Jleli et al. in [11].
Definition 2.4 ([11]). Let Θ be the family of all functions $\theta:] 0,+\infty[\rightarrow] 1,+\infty[$ such that $\left(\theta_{1}\right) \theta$ is increasing,
$\left(\theta_{2}\right)$ for each sequence $\left.\left(x_{n}\right) \subset\right] 0,+\infty[$;

$$
\lim _{n \rightarrow 0} x_{n}=0 \quad \text { if and only if } \lim _{n \rightarrow \infty} \theta\left(x_{n}\right)=1
$$

$\left(\theta_{3}\right) \theta$ is continuous.
In [22], Zheng et al. presented the concept of $\theta-\phi$-contraction on metric spaces and proved the following nice result.

Definition 2.5 ([22]). Let Φ be the family of all functions ϕ : $[1,+\infty[\rightarrow[1,+\infty[$, such that
$\left(\phi_{1}\right) \phi$ is nondecreasing;
$\left(\phi_{2}\right)$ for each $\left.t \in\right] 1,+\infty\left[, \lim _{n \rightarrow \infty} \phi^{n}(t)=1\right.$;
$\left(\phi_{3}\right) \phi$ is continuous.
Lemma 2.6 ([22]). If $\phi \in \Phi$, then $\phi(1)=1$, and $\phi(\mathrm{t})<\mathrm{t}$ for all $\mathrm{t} \in] 1, \infty[$.
Definition 2.7 ([22]). Let (X, d) be a metric space and $T: X \rightarrow X$ be a mapping. Then T is said to be a $\theta-\phi$-contraction if there exist $\theta \in \Theta$ and $\phi \in \Phi$ such that for any $x, y \in X$,

$$
d(T x, T y)>0 \Rightarrow \theta[d(T x, T y)] \leqslant \phi(\theta[N(x, y)])
$$

where

$$
N(x, y)=\max \{d(x, y), d(x, T x), d(y, T y)\}
$$

Theorem 2.8 ([22]). Let (X, d) be a complete metric space and let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a θ - ϕ-contraction. Then T has a unique fixed point.

3. Main results

In this paper, using the idea introduced by Zheng et al., we present the concept θ - ϕ-contraction in b-metric spaces and we prove some fixed point results for such spaces.

Definition 3.1. Let (X, d) be a b-metric space with parameter $s>1$ space and $T: X \rightarrow X$ be a mapping.
(1) T is said to be a θ-contraction if there exist $\theta \in \Theta$ and $r \in] 0,1[$ such that

$$
d(T x, T y)>0 \Rightarrow \theta\left[s^{3} d(T x, T y)\right] \leqslant \theta[M(x, y)]^{r}
$$

where

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(T x, y)}{2 s^{2}}\right\}
$$

(2) T is said to be a $\theta-\phi$-contraction if there exist $\theta \in \Theta$ and $\phi \in \Phi$ such that

$$
d(T x, T y)>0 \Rightarrow \theta\left[s^{3} d(T x, T y)\right] \leqslant \phi[\theta(M(x, y))]
$$

where

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y) \frac{d(x, T y)+d(T x, y)}{2 s^{2}}\right\}
$$

(3) T is said to be a $\theta-\phi$ - Kannan-type contraction if there exist $\theta \in \Theta$ and $\phi \in \Phi$ such that for all $x, y \in X$ with $d(T x, T y)>0$, we have

$$
\left.\theta\left[s^{3} d(T x, T y)\right)\right] \leqslant \phi\left[\theta\left(\frac{d(x, T x)+d(y, T y)}{2}\right)\right]
$$

(4) T is said to be a $\theta-\phi$-Reich-type contraction if there exist exist $\theta \in \Theta$ and $\phi \in \Phi$ such that for all $x, y \in X$ with $d(T x, T y)>0$, we have

$$
\left.\theta\left[s^{3} d(T x, T y)\right)\right] \leqslant \phi\left[\theta\left(\frac{d(x, y)+d(x, T x)+d(y, T y)}{3}\right)\right]
$$

Theorem 3.2. Let (X, d) be a complete b -metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a θ-contraction, i.e, there exist $\theta \in \Theta$ and $\mathrm{r} \in] 0,1[$ such that for any $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, we have

$$
\begin{equation*}
d(T x, T y)>0 \Rightarrow \theta\left[s^{3} d(T x, T y)\right] \leqslant \theta[M(x, y)]^{r} \tag{3.1}
\end{equation*}
$$

Then T has a unique fixed point.
Proof. Let $x_{0} \in X$ be an arbitrary point in X and define a sequence $\left\{x_{n}\right\}$ by

$$
x_{n+1}=T x_{n}=T^{n+1} x_{0}
$$

for all $n \in \mathbb{N}$. If there exists $n_{0} \in \mathbb{N}$ such that $d\left(x_{n_{0}}, x_{n_{0}+1}\right)=0$, then the proof is finished.
We can suppose that $d\left(x_{n}, x_{n+1}\right)>0$ for all $n \in \mathbb{N}$. Letting $x=x_{n-1}$ and $y=x_{n}$ in (3.1), we have

$$
\begin{equation*}
\theta\left[d\left(x_{n}, x_{n+1}\right)\right] \leqslant \theta\left[s^{3} d\left(x_{n}, x_{n+1}\right)\right] \leqslant\left[\theta\left(M\left(x_{n-1}, x_{n}\right)\right)\right]^{r}, \forall n \in \mathbb{N} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
M\left(x_{n-1}, x_{n}\right) & =\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), \frac{d\left(x_{n}, x_{n}\right)+d\left(x_{n-1}, x_{n+1}\right)}{2 s^{2}}\right\} \\
& =\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), \frac{d\left(x_{n-1}, x_{n+1}\right)}{2 s^{2}}\right\}
\end{aligned}
$$

Since

$$
\begin{aligned}
\frac{1}{2 s^{2}} d\left(x_{n-1}, x_{n+1}\right) & \leqslant \frac{1}{2 s^{2}}\left[s\left(d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right)\right] \\
& =\frac{1}{2 s}\left(d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right) \\
& \leqslant \frac{1}{2}\left(d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right) \leqslant \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}
\end{aligned}
$$

we obtain

$$
M\left(x_{n-1}, x_{n}\right)=\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}
$$

If $M\left(x_{n-1}, x_{n}\right)=d\left(x_{n}, x_{n+1}\right)$, then by (3.2), we have

$$
\theta\left(d\left(x_{n}, x_{n+1}\right)\right) \leqslant\left(\theta\left(d\left(x_{n}, x_{n+1}\right)\right)\right)^{r}<\theta\left(d\left(x_{n}, x_{n+1}\right)\right)
$$

which is a contradiction. Hence $M\left(x_{n-1}, x_{n}\right)=d\left(x_{n-1}, x_{n}\right)$. Thus

$$
\begin{equation*}
\theta\left(d\left(x_{n}, x_{n+1}\right)\right) \leqslant\left(\theta\left(d\left(x_{n-1}, x_{n}\right)\right)\right)^{r} . \tag{3.3}
\end{equation*}
$$

Repeating this step, we conclude that

$$
\theta\left(d\left(x_{n}, x_{n+1}\right)\right) \leqslant\left(\theta\left(d\left(x_{n-1}, x_{n}\right)\right)\right)^{r} \leqslant\left(\theta\left(d\left(x_{n-2}, x_{n-1}\right)\right)\right)^{r^{2}} \leqslant \cdots \leqslant \theta\left(d\left(x_{0}, x_{1}\right)\right)^{r^{n}}
$$

From (3.3) and using $\left(\theta_{1}\right)$ we get

$$
d\left(x_{n}, x_{n+1}\right)<d\left(x_{n-1}, x_{n}\right)
$$

Therefore, $d\left(x_{n}, x_{n+1}\right)_{n \in \mathbb{N}}$ is a monotone strictly decreasing sequence of nonnegative real numbers. Consequently, there exists $\alpha \geqslant 0$ such that

$$
\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}\right)=\alpha
$$

Now, we claim that $\alpha=0$. Arguing by contraction, we assume that $\alpha>0$. Since $d\left(x_{n}, x_{n+1}\right)_{n \in \mathbb{N}}$ is a nonnegative decreasing sequence, we have

$$
\mathrm{d}\left(x_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \geqslant \alpha, \quad \forall \mathrm{n} \in \mathbb{N}
$$

By the property of θ, we get

$$
\begin{equation*}
1<\theta(\alpha) \leqslant \theta\left(d\left(x_{0}, x_{1}\right)\right)^{r^{n}} \tag{3.4}
\end{equation*}
$$

Letting $n \rightarrow \infty$ in (3.4), we obtain

$$
1<\theta(\alpha) \leqslant 1
$$

This is a contradiction. Therefore,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 \tag{3.5}
\end{equation*}
$$

Next, we shall prove that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence, i.e., $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$. Suppose to the contrary. By Lemma 2.3, there is an $\varepsilon>0$ such that for an integer k there exist two sequences $\left\{n_{(k)}\right\}$ and $\left\{m_{(k)}\right\}$ such that
i) $\varepsilon \leqslant \lim _{k \rightarrow \infty} \operatorname{inf~d}\left(x_{m_{(k)}}, x_{n_{(k)}}\right) \leqslant \lim _{k \rightarrow \infty} \operatorname{supd}\left(x_{m_{(k)}}, x_{n_{(k)}}\right) \leqslant s \varepsilon$;
ii) $\frac{\varepsilon}{s} \leqslant \lim _{k \rightarrow \infty} \operatorname{inf~d}\left(x_{n_{(k)}}, x_{m_{(k)+1}}\right) \leqslant \lim _{k \rightarrow \infty} \operatorname{sup~d}\left(x_{n_{(k)}}, x_{m_{(k)+1}}\right) \leqslant s^{2} \varepsilon$;
iii) $\frac{\varepsilon}{s} \leqslant \lim _{k \rightarrow \infty} \operatorname{infd}\left(x_{m_{(k)}}, x_{n_{(k)+1}}\right) \leqslant \lim _{k \rightarrow \infty} \operatorname{supd}\left(x_{m_{(k)},} x_{n_{(k)+1}}\right) \leqslant s^{2} \varepsilon$;
vi) $\frac{\varepsilon}{s^{2}} \leqslant \lim _{k \rightarrow \infty} \operatorname{infd}\left(x_{m_{(k)+1}}, x_{n_{(k)+1}}\right) \leqslant \lim _{k \rightarrow \infty} \operatorname{supd}\left(x_{m_{(k)+1}}, x_{n_{(k)+1}}\right) \leqslant s^{3} \varepsilon$.

From (3.1) and by setting $x=x_{m_{(k)}}$ and $y=x_{n_{(k)}}$ we have

$$
\begin{aligned}
M\left(x_{m_{(k)}}, x_{n_{(k)}}\right)= & \max \left\{d\left(x_{m_{(k)}}, x_{n_{(k)}}\right), d\left(x_{m_{(k)}}, x_{m(k)+1}\right), d\left(x_{n_{(k)}}, x_{n_{(k)+1}}\right), \frac{1}{2 s^{2}}\left(d\left(x_{n_{(k)}}, x_{m_{(k)+1}}\right)\right.\right. \\
& \left.\left.+d\left(x_{m_{(k)}}, x_{n_{(k)+1}}\right)\right)\right\} .
\end{aligned}
$$

Taking the limit as $k \rightarrow \infty$ and using (3.5) and Lemma 2.3, we have

$$
\begin{aligned}
\lim _{k \rightarrow \infty} M\left(x_{m_{(k)}}, x_{n_{(k)}}\right)= & \lim _{k \rightarrow \infty} \max \left\{d\left(x_{m_{(k)}}, x_{n_{(k)}}\right), d\left(x_{m_{(k)}}, x_{m(k)+1}\right), d\left(x_{n_{(k)}}, x_{n_{(k)+1}}\right)\right. \\
& \left.\frac{1}{2 s^{2}}\left(d\left(x_{n_{(k)}}, x_{m_{(k)+1}}\right)+d\left(x_{m_{(k)}}, x_{n_{(k)+1}}\right)\right)\right\} \\
\leqslant & \max \left\{s \varepsilon, 0,0, \frac{1}{2 s^{2}}\left(s^{2} \varepsilon+s^{2} \varepsilon\right)\right\}=s \varepsilon .
\end{aligned}
$$

So we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} M\left(x_{m_{(k)}}, x_{n_{(k)}}\right) \leqslant s \varepsilon \tag{3.6}
\end{equation*}
$$

Now, letting $x=x_{m_{(k)}}$ and $y=x_{n_{(k)}}$ in (3.1), we obtain

$$
\theta\left[s^{3} \mathrm{~d}\left(x_{m_{(k)+1}}, x_{n_{(k)+1}}\right)\right] \leqslant\left[\theta\left(M\left(x_{m_{(k)}}, x_{n_{(k)}}\right)\right)\right]^{r}
$$

Letting $k \rightarrow \infty$ the above inequality, applying the continuity of θ and using (3.6), we obtain

$$
\theta\left(\frac{\varepsilon}{s^{2}} s^{3}\right)=\theta(\varepsilon s) \leqslant \theta\left(s^{3} \lim _{k \rightarrow \infty} d\left(x_{m_{(k)+1}}, x_{n_{(k)+1}}\right)\right) \leqslant\left[\theta\left(\lim _{k \rightarrow \infty} M\left(x_{m_{(k)}}, x_{n_{(k)}}\right)\right)\right]^{r}
$$

Therefore,

$$
\theta(s \varepsilon) \leqslant[\theta(s \varepsilon)]^{r}<\theta(s \varepsilon)
$$

Since θ is increasing, we get

$$
\mathrm{s} \varepsilon<\mathrm{s} \varepsilon
$$

which is a contradiction. Thus

$$
\lim _{n, m \rightarrow \infty} d\left(x_{m}, x_{n}\right)=0
$$

Hence $\left\{x_{n}\right\}$ is a Cauchy sequence in X. By completeness of (X, d), there exists $z \in X$ such that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, z\right)=0
$$

Now, we show that $d(T z, z)=0$ by contradiction. Assume that

$$
\mathrm{d}(\mathrm{~T} z, z)>0
$$

Since $x_{n} \rightarrow z$ as $n \rightarrow \infty$, from Lemma 2.2, we conclude that

$$
\frac{1}{s^{2}} d(z, T z) \leqslant \lim _{n \rightarrow \infty} \sup d\left(T x_{n}, T z\right) \leqslant s^{2} d(z, T z)
$$

Now, letting $x=x_{n}$ and $y=z$ in (3.1), we have

$$
\theta\left(s^{3} d\left(T x_{n}, T z\right)\right) \leqslant\left[\theta\left(M\left(x_{n}, z\right)\right)\right]^{r}, \forall n \in \mathbb{N}
$$

where

$$
M\left(x_{n}, z\right)=\max \left\{d\left(x_{n}, z\right), d\left(x_{n}, T x_{n}\right), d(z, T z), \frac{1}{2 s^{2}}\left(d\left(z, T x_{n}\right)+d\left(x_{n}, T z\right)\right)\right\}
$$

Taking the limit as $n \rightarrow \infty$, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sup M\left(x_{n}, z\right) & =\lim _{n \rightarrow \infty} \sup \max \left\{d\left(x_{n}, z\right), d\left(x_{n}, T x_{n}\right), d(z, T z), \frac{1}{2 s^{2}}\left(d\left(z, T x_{n}\right)+d\left(x_{n}, T z\right)\right)\right\} \\
& =d(z, T z)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\theta\left(s^{3} d\left(T x_{n}, T z\right)\right) \leqslant\left[\theta\left(\max \left\{d\left(x_{n}, z\right), d\left(x_{n}, T x_{n}\right), d(z, T z), \frac{1}{2 s^{2}}\left(d\left(z, T x_{n}\right)+d\left(x_{n}, T z\right)\right)\right\}\right)\right]^{r} \tag{3.7}
\end{equation*}
$$

Taking $n \rightarrow \infty$ in (3.7) and using (3.5) and θ_{3}, we obtain

$$
\theta\left[s^{3} \frac{1}{s} d(z, T z)\right]=\theta[\operatorname{sd}(z, T z)] \leqslant \theta\left[s^{3} \lim _{n \rightarrow \infty} d\left(T x_{n}, T z\right)\right] \leqslant[\theta(d(z, T z))]^{r}<\theta(d(z, T z))
$$

By $\left(\theta_{1}\right)$, we get

$$
\operatorname{sd}(z, T z)<d(z, T z)
$$

This implies that

$$
d(z, T z)(s-1)<0 \Rightarrow s<1
$$

which is a contradiction. Hence $T z=z$.
Now, suppose that $z, u \in X$ are two fixed points of T such that $u \neq z$. Then we have

$$
\mathrm{d}(z, u)=\mathrm{d}(\mathrm{~T} z, \mathrm{~T} u)>0
$$

Letting $x=z$ and $y=u$ in (3.1), we have

$$
\theta(\mathrm{d}(z, u))=\theta(\mathrm{d}(\mathrm{Tu}, \mathrm{~T} z)) \leqslant \theta\left(\mathrm{s}^{3} \mathrm{~d}(\mathrm{Tu}, \mathrm{~T} z)\right) \leqslant[\theta(M(z, u))]^{r}
$$

where

$$
M(z, u)=\max \left\{d(z, u), d(z, T z), d(u, T u), \frac{1}{2 s^{2}}(d(u, T z)+d(z, T u))\right\}=d(z, u)
$$

Therefore, we have

$$
\theta(d(z, u)) \leqslant[\theta(d(z, u))]^{r}<\theta(d(z, u))
$$

which implies that

$$
\mathrm{d}(z, u)<\mathrm{d}(z, u)
$$

which is a contradiction. Therefore $u=z$.
Corollary 3.3. Let (X, d) be a complete b -metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a given mapping. Suppose that there exist $\theta \in \Theta$ and $k \in] 0,1[$ such that for any $x, y \in X$, we have

$$
d(T x, T y)>0 \Rightarrow \theta\left[s^{3} d(T x, T y)\right] \leqslant[\theta(d(x, y))]^{k}
$$

Then T has a unique fixed point.
Example 3.4. Let $X=\left[1,+\infty\left[\right.\right.$. Define $d: X \times X \rightarrow\left[0,+\infty\left[\right.\right.$ by $d(x, y)=|x-y|^{2}$. Then (X, d) is a b-metric space with coefficient $s=2$. Define a mapping $T: X \rightarrow X$ by

$$
\mathrm{T}(\mathrm{x})=\mathrm{x}^{\frac{1}{4}}
$$

Evidently, $T(x) \in X$. Let $\theta(t)=e^{\sqrt{t}}, r=\frac{1}{\sqrt{2}}$. It is obvious that $\theta \in \Theta$ and $\left.r \in\right] 0,1[$. Consider the following possibilities:

1. $x, y \in[1,+\infty[, y<x$. Then

$$
T(x)=x^{\frac{1}{4}}, T(y)=y^{\frac{1}{4}}, d(T x, T y)=\left(x^{\frac{1}{4}}-y^{\frac{1}{4}}\right)^{2}
$$

On the other hand

$$
\theta\left[s^{3} d(T x, T y)\right]=e^{\sqrt{8}\left(x^{\frac{1}{4}}-y^{\frac{1}{4}}\right)}
$$

and

$$
\begin{aligned}
M(x, y) & =\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2 s^{2}}(d(y, T x)+d(x, T y))\right\} \\
& \geqslant d(x, y)=(x-y)^{2}=\left[\left(x^{\frac{1}{4}}-y^{\frac{1}{4}}\right)\left(x^{\frac{1}{4}}+y^{\frac{1}{4}}\right)\left(x^{\frac{1}{2}}+y^{\frac{1}{2}}\right)\right]^{2} \geqslant\left[4\left(x^{\frac{1}{4}}-y^{\frac{1}{4}}\right)\right]^{2} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\theta(d(x, y))]^{\frac{1}{\sqrt{2}}} } & =\left[e^{\left[\left(x^{\frac{1}{4}}-y^{\frac{1}{4}}\right)\left(x^{\frac{1}{4}}+y^{\frac{1}{4}}\right)\left(x^{\frac{1}{2}}+y^{\frac{1}{2}}\right)\right]}\right]^{\frac{1}{\sqrt{2}}} \\
& \geqslant\left[e^{\left[4\left(x^{\frac{1}{4}}-y^{\frac{1}{4}}\right)\right]}\right]^{\frac{1}{\sqrt{2}}}=\left[e^{\left[x^{\frac{1}{4}}-y^{\frac{1}{4}}\right]}\right]^{\frac{4}{\sqrt{2}}}=\left[e^{\sqrt{8}\left[x^{\frac{1}{4}}-y^{\frac{1}{4}}\right]}\right]
\end{aligned}
$$

This implies that

$$
\theta\left(s^{3} d(T x, T y) \leqslant \phi[\theta(d(x, T x))]^{\frac{1}{\sqrt{2}}} \leqslant[\theta(\max \{d(x, y), d(x, T x), d(y, T y)\}, d(y, T x))]^{\frac{1}{\sqrt{2}}}\right.
$$

2. $x<y$ with $x, y \in[1,+\infty[$. By a similar method, we conclude that

$$
\theta\left(s^{3} d(T x, T y) \leqslant[\theta(\max \{d(x, y), d(x, T x), d(y, T y)\}, d(y, T x))]^{\frac{1}{\sqrt{2}}} .\right.
$$

Hence, the condition (3.1) is satisfied. Therefore, T has a unique fixed point $z=1$.
Theorem 3.5. Let (X, d) be a complete b -metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a mapping. Suppose that there exist $\theta \in \Theta$ and $\phi \in \Phi$ such that for all $x, y \in X$,

$$
\begin{equation*}
d(T x, T y)>0 \Rightarrow \theta\left[s^{3} d(T x, T y)\right] \leqslant \phi[\theta(M(x, y))] \tag{3.8}
\end{equation*}
$$

where

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2 s^{2}} d(y, T x)\right\}
$$

Then T has a unique fixed point.
Proof. Let $x_{0} \in X$ be an arbitrary point in X and define a sequence $\left\{x_{n}\right\}$ by

$$
x_{n+1}=T x_{n}=T^{n+1} x_{0},
$$

for all $n \in \mathbb{N}$. If there exists $n_{0} \in \mathbb{N}$ such that $d\left(x_{n_{0}}, x_{n_{0}+1}\right)=0$, then the proof is finished.
We can suppose that $d\left(x_{n}, x_{n+1}\right)>0$ for all $n \in \mathbb{N}$. Letting $x=x_{n-1}$ and $y=x_{n}$ in (3.8), we have

$$
\begin{equation*}
\theta\left[d\left(x_{n}, x_{n+1}\right)\right] \leqslant \theta\left[s^{3} d\left(x_{n}, x_{n+1}\right)\right] \leqslant \phi\left[\theta\left(M\left(x_{n-1}, x_{n}\right)\right)\right], \forall n \in \mathbb{N}, \tag{3.9}
\end{equation*}
$$

where

$$
\begin{aligned}
M\left(x_{n-1}, x_{n}\right) & =\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), \frac{d\left(x_{n}, x_{n}\right)+d\left(x_{n-1}, x_{n+1}\right)}{2 s^{2}}\right\} \\
& =\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), \frac{d\left(x_{n-1}, x_{n+1}\right)}{2 s^{2}}\right\} .
\end{aligned}
$$

Since

$$
\begin{aligned}
\frac{1}{2 s^{2}} d\left(x_{n-1}, x_{n+1}\right) & \leqslant \frac{1}{2 s^{2}}\left[s\left(d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right)\right] \\
& =\frac{1}{2 s}\left(d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right) \\
& \leqslant \frac{1}{2}\left(d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right) \leqslant \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}
\end{aligned}
$$

we obtain

$$
M\left(x_{n-1}, x_{n}\right)=\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\} .
$$

If $M\left(x_{n-1}, x_{n}\right)=d\left(x_{n}, x_{n+1}\right)$, then by (3.9), we have

$$
\theta\left(d\left(x_{n}, x_{n+1}\right)\right) \leqslant \phi\left(\theta\left(d\left(x_{n}, x_{n+1}\right)\right)\right)<\theta\left(d\left(x_{n}, x_{n+1}\right)\right),
$$

which is a contradiction. Hence $M\left(x_{n-1}, x_{n}\right)=d\left(x_{n-1}, x_{n}\right)$. Thus

$$
\theta\left(d\left(x_{n}, x_{n+1}\right)\right) \leqslant \phi\left(\theta\left(d\left(x_{n-1}, x_{n}\right)\right)\right) .
$$

Repeating this step, we conclude that

$$
\theta\left(d\left(x_{n}, x_{n+1}\right)\right) \leqslant \phi\left(\theta\left(d\left(x_{n-1}, x_{n}\right)\right)\right) \leqslant \phi^{2}\left(\theta\left(d\left(x_{n-2}, x_{n-1}\right)\right)\right) \leqslant \cdots \leqslant \phi^{n} \theta\left(d\left(x_{0}, x_{1}\right)\right) .
$$

From (3.3) and using Lemma 2.6 and $\left(\theta_{1}\right)$, we get

$$
d\left(x_{n}, x_{n+1}\right)<d\left(x_{n-1}, x_{n}\right)
$$

Therefore, $d\left(x_{n}, x_{n+1}\right)_{n \in \mathbb{N}}$ is a monotone strictly decreasing sequence of nonnegative real numbers. Consequently, there exists $\alpha \geqslant 0$ such that

$$
\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}\right)=\alpha
$$

Now, we claim that $\alpha=0$. Arguing by contraction, we assume that $\alpha>0$. Since $d\left(x_{n}, x_{n+1}\right)_{n \in \mathbb{N}}$ is a nonnegative decreasing sequence, we have

$$
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \geqslant \alpha, \quad \forall \mathrm{n} \in \mathbb{N}
$$

This implies that

$$
1<\theta(\alpha) \leqslant \theta\left(d\left(x_{n+1}, x_{n}\right)\right) \leqslant \phi\left[\theta\left(d\left(x_{n}, x_{n-1}\right)\right)\right] \leqslant \cdots \leqslant \phi^{n} \theta\left(d\left(x_{0}, x_{1}\right)\right) .
$$

Letting $n \rightarrow \infty$ and using the properties of ϕ and θ, we get

$$
1<\theta(\alpha) \leqslant \lim _{n \rightarrow \infty} \phi^{n} \theta\left(d\left(x_{0}, x_{1}\right)\right)=1
$$

which is a contradictions. Thus $\alpha=0$ and so we have

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0
$$

Next, we shall prove that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence, i.e., $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$. Suppose to the contrary. By Lemma 2.3, there is an $\varepsilon>0$ such that for an integer k there exist two sequences $\left\{n_{(k)}\right\}$ and $\left\{m_{(k)}\right\}$ such that
i) $\varepsilon \leqslant \lim _{k \rightarrow \infty} \inf d\left(x_{m_{(k)}}, x_{n_{(k)}}\right) \leqslant \lim _{k \rightarrow \infty} \operatorname{supd}\left(x_{m_{(k)}}, x_{n_{(k)}}\right) \leqslant s \varepsilon$;
ii) $\frac{\varepsilon}{s} \leqslant \lim _{k \rightarrow \infty} \operatorname{inf~d}\left(x_{n_{(k)}}, x_{m_{(k)+1}}\right) \leqslant \lim _{k \rightarrow \infty} \operatorname{supd}\left(x_{n_{(k)}}, x_{m_{(k)+1}}\right) \leqslant s^{2} \varepsilon$;
iii) $\frac{\varepsilon}{s} \leqslant \lim _{k \rightarrow \infty} \operatorname{inf~d}\left(x_{m_{(k)}}, x_{n_{(k)+1}}\right) \leqslant \lim _{k \rightarrow \infty} \operatorname{supd}\left(x_{m_{(k)}}, x_{n_{(k)+1}}\right) \leqslant s^{2} \varepsilon$;
vi) $\frac{\varepsilon}{s^{2}} \leqslant \lim _{k \rightarrow \infty} \operatorname{infd}\left(x_{m_{(k)+1}}, x_{n_{(k)+1}}\right) \leqslant \lim _{k \rightarrow \infty} \operatorname{supd}\left(x_{m_{(k)+1}}, x_{n_{(k)+1}}\right) \leqslant s^{3} \varepsilon$.

From (3.8) and by setting $x=x_{m_{(k)}}$ and $y=x_{n_{(k)}}$ we have:

$$
\begin{equation*}
\lim _{k \rightarrow \infty} M\left(x_{m_{(k)}}, x_{n_{(k)}}\right) \leqslant s \varepsilon \tag{3.10}
\end{equation*}
$$

Now, letting $x=x_{m_{(k)}}$ and $y=x_{n_{(k)}}$ in (3.8), we obtain

$$
\theta\left[s^{3} \mathrm{~d}\left(x_{m_{(k)+1}}, x_{n_{(k)+1}}\right)\right] \leqslant \phi\left[\theta\left(M\left(x_{m_{(k)}}, x_{n_{(k)}}\right)\right)\right] .
$$

Letting $\mathrm{k} \rightarrow \infty$ in the above inequality and applying the continuity of θ and ϕ and using (3.10), we obtain

$$
\theta\left(\frac{\varepsilon}{s^{2}} s^{3}\right)=\theta(\varepsilon s) \leqslant \theta\left(s^{3} \lim _{k \rightarrow \infty} d\left(x_{m_{(k)+1}}, x_{n_{(k)+1}}\right)\right) \leqslant \phi\left[\theta\left(\lim _{k \rightarrow \infty} M\left(x_{m_{(k)}}, x_{n_{(k)}}\right)\right)\right]
$$

By Lemma 2.6, we get

$$
\theta(s \varepsilon) \leqslant \phi[\theta(s \varepsilon)]<\theta(s \varepsilon)
$$

Since θ is increasing, we get

$$
s \varepsilon<s \varepsilon
$$

which is a contradiction. Thus

$$
\lim _{n, m \rightarrow \infty} d\left(x_{m}, x_{n}\right)=0
$$

Hence $\left\{x_{n}\right\}$ is a Cauchy sequence in X. By completeness of (X, d), there exists $z \in X$ such that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, z\right)=0
$$

Now, we show that $d(T z, z)=0$ by contradiction, we assume that

$$
\mathrm{d}(\mathrm{~T} z, z)>0
$$

Since $x_{n} \rightarrow z$ as $n \rightarrow \infty$, from Lemma 2.2, we conclude that

$$
\frac{1}{s^{2}} d(z, T z) \leqslant \lim _{n \rightarrow \infty} \sup d\left(T x_{n}, T z\right) \leqslant s^{2} d(z, T z)
$$

Now, letting $x=x_{n}$ and $y=z$ in (3.8), we have

$$
\theta\left(s^{3} \mathrm{~d}\left(\mathrm{~T} x_{n}, \mathrm{~T} z\right)\right) \leqslant\left[\theta\left(M\left(x_{n}, z\right)\right)\right]^{r}, \forall \mathrm{n} \in \mathbb{N}
$$

where

$$
M\left(x_{n}, z\right)=\max \left\{d\left(x_{n}, z\right), d\left(x_{n}, T x_{n}\right), d(z, T z), \frac{1}{2 s^{2}}\left(d\left(z, T x_{n}\right)+d\left(x_{n}, T z\right)\right)\right\}
$$

As in the proof of Theorem 3.2, we have

$$
\lim _{n \rightarrow \infty} \sup M\left(x_{n}, z\right)=d(z, T z)
$$

Therefore,

$$
\begin{equation*}
\theta\left(s^{3} d\left(T x_{n}, T z\right)\right) \leqslant \phi\left[\theta\left(\max \left\{d\left(x_{n}, z\right), d\left(x_{n}, T x_{n}\right), d(z, T z), \frac{1}{2 s^{2}}\left(d\left(z, T x_{n}\right)+d\left(x_{n}, T z\right)\right)\right\}\right)\right] \tag{3.11}
\end{equation*}
$$

Letting $n \rightarrow \infty$ in (3.11) and using the properties of ϕ and θ, we obtain

$$
\theta\left[s^{3} \frac{1}{s} d(z, T z)\right]=\theta[\operatorname{sd}(z, T z)] \leqslant \theta\left[s^{3} \lim _{n \rightarrow \infty} d\left(T x_{n}, T z\right)\right] \leqslant \phi[\theta(d(z, T z))]<\theta(d(z, T z))
$$

By $\left(\theta_{1}\right)$, we get

$$
\operatorname{sd}(z, T z)<d(z, T z)
$$

This implies that

$$
\mathrm{d}(z, \mathrm{~T} z)(s-1)<0 \Rightarrow s<1
$$

which is a contradiction. Hence $T z=z$.
Now, suppose that $z, u \in X$ are two fixed points of T such that $u \neq z$. Therefore, we have

$$
\mathrm{d}(z, u)=\mathrm{d}(\mathrm{~T} z, \mathrm{Tu})>0
$$

Letting $x=z$ and $y=u$ in (3.8), we have

$$
\theta(\mathrm{d}(z, u))=\theta(\mathrm{d}(\mathrm{Tu}, \mathrm{~T} z)) \leqslant \theta\left(\mathrm{s}^{3} \mathrm{~d}(\mathrm{Tu}, \mathrm{~T} z)\right) \leqslant \phi[\theta(M(z, u))]
$$

where

$$
M(z, u)=\max \left\{d(z, u), d(z, T z), d(u, T u), \frac{1}{2 s^{2}}(d(u, T z)+d(z, T u))\right\}=d(z, u)
$$

Therefore, we have

$$
\theta(d(z, u)) \leqslant \phi[\theta(d(z, u))]<\theta(d(z, u))
$$

which implies that

$$
\mathrm{d}(z, u)<d(z, u)
$$

This is a contradiction. Therefore $u=z$.
It follows from Theorem 3.5 that we obtain the followed fixed point theorems for $\theta-\phi-K a n n a n-t y p e$ contraction and $\theta-\phi$-Reich-type contraction. The results presented in the paper improve and extend the corresponding results due to Kannan-type contraction and Reich-type contraction on rectangular b-metric space.

Theorem 3.6. Let (X, d) be a complete b-metric space and $T: X \rightarrow X$ be a Kannan-type contraction. Then T has a unique fixed point.

Proof. Since T is a Kannan-type contraction, there exist $\theta \in \Theta$ and $\phi \in \Phi$ such that

$$
\begin{aligned}
\theta\left[s^{3} d(T x, T y)\right] & \leqslant \phi\left[\theta\left(\frac{d(T x, x)+d(T y, y)}{2}\right)\right] \\
& \leqslant \phi[\theta(\max \{d(x, T x), d(y, T y)\})] \\
& \leqslant \phi\left[\theta\left(\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2 s^{2}}(d(y, T x)+d(x, T y))\right\}\right)\right]
\end{aligned}
$$

Therefore, T is a $\theta-\phi$-contraction. As in the proof of Theorem 3.4, we conclude that T has a unique fixed point.

Theorem 3.7. Let (X, d) be a complete b -metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a Reich-type contraction. Then T has a unique fixed point.

Proof. Since T is a Reich-type contraction, there exist $\theta \in \Theta$ and $\phi \in \Phi$ such that

$$
\begin{aligned}
\theta\left[s^{3} d(T x, T y)\right] & \leqslant \phi\left[\theta\left(\frac{d(x, y)+d(T x, x)+d(T y, y)}{3}\right)\right] \\
& \leqslant \phi\left[\theta\left(\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2 s^{2}}(d(y, T x)+d(x, T y))\right\}\right)\right]
\end{aligned}
$$

Therefore, T is a $\theta-\phi$-contraction. As in the proof of Theorem 3.5, we conclude that T has a unique fixed point.

Corollary 3.8. Let (X, d) be a complete b-rectangular metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a Kannan type mapping, i.e., there exists $\alpha \in] 0, \frac{1}{2}[$ such that for all $x, y \in X$,

$$
d(T x, T y)>0 \Rightarrow s^{3} d(T x, T y) \leqslant \alpha[(d(T x, x)+d(T y, y))]
$$

Then T has a unique fixed point.
Proof. Let $\theta(t)=e^{t}$ for all $\left.t \in\right] 0,+\infty\left[\right.$, and $\phi(t)=t^{2 \alpha}$ for all $t \in[1,+\infty[$. Clearly $\phi \in \Phi$ and $\theta \in \Theta$. We prove that T is a $\theta-\phi$-Kannan-type contraction. Indeed,

$$
\begin{aligned}
\theta\left(s^{3} d(T x, T y)\right)=e^{s^{3} d(T x, T y)} & \leqslant e^{\alpha(d(T x, x)+d(T y, y))} \\
& =e^{2 \alpha\left(\frac{d(T x, x)+d(T y, y)}{2}\right)}
\end{aligned}
$$

$$
=\left[e^{\left(\frac{\mathrm{d}(\mathrm{~T} x, x)+\mathrm{d}(\mathrm{~T} y, y)}{2}\right)}\right]^{2 \alpha}=\phi\left[\theta\left(\frac{\mathrm{d}(\mathrm{~T} x, x)+\mathrm{d}(\mathrm{~T} y, y)}{2}\right)\right] .
$$

As in the proof of Theorem 3.6, T has a unique fixed point $x \in X$.
Corollary 3.9. Let (X, d) be a complete b-rectangular metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a Reich type mapping, i.e., there exists $\lambda \in] 0, \frac{1}{3}[$ such that for all $x, y \in X$,

$$
d(x, y)>0 \Rightarrow s^{3} d(T x, T y) \leqslant \lambda[(d(x, y)+d(T x, x)+d(T y, y))] .
$$

Then T has a unique fixed point.
Proof. Let $\theta(\mathrm{t})=\mathrm{e}^{\mathrm{t}}$ for all $\left.\mathrm{t} \in\right] 0,+\infty\left[\right.$, and $\phi(\mathrm{t})=\mathrm{t}^{3 \lambda}$ for all $\mathrm{t} \in[1,+\infty[$.
We prove that T is a $\theta-\phi$-Reich type contraction. Indeed,

$$
\begin{aligned}
\theta\left(s^{2} d(T x, T y)\right)=e^{s^{2} d(T x, T y)} & \leqslant e^{\lambda(d(x, y)+d(T x, x)+d(T y, y))} \\
& =e^{3 \lambda\left(\frac{d(x, y)+d(T x, x)+d(T y, y)}{3}\right)} \\
& =\phi\left[\theta\left(\frac{d(x, y)+d(T x, x)+d(T y, y)}{3}\right)\right] .
\end{aligned}
$$

As in the proof of Theorem 3.6, T has a unique fixed point $x \in X$.
Corollary 3.10. Let (X, d) be a complete b -metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a mapping. Suppose that there exist $\theta \in \Theta$ and $r \in] 0,1[$ such that for all $x, y \in X$,

$$
d(T x, T y)>0 \Rightarrow \theta\left[s^{2} d(T x, T y)\right] \leqslant[\theta(M(x, y))]^{r},
$$

where

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2 s^{2}}(d(y, T x)+d(x, T y))\right\} .
$$

Then T has a unique fixed point.
Proof. Taking $\phi(\mathrm{t})=\mathrm{t}^{\mathrm{r}} \in \Phi$ with $\left.\mathrm{r} \in\right] 0,1[$, we conclude that T is a $\theta-\phi$-contraction. As in the proof of Theorem 3.4, T has a unique fixed point.

Very recently, Kari et al. [14, Theorem 1] proved the result on (α, η)-complete rectangular b-metric spaces. In this paper, we prove this result in complete b-metric spaces.
Corollary 3.11. Let $\mathrm{d}(\mathrm{X}, \mathrm{d})$ be a complete b -rectangular metric space with parameter $\mathrm{s}>1$ and let T be a self mapping on X . If for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{d}(\mathrm{Tx}, \mathrm{Ty})>0$ we have

$$
\theta\left(s^{3} \cdot d(T x, T y)\right) \leqslant \phi\left[\theta\left(\beta_{1} d(x, y)+\beta_{2} d(T x, x)+\beta_{3} d(T y, y)+\beta_{4} d(y, T x)\right)\right]
$$

where $\theta \in \Theta, \phi \in \Phi, \beta_{i} \geqslant 0$ for $i \in\{1,2,3,4\}, \sum_{i=0}^{i=4} \beta_{i} \leqslant 1$, then T has a unique fixed point.
Proof. We prove that T is a $\theta-\phi$-contraction. Indeed,

$$
\begin{aligned}
\theta\left(s^{2} \cdot d(T x, T y)\right) & \leqslant \phi\left[\theta\left(\beta_{1} d(x, y)+\beta_{2} d(T x, x)+\beta_{3} d(T y, y)+\frac{\beta_{4}}{2 s^{2}}(d(y, T x)+d(x, T y))\right)\right] \\
& \leqslant \phi\left[\theta\left(\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}\right)\left(\max \left\{d(x, y), d(T x, x), d(T y, y), \frac{1}{2 s^{2}}(d(y, T x)+d(x, T y))\right\}\right)\right] \\
& \leqslant \phi\left[\theta\left(\max \left\{d(x, y), d(T x, x), d(T y, y), \frac{1}{2 s^{2}}(d(y, T x)+d(x, T y))\right\}\right)\right] .
\end{aligned}
$$

As in the proof of Theorem 3.4, T has a unique fixed point.

Example 3.12. Let $X=A \cup B$, where $A=\left\{\frac{1}{6^{n-1}} ; n \in \mathbb{N}\right\}$ and $B=\{0\}$. Define $d: X \times X \rightarrow[0,+\infty[$ by

$$
d(x, y)=(|x-y|)^{2}
$$

Then (X, d) is a b-metric space with coefficient $s=2$.
Define a mapping $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ by

$$
T(x)= \begin{cases}\frac{1}{6^{n}}, & \text { if } x \in\left\{\frac{1}{6^{n-1}}\right\} \\ 1, & \text { if } x=0\end{cases}
$$

Then $T(x) \in X$. Let $\theta(t)=\sqrt{t}+1, \phi(t)=\frac{t+1}{2}$. It is obvious that $\theta \in \Theta$ and $\phi \in \Phi$. Consider the following possibilities.
Case 1: $x=\frac{1}{6^{n-1}}, y=\frac{1}{6^{n-1}}$ for $m>n \geqslant 0$. Then

$$
d(T x, T y)=\left(\frac{1}{6^{n}}-\frac{1}{6^{m}}\right)^{2}=\left(\frac{6^{m}-6^{n}}{6^{m+n}}\right)^{2}
$$

So

$$
\theta\left(s^{3} d(T x, T y)\right)=\sqrt{8}\left(\frac{6^{m}-6^{n}}{6^{m+n}}\right)+1
$$

and

$$
\phi[\theta(d(x, y))]=\phi\left[\theta\left(\frac{6^{m-1}-6^{n-1}}{6^{m+n-2}}\right)^{2}\right]=3\left(\frac{6^{m}-6^{n}}{6^{m+n-2}}\right)+1
$$

On the other hand,

$$
\theta\left(s^{3} d(T x, T y)-\phi[\theta(d(x, y))]=\sqrt{8}\left(\frac{6^{m}-6^{n}}{6^{m+n}}\right)+1-3\left(\frac{6^{m}-6^{n}}{6^{m+n}}\right)+12=\sqrt{8}-3\left[\left(\frac{6^{m}-6^{n}}{6^{m+n}}\right)\right] \leqslant 0\right.
$$

This implies that

$$
\theta\left(s^{3} d(T x, T y) \leqslant \phi[\theta(d(x, y))] \leqslant \phi\left[\theta\left(\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(y, T x)+d(x, T y)}{2 s^{2}}\right\}\right)\right]\right.
$$

Case 2: $x=\frac{1}{6^{n-1}}, y=0$.
Then $T(x)=\frac{1}{6^{n}}, T(y) 0$, then $d(T x, T y)=\left(\frac{1}{6^{n}}\right)^{2}$. So we have

$$
\theta\left(s^{3} d(T x, T y)=\frac{\sqrt{8}}{6^{n}}+1\right.
$$

Thus

$$
M(x, y)=\phi\left[\theta\left(\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(y, T x)+d(x, T y)}{2 s^{2}}\right\}\right)\right] \geqslant d(x, y)=\left(\frac{1}{6^{n-1}}\right)^{2}
$$

and

$$
\phi[\theta(d(x, y))]=\frac{3}{6^{n}}+1
$$

On the other hand,

$$
\theta\left(s^{3} d(T x, T y)-\phi[\theta(d(x, y))]=\frac{\sqrt{8}}{6^{n}}+1-\frac{3}{6^{n}}+1=\frac{\sqrt{8}-3}{6^{n}} \leqslant 0\right.
$$

This implies that

$$
\begin{aligned}
\theta\left(s^{3} d(T x, T y) \leqslant \phi[\theta(d(y, T y))] \leqslant \phi\left[\theta\left(d\left(1, \frac{1}{3}\right)\right)\right]\right. & \leqslant \phi[\theta(d(y, T y)] \\
& \leqslant \phi[\theta(\max \{d(x, y), d(x, T x), d(y, T y)\}, d(y, T x))]
\end{aligned}
$$

Hence the condition (3.8) is satisfied. Therefore, T has a unique fixed point $z=1$.

4. Application to nonlinear integral equations

In this section, we endeavor to apply Theorems 3.2 and 3.4 to prove the existence and uniqueness of the integral equation of Fredholm type:

$$
\begin{equation*}
x(t)=\lambda \int_{a}^{b} K(t, r, x(r)) d s \tag{4.1}
\end{equation*}
$$

where $a, b \in \mathbb{R}, x \in C([a, b], \mathbb{R})$ and $K:[a, b]^{2} \times \mathbb{R} \rightarrow \mathbb{R}$ is a given continuous function.
Theorem 4.1. Consider the nonlinear integral equation problem (4.1) and assume that the kernel function K satisfies the condition $|\mathrm{K}(\mathrm{t}, \mathrm{r}, \mathrm{x}(\mathrm{r}))-\mathrm{K}(\mathrm{t}, \mathrm{r}, \mathrm{y}(\mathrm{r}))| \leqslant \frac{1}{\mathrm{~s}^{2}}(|\mathrm{x}(\mathrm{t})-\mathrm{y}(\mathrm{t})|)$ for all $\mathrm{t}, \mathrm{r} \in[\mathrm{a}, \mathrm{b}]$ and $\mathrm{x}, \mathrm{y} \in \mathbb{R}$. Then the equation (4.1) has a unique solution $x \in C([a, b]$ for some constant λ depending on the constant s.

Proof. Let $X=C([a, b]$ and $T: X \rightarrow X$ be defined by

$$
\mathrm{T}(\mathrm{x})(\mathrm{t})=\lambda \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{~K}(\mathrm{t}, \mathrm{r}, \mathrm{x}(\mathrm{r}) \mathrm{d} \mathrm{~d},
$$

for all $x \in X$. Let $d: X \times X \rightarrow[0,+\infty[$ be given by

$$
d(x, y)=\left(\max _{t \in[a, b]}|x(t)-y(t)|\right)^{2}
$$

for all $x, y \in X$. It is clear that (X, d) is a complete b-metric space.
We will find the condition on λ under which the operator has a unique fixed point which will the solution of the integral equation (4.1). Assume that $x, y \in X$ and $t, r \in[a, b]$. Then we get

$$
\begin{aligned}
|T x(t)-T y(t)|^{2} & =|\lambda|^{s}\left(\left|\int_{a}^{b} K(t, r, x(r)) d r-\int_{a}^{b} K(t, r, y(r)) d r\right|\right)^{2} \\
& =\left|\lambda^{2} \| \int_{a}^{b} K(t, r, x(r))-K(t, r, y(r)) d r\right|^{2} \\
& \leqslant|\lambda|^{2} \int_{a}^{b}|K(t, r, x(r))-K(t, r, y(r)) d r|^{2} \\
& \leqslant|\lambda|^{2} \int_{a}^{b}\left(\frac{1}{s^{2}}(|x(r)-y(r)|) d r\right)^{2} \\
& =|\lambda|^{2} \frac{1}{s^{4}}\left[\int_{a}^{b}((|x(r)|-|y(r)|)) d r\right]^{2}
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\max _{t \in[a, b]}(|T x(t)-T y(t)|) & =\max _{t \in[a, b]}|\lambda|^{2} \int_{a}^{b}|K(t, r, x(r))-K(t, r, y(r)) d r|^{s} \\
& \leqslant \max _{t \in[a, b]} \frac{1}{s^{2}}|\lambda|^{2} \int_{a}^{b}((|x(r)-y(r)|) d r)^{2} \leqslant|\lambda|^{2} \frac{1}{s^{4}} \int_{a}^{b}\left(\left(\max _{r \in[a, b]}|x(r)-y(r)|\right) d r\right)^{2}
\end{aligned}
$$

Since by the definition of the b-rectangular metric space, we have $d(T x, T y)>0$ and $d(x, y)>0$ for all $x \neq y$, we can take natural exponential sides and get

$$
e^{\left[s^{3} d(T x, T y)\right]}=e^{\left[s^{3}|\lambda|^{2} \max _{t \in[a, b]} \int_{a}^{b}|K(t, r, x(r))-K(t, r, y(r)) d r|^{2}\right]}
$$

$$
\leqslant e^{\left[\left(\frac{|\lambda|}{s}\right)^{2} \int_{a}^{b}\left(\left(\max _{r \in[a, b]}|x(r)-y(r)|\right) d r\right)^{2}\right]}=\left[e^{\left[\int_{a}^{b}\left(\left(\max _{r \in[a, b]}|x(r)-y(r)|\right) d r\right)^{2}\right]}\right]^{\left(\frac{|\lambda|}{s}\right)^{2}},
$$

provided that $|\lambda|<s$, which implies that

$$
e^{\left[s^{3} \mathrm{~d}(\mathrm{~T} x, T y)\right]} \leqslant\left[e^{\left[\int_{a}^{\mathrm{b}}\left(\left(\max _{r \in[a, b]}|x(r)-y(r)|\right) d r\right)^{2}\right]}\right]^{k}
$$

Hence

$$
F\left(s^{3} d(T x, T y)\right)+\phi(d(x, y)) \leqslant F(d(x, y))
$$

for all $x, y \in X$ with $\theta(t)=e^{t}, \phi(t)=t^{k}$ and $k=\left(\frac{|\lambda|}{s}\right)^{2}$. It follows that T satisfies the conditions (3.1) and (3.8). Therefore there exists a unique solution of the nonlinear Fredholm inequality (4.1).

5. Conclusion

We defined θ - ϕ-contraction on a b-metric space into itself by extending $\theta-\phi$-contraction introduced Zheng et al. in metric space and also we proved θ-type theorem in the setting of b-metric spaces as well as $\theta-\phi$-type theorem in the framework of b-rectangular metric spaces. Moreover, we gave some applications to nonlinear integral equations. We also gave illustrative examples to exhibit the utility of our results.

Acknowledgment

The authors are highly grateful to the referees for their valuable comments and suggestions enriching the contents of the paper.

References

[1] A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 64 (2014), 941-960. 2.2
[2] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26-37. 1
[3] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math., 3 (1922), 133-181. 1
[4] F. E. Browder, On the convergence of successive approximations for nonlinear functional equations, Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math., 30 (1968), 27-35. 1
[5] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5-11. 1, 2.1
[6] Í. Demir, Fixed point theorems in complex valued fuzzy b-metric spaces with application to integral equations, Miskolc Math. Notes, 22 (2021), 153-171. 1
[7] H.-S. Ding, M. Imdad, S. Radenović, J. Vujaković, On some fixed point results in b-metric, rectangular and b-rectangular metric spaces, Arab J. Math. Sci., 22 (2016), 151-164.
[8] N. V. Dung, A sharp improvement of fixed point results for quasi-contractions in b-metric spaces, Miskolc Math. Notes, 21 (2020), 451-461.
[9] H. A. Hammad, M. De la Sen, Generalized contractive mappings and related results in b-metric like spaces with an application, Symmetry, 11 (2019), 13 pages.
[10] H. A. Hammad, M. De la Sen, A solution of Fredholm integral equation by using the cyclic η_{s}^{q}-rational contractive mappings technique in b-metric-like spaces, Symmetry, 11 (2019), 12 pages. 1
[11] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 2014, 8 pages. 1, 2, 2.4
[12] R. Kannan, Some results on fixed points-II, Amer. Math. Monthly, 76 (1969), 405-408. 1
[13] A. Kari, M. Rossafi, E. Marhrani, M. Aamri, Fixed-point theorems for θ - ϕ-contraction in generalized asymmetric metric spaces, Int. J. Math. Math. Sci., 2020 (2020), 19 pages. 1
[14] A. Kari, M. Rossafi, E. Marhrani, M. Aamri, θ - ϕ-Contraction on (α, η)-complete rectangular b-metric spaces, Int. J. Math. Math. Sci., 2020 (2020), 17 pages. 3
[15] A. Kari, M. Rossafi, E. Marhrani, M. Aamri, New fixed point theorems for θ - ϕ-contraction on complete rectangular b-metric spaces, Abstr. Appl. Anal., 2020 (2020), 12 pages. 1
[16] A. Kari, M. Rossafi, E. Marhrani, M. Aamri, Fixed-point theorem for nonlinear F-contraction via w-distance, Adv. Math. Phys., 2020 (2020), 10 pages. 1
[17] N. Mlaiki, N. Dedovic, H. Aydi, M. G. Filipoviac, B. Bin-Mohsin, S. Radenović, Some new observations on Geraghty and Ćirić type results in b-metric spaces, Math., 7 (2019), 11 pages. 1
[18] H. K. Nashine, S. Shil, Z. Kadelburg, Common positive solutions for two non-linear matrix equations using fixed point results in b-metric-like spaces, Aequationes Math., 96 (2022), 17-41.
[19] S. Radenović, T. Došenović, V. Ozturk, Ć. Dolićanin, A note on the paper: "Nonlinear integral equations with new admissibility types in b-metric spaces", J. Fixed Point Theory Appl., 19 (2017), 2287-2295. 1
[20] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121-124. 1
[21] J. R. Roshan, V. Parvaneh, Z. Kadelberg, Common fixed point theorems for weakly isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 229-245. 2.3
[22] D. W. Zheng, Z. Y. Cai, P. Wang, New fixed point theorems for θ - φ-contraction in complete metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 2662-2670. 1, 2, 2.5, 2.6, 2.7, 2.8

[^0]: *Corresponding author
 Email addresses: rossafimohamed@gmail.com (Mohamed Rossafi), abdkrimkariprofes@gmail.com (Abdelkarim Kari), baak@hanyang.ac.kr (Choonkil Park), jrlee@daejin.ac.kr (Jung Rye Lee)
 doi: 10.22436/jmcs.029.01.02
 Received: 2022-02-07 Revised: 2022-02-15 Accepted: 2022-03-10

