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Abstract

In this paper, we extend the concept of fuzzy valued convex functions, subdifferential, and in-
troduce a kind of subdifferential of general fuzzy valued functions. By means of the convexification
method, the paper studies the relationships between the subdifferential of general fuzzy valued func-
tions and the subdifferential of convexification fuzzy valued functions, so that we get the conditions of
how lower semi continuous fuzzy valued functions can be extended to fuzzy valued convex functions.
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1. Introduction

Since the establishment of fuzzy set theory, it has made up for the shortage of classical and
statistical mathematics in a certain degree because of its success in dealing with a kind of fuzziness
problem which exists widely [1, 7, 11, 14]. More and more scholars use the knowledge of fuzzy
mathematics to solve practical problems in mathematical programming. And the fuzzy planning
developed rapidly because of the joint efforts of the scholars. As it is known to us, the convexity theory
in the classical mathematics plays a very important role in mathematical programming [4, 8, 10].
With the development of the research in fuzzy programming, some of the classical mathematical
programming methods are naturally considered to be generalized and applied to fuzzy programming.
Thus we discuss the convexity of fuzzy sets and the convexity of fuzzy function on convex sets and
its application in fuzzy programming [2, 3, 5, 9, 12], which has greatly enriched the contents of

∗Corresponding author
Email address: byebed@163.com (Yu-e Bao)

Received 2016-03-21



Y. Bao, B. Dai, J. Math. Computer Sci. 16 (2016), 239–247 240

mathematical programming study.
Convex fuzzy programming is a kind of programming problem whose objective function is fuzzy

valued convex function (convex fuzzy mapping) and constraint set is convex. In order to use the
methods of analytics better to discuss convex fuzzy programming, the concepts of sub gradient the
subdifferential are proposed and the extremum problems of fuzzy valued convex functions are dis-
cussed, the necessary and sufficient conditions of extremum values for fuzzy valued convex functions
are obtained [13, 15]. At the same time, the saddle point and min-max theorem is discussed in the
sense of fuzzy set theory in [15], the Lagrange duality and KKT conditions of convex fuzzy program-
ming etc. are also established. The promising applications of fuzzy valued convex function is wide in
fuzzy programming, but the fuzzy valued function with convexity is relatively few. Thus, the convex
extending of general fuzzy valued functions and the combining of the optimization problem of fuzzy
valued function with subdifferential problems of fuzzy valued convex function are meaningful works
for us to use the principal of fuzzy valued convex analysis in study of fuzzy optimization problems.

On the convexification problems of general fuzzy valued functions, the method for transforming
the general fuzzy valued functions into fuzzy valued convex functions was proposed in [16, 17] via
the epigraph of fuzzy valued functions together with the convexification fuzzy valued function char-
acterization theorem. With the help of fuzzy valued functions convexification method, this paper
study the convex extension problems of general fuzzy valued function.

2. Preliminaries

First, we recall some definitions and results about fuzzy numbers (see [7, 10, 17]). Let u be a fuzzy
set that on the real numbers field R, if it has the following properties:

(i) u is normal, i.e., there exists an x0 ∈ R with u(x0) = 1;

(ii) u is a fuzzy convex set, i.e. u(αx+(1−α)y) ≥ min(u(x), u(y)) whenever x, y ∈ R and α ∈ [0, 1];

(iii) u is upper semi-continuous;

(iv) [u]0 = cl{x ∈ R|u(x) > 0} is a compact set.

Let F0 denote the family of fuzzy numbers and F0 is called fuzzy number space. For any r ∈ R,
define a fuzzy number r̃:

r̃(t)=

{
1, t = r;
0, t 6= r.

Obviously, [u]α are nonempty bounded closed intervals for every u ∈ F0 and α ∈ [0, 1], where
[u]α = [u∗(α), u∗(α)] when α ∈ [0, 1].

We call
u = {(u∗(α), u∗(α), α)|0 ≤ α ≤ 1}

the parametric expression of u. A partial order relationship on F0 is defined by

u ≤ v ⇔ u∗(α) ≤ v∗(α) , u∗(α) ≤ v∗(α) , for any α ∈ [0, 1].

For any u, v ∈ F0 and r ∈ R, the addition and scalar multiplication on F0 can be represented as:

u+ v = {(u∗(α), u∗(α), α)|0 ≤ α ≤ 1}+ {(v∗(α), v∗(α), α)|0 ≤ α ≤ 1}
= {(u∗(α) + v∗(α), u∗(α) + v∗(α), α)|0 ≤ α ≤ 1},
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ru = {((ru)∗(α), (ru)∗(α), α)|0 ≤ α ≤ 1}.

Where

(u+ v)∗(α) = u∗(α) + v∗(α), (u+ v)∗(α) = u∗(α) + v∗(α), 0 ≤ α ≤ 1.

If r ≥ 0,

(ru)∗(α) = ru∗(α), (ru)∗(α) = ru∗(α), 0 ≤ α ≤ 1

and if r < 0

(ru)∗(α) = ru∗(α), (ru)∗(α) = ru∗(α), 0 ≤ α ≤ 1.

For ξi(i = 1, 2, · · · , n) ∈ F0, we call ξ = (ξ1, ξ2, · · · , ξn, ) is an n-dimensional fuzzy vector. Let
Fn0 (R) denote the set of all n-dimensional fuzzy vectors.

Let Rn denote n-dimensional Euclidean Space. For

ξ = (ξ1, ξ2, · · · , ξn, ) ∈ Fn0 (R), x = (x1, x2, · · · , xn) ∈ Rn

the inner product of ξ and x is defined as

< ξ, x >= x1ξ1 + x2ξ2 + · · ·+ xnξn.

Let D be a nonempty subset of Rn. A mapping f : D→F0 is said to be a fuzzy valued function.
By the parameter expression of fuzzy number, the fuzzy valued function can be expressed as

f(x) = {(f(x)∗(α), f(x)∗(α), α)|0 ≤ α ≤ 1},

where [f(x)]α = [f(x)∗(α), f(x)∗(α)] , for every α ∈ [0, 1].

Definition 2.1 ([16]). Let f : D→F0 be a fuzzy valued function, G = conv(epif), then the fuzzy
valued function defined on convD

fC(x) = inf{u|(x, u) ∈ G, u ∈ F0}

is called the convex hull of f , denoted by fC = convf. Where

epif = {(x, u)|x ∈ D, u ∈ F0, f(x) ≤ u}

is the epigraph of f , convD and conv(epif) are the convex hulls corresponding to D and epif ,
respectively.

In paper [16, 17], it has been proved that fC = convf is the fuzzy valued convex function on
convD, and fC is called the convexification fuzzy valued function of f .

Theorem 2.2 ([16]). Let fC be the convexification fuzzy valued function of fuzzy valued function
f : D→F0, then

fC(x) = inf
m∈N
{λ1f(x1) + λ2f(x2) + · · ·+ λmf(xm)|λi > 0,

xi ∈ D(i = 1, 2, · · · ,m),
m∑
i=1

λi = 1,
m∑
i=1

λixi = x}
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Definition 2.3 ([3]). Let f : D→F0 be a fuzzy valued function.
• Let x0 ∈ D, f is lower semi continuous at x0 if for every ε > 0, there exists an δ > 0 so that

f(x0) ≤ f(x) + ε̃

for all x ∈ D and ||x− x0|| < δ.
• f is said to be lower semi continuous if it is lower semi continuous at every point of D.

Property 2.4. If f be the lower semi continuous fuzzy valued function on D. Then for any r ∈ [0, 1],
f(x)∗(r) and f(x)∗(r), are lower semi continuous real valued functions on D.

Proof. Let f be the lower semi continuous fuzzy valued function on D, x0 ∈ D. Then for any ε > 0,
there exists an δ > 0 satisfied f(x0) ≤ f(x) + ε̃ when

‖x− x0‖ < δ.

Therefore, for every r ∈ [0, 1], we have

f(x0)∗(r) ≤ f(x)∗(r) + ε,

f(x0)
∗(r) ≤ f(x)∗(r) + ε.

It follows that f(x)∗(r) and f(x)∗(r) are lower semi continuous fuzzy valued functions on D.

Lemma 2.5 ([6]). Let f : D→(−∞,+∞) be a real valued function, x0 ∈ D. Then the following
conditions are equivalent:

(1) f is lower semi continuous at point x0;

(2) for any ε > 0, there exists δ > 0, such that when ‖x− x0‖ < δ, there has f(x0) ≤ f(x) + ε.

(3) for any xn ∈ D(n = 1, 2, · · · ), if ‖xn − x0‖ → 0(n→∞), then f(x0) ≤ limn→∞ f(xn).

Definition 2.6 ([15]). Let ξ be an n-dimensional fuzzy vector, f : D→F0 be a fuzzy valued convex
function, x ∈ D. If for any z ∈ D, there has

f(z) ≥ f(x)+ < ξ, z − x >,

then we call ξ the sub gradient of f at x.
Call the

∂f(x) = {ξ|ξ ∈ Fn0 (R), f(z) ≥ f(x)+ < ξ, z − x >,∀z ∈ D}
subdifferential of f at x.

If ∂f(x) 6= φ, then f is called subdifferentiable at x, or called f exists the subdifferential at x.
We generalize the concept of fuzzy valued convex functions subdifferential above, and introduce

a kind of subdifferential of general fuzzy valued functions which is defined as:

Definition 2.7. Let f : D→F0 be a general fuzzy valued function, x ∈ D. The subdifferential of f
at x is defined as

∂f(x) = {ξ|ξ ∈ Fn0 (R), f(z) ≥ f(x)+ < ξ, z − x >,∀z ∈ D}.

If ∂f(x) 6= φ, then f is called sub differentiable at x, or it is said that the subdifferential of f
exists at x.
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3. Main Results

By means of the convexification method (Definition 2.1), we study the relationships between
the subdifferential of general fuzzy valued functions and the subdifferential of convexification fuzzy
valued functions, then we get the existence conditions of convex extension for fuzzy valued functions.

Theorem 3.1. Let f : D→F0 be a fuzzy valued function. Then f is sub differentiable at x if and
only if fC(x) = f(x) and the convexification fuzzy valued function fC of f is also sub differentiable
at point x.

Proof. Necessity: Let f be sub differentiable at x, then there exists ξ ∈ Fn0 (R), such that

f(y) ≥ f(x)+ < ξ, y − x >, for every y ∈ D.

Thus, for m ∈ N, λi > 0, xi ∈ D(i = 1, 2, · · · ,m), when
∑m

i=1 λi = 1,
∑m

i=1 λixi = x, we have

f(xi) ≥ f(x)+ < ξ, xi − x > (i = 1, 2, · · · ,m).

Therefore,
m∑
i=1

λif(xi) ≥ f(x)+ < ξ,
m∑
i=1

λixi − x >= f(x).

Thus, we have

inf
m∈N
{
m∑
i=1

λif(xi)|λi > 0, xi ∈ D(i = 1, 2, · · · ,m),
m∑
i=1

λi = 1,
m∑
i=1

λixi = x} ≥ f(x),

that is
fC(x) ≥ f(x).

On the other hand, by Theorem 2.2, we know that fC(x) ≤ f(x). Hence fC(x) = f(x).
In the following, we prove that fC is sub differentiable at x.
For every y ∈ convD, let λi > 0(i = 1, 2, · · · ,m) and

∑m
i=1 λi = 1, so that

m∑
i=1

λiyi = y.

Since f is sub differentiable at point x, there exists ξ ∈ ∂f(x) such that

f(yi) ≥ f(x)+ < ξ, yi − x > (i = 1, 2, · · · ,m),

therefore,
m∑
i=1

λif(yi) ≥ f(x)+ < ξ,
m∑
i=1

λiyi − x >= f(x)+ < ξ, y − x > .

Thus, we have

inf
m∈N

{
m∑
i=1

λif(yi)|λi > 0, xi ∈ D(i = 1, 2, · · · ,m),
m∑
i=1

λi = 1,
m∑
i=1

λiyi = y

}
≥ f(x)+ < ξ, y − x > .
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It follows from fC(x) = f(x), we have

fC(y) ≥ fC(x)+ < ξ, y − x > .

So ξ ∈ ∂fC(x). Thereby, fC is sub differentiable at point x.
Sufficiency: Let fC be sub differentiable at point x, then there exists ξ ∈ F0(R

n), for any
y ∈ convD, such that

fC(y) ≥ fC(x)+ < ξ, y − x > .

It follows from fC(x) = f(x) and D ⊂ convD, we get

f(y) ≥ fC(y) ≥ f(x)+ < ξ, y − x >,∀y ∈ D.

Thus we have ξ ∈ ∂f(x) 6= ∅, thereby f is sub differentiable at point x.

Theorem 3.2. Let f : D→F0 be a lower semi continuous fuzzy valued function. If for any convex
extreme subset E(dimE > 0) of convD, the set B where the subdifferential exist of f |E⋂

D is dense
in E

⋂
D, then

(1) The convexification fuzzy valued function fC of f is the extension of f .

(2) The subdifferential of fC |E exists on B.

Proof.
(1) Let x0 ∈ D. If x0 is an extreme point of D, obviously we have fC(x0) = f(x0). If x0 is not an

extreme point of D, then let xi ∈ D,λi > 0(i = 1, 2, · · · ,m), and
∑m

i=1 λi = 1, such that

m∑
i=1

λixi = x0.

Let E be the minimum convex extreme subset of convD containing x0, x1, · · · , xm. Since x0 is
not an extreme point, then we have dimE > 0.

Next, we will prove conv(E
⋂
D) = E.

By E
⋂
D ⊂ E, we obtain that

conv(E
⋂

D) ⊂ convE = E.

Conversely, for y ∈ E ⊂ convD, there exist yi ∈ D, βi > 0(i = 1, 2, · · · , j), and
∑j

i=1 βi = 1, such
that

j∑
i=1

βiyi = y.

Since E is the extreme subset, thus yi ∈ E(i = 1, 2, · · · , j), hence

y ∈ E
⋂

D(i = 1, 2, · · · , j).

Therefore
y ∈ conv(E

⋂
D),

thus, conv(E
⋂
D) = E.
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Next, we prove that x0 ∈ icrE( where icrE is the relative interior point set of E).
Assume x0 /∈ icrE, then x0 ∈ E/icrE, by the separation theorem of convex sets, there exists

x∗ ∈ Rn

such that
< x∗, x0 >≥ sup

y∈E
< x∗, y >,

hence
< x∗, xi >≤< x∗, x0 > (i = 1, 2, · · · ,m).

It follows from

< x∗,

m∑
i=1

λixi >=< x∗, x0 >,

we easily obtain
< x∗, xi >=< x∗, x0 > (i = 1, 2, · · · ,m).

Let
A = {y ∈ E| < x∗, y >=< x∗, x0 >},

then it is easy to prove A is the convex extreme subset of E and A ⊂ E.
Namely, A is the convex extreme subset of convD and containing x0, x1, · · · , xm.
This contradicts E is the minimum convex extreme subset of convD containing x0, x1, · · · , xn.

Thus, x0 ∈ icrE. Let

g : E → F0(conv(E
⋂

D) = E)

be the convexification fuzzy valued function of f |E⋂
D, then for any r ∈ [0, 1], g(x)∗(r) and g(x)∗(r)

are the real valued convex functions on E and continuous at x0 ∈ icrE.
Since set B on which the subdifferential of f |E⋂

D exists is dense in E
⋂
D. Hence, for x0 ∈ E

⋂
D,

there exists {zn} ⊂ B such that zn → x0(n→∞). By Theorem 3.1, we have

f(zn) = g(zn) = f |E⋂
D(zn).

Since f is lower semi continuous, we get f(x)∗(r) and f(x)∗(r) are lower semi continuous at
x0 ∈ icrE by Property 2.4. Hence, from Lemma 2.5, for any r ∈ [0, r], we have

f(x0)∗(r) ≤ lim
n→∞

f(zn)∗(r) = lim
n→∞

g(zn)∗(r) = g(x0)∗(r),

f(x0)
∗(r) ≤ lim

n→∞
f(zn)∗(r) = lim

n→∞
g(zn)∗(r) = g(x0)

∗(r).

We have
f(x0) ≤ g(x0).

Consequently,

g(x0) = inf
m∈N
{
m∑
i=1

λif(xi)|λi > 0, xi ∈ D
⋂

E(i = 1, 2, · · · ,m),
m∑
i=1

λi = 1,
m∑
i=1

λixi = x0}

≤
m∑
i=1

λif(xi).
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Thereby, we have f(x0) ≤
∑m

i=1 λif(xi). Hence,

f(x0) ≤ inf
m∈N
{
m∑
i=1

λif(xi)|λi > 0, xi ∈ D(i = 1, 2, · · · ,m),
m∑
i=1

λi = 1,
m∑
i=1

λixi = x}.

That is, f(x0) ≤ fC(x0).
On the other hand, f(x0) ≥ fC(x0). So f(x0) = fC(x0). Thus, we have fC is the extension of f

by D ⊂ convD.
(2) We now prove that the subdifferential of fC |E exists on B. For every x ∈ B, by the known

conditions, we have ∂f |E⋂
D(x) 6= ∅. Next, we prove

∂fC |E(x) ⊃ ∂f |E⋂
D(x).

For every y ∈ E ⊆ convD, let yi ∈ D, vi > 0(i = 1, 2, · · · , k), and
∑k

i=1 vi = 1, such that y =∑k
i=1 viyi. Since E is the extreme subset, thus according to yi ∈ E(i = 1, 2, · · · , k), we have

yi ∈ D
⋂
E(i = 1, 2, · · · , k). Hence, for ξx ∈ ∂f |E⋂

D(x), we get

f(yi) ≥ f(x)+ < ξx, yi − x > (i = 1, 2, · · · , k).

Therefore
k∑
k=1

vif(yi) ≥ f(x)+ < ξ∗,
k∑
k=1

viyi − x > (i = 1, 2, · · · , k).

Thus, we have

inf
k∈N
{

k∑
i=1

λif(yi)|vi > 0, yi ∈ D(i = 1, 2, · · · , k),
k∑
i=1

vi = 1,
k∑
i=1

vixi = y} ≥ f(x)+ < ξx, y − x > .

Since fC(x) = f(x) on B ⊂ D. Hence, for any y ∈ E,

fC(y) ≥ fC(x)+ < ξx, y − x > .

Hence, ∂f |E(x) ⊃ ∂f |E⋂
D(x), that is f |E(x) 6= ∅. By the arbitrary of x, the subdifferential of fC |E

exists on B.

By Theorem 3.2, we easily obtain the following corollary:

Corollary 3.3. Let f : D→F0 be a lower semi continuous fuzzy valued function and D be a convex
set. If the set on which the subdifferential of f |E exists is dense in E for any convex extreme subset
E of D, then f is fuzzy valued convex function.

4. Conclusions

It is well known that fuzzy valued function can not always be extended to fuzzy valued convex
functions. Hence the convex extension of general fuzzy valued functions is a natural and important
problem, which is helpful to improve the efficiency of global optimization methods. In this paper,
we generalize the concept of fuzzy valued convex functions subdifferential, and propose a kind of
subdifferential of general fuzzy valued functions. By means of the convexification method, we study
the relations between the subdifferential of general fuzzy valued functions and the subdifferential of
convexification fuzzy valued functions, then we get the existence conditions of convex extension for
fuzzy valued functions. These conditions contribute a new method to the study of the optimization
problems on how to transform general fuzzy valued functions into convex fuzzy programming.
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