J. Math. Computer Sci., 28 (2023), 412428

Online: ISSN 2008-949X

Journal of Mathematics and Computer Science

afics ang
> K
S

&

yourna/ or
o
N
U109 ¥

PUBLlCATlONS

Journal Homepage: www.isr-publications.com/jmcs

The spectrum maps of type the domain of general quantum | g oo for updates
difference in generalized Cesaro sequence space

Awad A. Bakery®?* Mustafa M. Mohammed?a°

4Department of Mathematics, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia.
bpepartment of Mathematics, Faculty of Science, Ain Shams University, Cairo, Abbassia, Egypt.
®Department of Statistics, Faculty of Science, Sudan University of Science & Technology, Khartoum, Sudan.

Abstract

We introduce the domain of general quantum difference in generalized Cesaro sequence space in this article. Some topo-
logical and geometric structures, the multiplication operators defined on it, and the eigenvalue distribution of operator ideals
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1. Introduction

The concept of variable exponent function spaces has continued to develop, as it is predicated on the
boundedness of the Hardy-Littlewood maximal mapping. This section explores its applications in image
processing, differential equations, and approximation theory. Recall that the closed operator ideals are
certain to play an essential role in the Banach lattice principle. Some authors discussed geometric and
topological structures of the quasi ideal generated by s-numbers and certain sequence spaces; see Pietsch
[13, 14, 16], Makarov and Faried [11], and Yaying et al. [19]. Multiplication operators are used extensively
in functional analysis, for example, in the eigenvalue distributions theorem, the geometric structure of
Banach spaces, and the theory of fixed points. For different sequence spaces, some authors studied the
properties of the multiplication operators, such as Komal et al. [10], ilkhan et al. [7], and Bakery and
Mohammed [4].

Indicate the set of non-negative integers and the set of integers by I and 1, respectively. If U = (Uy)
is strictly increasing, where U : I™ — I, the general quantum difference Vy; is defined in [6] by

[ BeAx-,
VU}\X_ x .
0, otherwise.
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Recall that if Uy = x, then VA = VA, = A — A_1, where A, = 0 for x < 0, is the backward difference
defined by Kizmaz [9]. For any two Banach spaces § and 9, all through the article, we mark the space
of all bounded linear, finite rank, approximable and compact operators from G into Q by J(9, Q), J(9, Q),
PB(S,Q), and T(G, Q), respectively. When § = Q, we write J(3), J(9), B(9), and T(G). The ideal of all
bounded linear, finite rank, approximable and compact operators between any arbitrary Banach spaces,
will be indicated by J, J, B, and <.

Definition 1.1 ([17]). An operator s:J(5,Q) — [0, oo)!" is called an s-number, if the sequence (sx(H))¥,,
for every H € J(9, Q), holds the following conditions:

(@) [[H|l =so(H) = s1(H) > s2(H) > --- > 0, with H € J(G, Q);

(b) sxqy—1(Hi +Hz) < sx(Hip) + sy (Hz), with Hy, Hy € 7(G,Q) and x, y € T*;

(€) sx(ZYH) < ||Z]|sx(Y) ||H]|, for every H € J(S0,5), Y € I(5,Q) and Z € J(Q, Qp), where Gy and Qg are
any two Banach spaces;

(d) if G € J(G, Q) and v € €, where € is the space of all complex numbers, hence sy (vYG) = [y[sx(G);

(e) suppose rank(H) < x, then s« (H) =0, for all H € (9, Q);

() sy=x(Ix) = 0 or syx(Ix) = 1, where I, denots the identity mapping on the x-dimensional Hilbert
space {5.

We give here a few examples of s-numbers as follows:

(1) The y-th Kolmogorov number, d,,(H), where dy (H) = infqim j<y sup A<t infgey ||HA —B].
(2) The y-th approximation number, & (H), where oy (H)=inf{ |[H - Z|| : Z € J(§, Q) and rank(Z) < y}.

Notations 1.2 ([5]). Suppose X is a sequence space,

75 = {:13{(9,9)}, where 75.(S, Q) :
9% = {33‘((9,9)}, where 9%(S, Q) :

= {J&(g,g)}, where 74.(3, Q) :
(950 = { (35)° (6,2}, where

(95)° (G, Q) = {Y € 9(5,9) : ((px(Y))2y € K and ||Y — px(Y)I| is not invertible, for all x € 11+}.

[HE3(5,9): (s« ()R € K
{He3(3,9): (o) € X},

[He9(5,9): ((ax(H)Z, € K,

95

Lemma 1.3 ([1]). Assume ox > 0and Ay, Bx € €, forall x € I, and h = max{1,sup,, oy}, then
s + Bl T < 20 (A7 + 1B |¥) .

The aim of this article is organized as follows. We define and discuss several inclusion relations for the
domain of general quantum difference in generalized Cesaro sequence space, (Ces(Vys, o))+, equipped
with the function T in Section 2. In Section 3, we investigate the sufficient conditions on (Ces(Vys, 0))+
under definite function T to create pre-modular private sequence space (pss). This implies that it is a

pre-quasi normped pss. The topological and geometric structures of the class Jic (v, o))y and the class
<3?Ces(vu, G))T> are given. In Section 4, we provide some topological and geometric behaviors of the

multiplication mappings defined on this sequence space.

2. (Ces(Vy,0))+

The definition of the domain of general quantum difference in generalized Cesaro sequence space,
(Ces(Vy,0))+, under the function T, as well as several inclusion relations, are discussed in this section.
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Definition 2.1. Suppose (oy) € (0,00)T", where (0,00)!" is the space of all sequences of positive reals,
and Vs is absolutely non-decreasing. The sequence space, (Ces(Vys, G))Tl, is defined as:

(Ces(Vys, cr))Tl = {B = (By) € el T1(epB) < oo, for some ¢ > 0},
o0 y v N 0'y
where T1(B) = 1% (X_lj |+ 115”5 H) )
Theorem 2.2. If (o) € (0,00)"", then
(Ces(Vis, 0))1, C (Ces(Vi, 0))r,,

where ToH(B) = Z

y=0

<Z§_0 |V0f5x|>6“
y+1 '

Proof. One gets
(Ces(Vis, 0)),
= {B = (By) € el : T1(eB) < oo, for some ¢ > 0

N e¢] yi V N Oy
={B=(By)e¢“ :Z(nglam) <

y=0

——

< N—0 eV B«

Oy
| > <oo,forsome£>0}

0
= (Ces(V, 0)), -

= 0™

C {[3 = (By) € el” : Th(ef) < oo, for some € >

Theorem 2.3. If (o) € (O, oo)]I+ N s, where L, is the space of bounded sequences of complex numbers, then
P q p

(Ces(Vy,0)) 1 = {[3 = (By) € el . T(ep) < oo, for any € > 0},

= y_ |VUBX| Ty
where T(B) = <X0> .
yZ_o y+1

Proof. As (o) € (0, 00)"
(Ces(Vy,0))+ =3B =(By) € el T(eB) < oo, for some ¢ > 0}

o0 y v O—\J
5:([39)66H+:Z<W> < 00, forsome£>0}
y=0

Y o0 y+1

. [o¢] yi v < O'y
e 3 (SR )

y=0

n
{
{

—{p=(py) e :infees S (W>% < oo, for some ¢ > 0}
{
{

B=(By) € ¢ T(ep) < o0, for any ¢ > O}.
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Theorem 2.4. Suppose (oy) € (0,00)"" and Uy # x—1, for all x € I, then (Ces(Vys, o))~ is a non-absolute
pp T

0 Yy oy
type, where T(B) = 1;] (W)

Proof. Assume without loss of generality that Uy =x —2, for all x € I and by taking 3 = <1, -1,0,0,0,... ),
one has |B|= (1,1,0,0,0, . ) Also

— Z}i:o |Bx72 - Bx—1|>cy
T =
B) UZ_O( ST

S R o [T TN
)7+ (5) +---—§)( 1 ) = T(IBD).

For U, = x, one obtains

> Y o IBx—Bx—11\"
Z( y+1 )

_ 3 o1 4 o) 1 o1 2 o2 - = 3:0|‘B|x_|ﬁ|x—l| Gy_
SO (7 £ 117 +0) +--~—§< PPl T,

Hence, the sequence space (Ces(Vy, 0))+ is a non-absolute type. O

Definition 2.5. Assume (o) € (0, 00)!". The sequence space (Ces(V, o)) is defined by:
q P T y

(Ces(V,0))t = {B = (Bx) € el T(eB) < oo, for some ¢ > 0},

where T(B) _;] <ZE Oyﬁil Bx— 1|)

Theorem 2.6. If (o) € (0, 0o)" Nty and Uy > x, for all x € I, one has
(Ces(V,0))1 & (Ces(Vi5, 0))7

Proof. Let 3 € (Ces(V,0)), since
BUX Bx 1

El
i U —x+1 < i <ZE—O|BX_BX1|>O-1J < 0
= y+1 = y+1 '

y=0

Oy

Hence, 3 € (Ces(Vy, 0))+. By taking B = (1,0,1,0,...), so B ¢ (Ces(V,0))+ and B € (Ces(Vy,0))+,
where Uy, = x+ 1. O

Theorem 2.7. For (ox) € (0,00)Y Nl and Uy < x — 1, for all x € T, we have

(Ces(V,0))+ & (Ces(Vy, 0))+
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Proof. Assume {3 € (Ces(V, o)), since

[}
i BUX Bx 1 !
%) _ 00 o
Z U X+l < Z EZO‘BUX+1_BUX‘ !
o, y+1 5 y+1
00 [ o 0
5 <Zmy_o|f3m1—[3m—1|> " 5 (Zg_omx;ﬁx—ﬂ)% o
y=0 Y y=0 yt
We have 3 € (Ces(Vys, 0)) . m

Theorem 2.8. Let (oy) € (0,00)1" Ny, we get
(Ces(0)) & (Ces(V,0))t
Proof. Assume 3 € (Ces(0))+, since

- ZE:O”BX— Bx—1| h X = 0|Bx
%( y+1 ) <2 Z( y+1 >

y=0

So, B € (Ces(V,0)). O

3. Operator ideals of type-(Ces(Vy, o))+ spaces
In this section, we discuss the pre-modularity of (Ces(Vys, o))+ under the function T, where T(f) =

0 y v 0—y
Z (W) , for all B € (Ces(Vy, 0))+. The topological and geometric structures of the class
y=0
gs d the class (75 g ted

(Ces(Vi5,0)) AN the class ( (Ces(Vi5,0)) 1 ) are presented.

Indicate the linear space of sequences by D, ey = (0,0,...,1,0,0,...), where 1 lies at the y' coordinate,
[x] is the integral part of x, €1" is the space of all sequences of complex numbers, and F is the space of all
sequences with finite non-zero coordinates.

Definition 3.1 ([3]). The space D is said to be a private sequence space (pss), if the following conditions
are verified:

(1) ey € D, fory e I;

(2) Dissolid, ie., if a = (ay) € el” where |b| = (loyl) € D and |ay| < [byl, withy € I, then |a| € D;

(3) let (|ay|)y:0 € D, then (‘a[}%] >y:O e D.

Definition 3.2 ([3]). A subspace of the pss-D is called a pre-modular pss, if there exists a mapping T :
D — [0, 00) that verifies the following conditions:

(i) ifaeD,a=0 <= T(la]) =0,and T(a) > 0, with 0 is the zero vector of D;

(ii) assume a € D and @ € €, we have Ey > 1 with T(@a) < |®|EgT (a);

(iii) T(a+b) < Go(T(a)+ T(b)) verifies for some Gg > 1, for all a,b € D;

(iv) suppose y € I, |ay| < [byl, one has T((layl)) < T((Ibyl);
) t
i)
)

(v emequahty, T((JlayD) < T((lajyl) < DoT((lay)) holds, for Do > 1;

(vi

F=
(vii) we have u > 0 with T(a,0,0,0,...) > ula|T(1,0,0,0,...), where a € €.
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Definition 3.3 ([3]). If T holds the conditions (i)-(iii) of Definition 3.2, then the pss D is called a pre-quasi
normed pss. When the space D is complete with T, then D is said to be a pre-quasi Banach pss.

Theorem 3.4 ([3]). Every pre-modular pss D is a pre-quasi normed pss.
We mark the space of all monotonic increasing sequences of positive reals by J .
Theorem 3.5.

(f1) If (0oy) € I x Nl with og > 1.
(f2) The inequality |5(y) —y + 1| > 1 holds, for all y € T™.
(83) Suppose Nyl < |Byl, with y € I, then [Vishy |l < [Vas|Byll.

Then the space (Ces(Vys, o))+ is a pss.
Proof.
(1-i) Suppose w,u € (Ces(Vy, 0))+. We have

= Yo IVaslwx +uxll 7 = Y Vs 7Y & Y IVshudl 7
x=0 !V OIWx X < oh-1 x=0 !V OIWx x=01V OIHx <
Z( y+1 > h Z( y+1 ) +Z< y+1 ) >

then, w+u € (Ces(Vy, 0)) .
(1-ii) Assume @ € €, w € (Ces(Vy, 0))+ and since (0x) € J » N {4, one obtains

o0

Yy Oy 00 y oy
Z < X_OWU@WX") < sup |@[%Y Z <X—0|VU|WX|>
y+1 y+1

Hence, @w € (Ces(Vy, 0))+. By Parts (1-i) and (1-ii), one has (Ces(Vys, o))+ is a linear space. Since
(0y) €T xNils, 09 > 1, ey € (Ces(o)) withy € I, and

(Ces(0))+ & (Ces(V,0))+ & (Ces(Vy, 0))+
So, ey € (Ces(Vy, o)), for every y € T,
(2) Assume [wy| < uyl, withy € I and |u| € (Ces(Vys, 0)) . We get

3 M < M "
Z( y+1 \Z y+1 < 00

y=0 y=0
hence [w| € (Ces(Vys, 0)) .
(3) Suppose (jwyl) € (Ces(Vy, o))+, with (oy) € T » Ny, one obtains

Oy
s (T- Yo [Vulhwi
=0 y+1
o2y Oyt
> ‘VU|W 31l o (529t ‘V Wil o
2y +1 Z 2y +2

|\”/|8

y=0
< i (IVulwy|+Z 2|st|wx||) ( E_OZIVuwa)%
o y+1 y+1
o (L)oo Volwxl\® & (L 02[Vowxll) (X3 _02|Vislwxl\
gzhfl x=0 x > + < x=0 x > + < x=0 x >

Mot ity oy 3 ((xzol Vol )™
<@ 2h42m Y < 00,
u=0 y+1
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then (Iw[%]l) € (Ces(Vy,0))T. O
Theorem 3.6. If the conditions of Theorem 3.5 are satisfied, then the space (Ces(Vs, o))+ is a pre-modular pss.

Proof.

(1) Itis clear that, T(w) > 0and T(jw|]) =0 w =06.

(ii) We have Ey = max {1, sup,, |a>|0x—1} > 1 with T(@w) < Egl®|T(w), for all w € Ces(Vy, o) and
w e .

(iii) The inequality T(w +u) < 2" 1(T(w) + T(u)) holds, with w,u € Ces(Vy, o).

(iv) It follows from the proof of part (2) of Theorem 3.5.

(v) It follows from the proof of part (3) of Theorem 3.5, that Dy = 22h—1 4 oh—1 4 oh > 1,

(vi) Obviously, F = Ces(Vys, o).

(vii) There are 0 < p < sup,, w|ox~1 with T(w,0,0,0,...) > uw|T(1,0,0,0,...), for all w # 0 and n > 0, if
w = 0. O

Theorem 3.7. Assume the conditions of Theorem 3.5 are satisfied, then the space (Ces(V, o))+ is a pre-quasi
Banach pss.

Proof. By Theorem 3.6, the space (Ces(Vy, o))+ is a pre-modular pss. From Theorem 3.4, the space
(Ces(Vy,0))1 is a pre-quasi normed pss. To prove that (Ces(Vys, o))+ is a pre-quasi Banach pss, let
pk = ([3‘;)130:0 be a Cauchy sequence in (Ces(Vy, o))+, we have for every ¢ € (0,1), that kg € I with
k, 1 > ko, we get

) y k 1 Oy
k 1y _ x:OWUmx_BxH h
T(B —B)—yz_()( y+1 <er.

Then, for k,1 > kg and y € I, one has |VUH5]§ — [S}JI‘ < ¢. Hence, (V0|f315|) is a Cauchy sequence in €, for
constant y € I'", which implies lim;_, 4, VUIBLI = VUIBSI, for constant y € I*. Hence, T(p* — %) < ™,
for every k > ko. To prove B° € (Ces(Vis, o))+, we obtain T(B%) < 21T (% — %) + T(B*)) < oo, then
BY € (Ces(Vy, 0))+, which yields that (Ces(Vys, o))+ is a pre-quasi Banach pss. O

We recall here the basic concepts of operator ideals.

Definition 3.8 ([8]). A class E C J is called an operator ideal when every element [E(G,Q) = ENJ(S, Q)
holds the following setups:

(i) Ia € E, if A marks a Banach space of one dimension.
(ii) [E(9, Q) is a linear space on €.
(iii) Assume Vi € 3(G0,9), V2 € E(G,Q) and V3 € J(Q, Qq), then V3V, V; € E(Go, Qp), where Gy and Qg are
normed spaces.

Definition 3.9 ([5]). A mapping Q : E — [0, c0) is said to be a pre-quasi norm on the mapping ideal E if
it holds the following settings:

1) if VelEG,9),Q(V)>20and Q(V) =0« V =0

(2) there are Eg > 1 so that Q(CV) < Eo|¢|Q(V), with V € E(G,Q) and € €;

(3) there are Gy > 1 so that Q(Z; + V) < GolQ(V1) + Q(V,)], for all Vi, V, € [E(G, Q);
(4) there are Dy > 1,if V1 € 3(50,9), Vo € [E(G, Q) and V3 € J(Q, Qp), then

Q(V3V2 Vi) < Do || V3]|Q(V2) || V4.
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Theorem 3.10 ([3]) If (D)t is a pre-modular pss, then the function Q) is a pre-quasi norm on Ji,,_, where

QV) = T(sy(V) y > o for every V € JS (9, Q).

Theorem 3.11 ([5]). Every quasi norm on E is a pre-quasi norm on the ideal E.

Definition 3.12 ([16]). A Banach space Y is called simple, if the space J(Y) contains a unique non-trivial
closed ideal.

Theorem 3.13 ([16]). If Y is a Banach space with dim(Y) = oo, then

J(W) & PB(Y) & TY) & IY)

Theorem 3.14 ([2]). Assume that R is the set of real numbers. Suppose that s-type Dt := {7\ = (sx(A)) e RI" :
A€l(G,Q) and T(A) < oo}. If 3%, is a mapping ideal, then one has the following.

1. F C s-type D.

2. Suppose that (sy(Al)) "o € s-type D1 and (sy(Az)) "o € s-type D, then (sy(Aq —I—Az)) o € s-type
D.

3. Assume that ¢ € ¢ and (sy(A))ZOZO € s-type D, then |¢| (sy(A))fj’:O € s-type D.

4. The sequence space D is solid, i.e., when (s, (B))Z":O € s-type Dt and sy(A) < sy(B), forall y € I and
A,B € I(S,Q), then (sy(A));j’:O € s-type D.

From Theorem 3.14, we get the following properties of the s-type (Ces(V, 0)) .

Theorem 3.15. Suppose that s-type (Ces(Vys, 0)) 1 == {)\ = (sy(A)) € RIY: A €9(G,Q) and T(A) < oo}.
When J{ces (v, o)) is a mapping ideal, then the following conditions are satisfied.

1. We have s-type (Ces(Vy, 0))+ D F.

2. Assume that (Sy(Al))y "o € s-type (Ces(Vy, o))t and (sy(Az)) "o € s-type (Ces(Vy, o)), hence
(sy(Aq +A2))y:0 € s-type (Ces(Vys, 0)) .

3. Forall g € € and (sy(A))ZOZO € s-type (Ces(Vy, o)), then |g| (Sy(A));o:o € s-type (Ces(Vys, 0)) .

4. The s-type (Ces(Vis, 0)) 1 is solid.

Theorem 3.16. If the conditions (f1) and (f2) of Theorem 3.5 are satisfied, we have J{cq v, o)), 18 not operator
ideal.

Proof. Suppose we choose ox = 2, T(x) = x, for every x € I, w = (1,1,1,...) and v = (1,0,1,0,...).
Evidently, [vx| < |wx], for every x € It and w es-type (Ces(Vy, 0))+. But v ¢s-type (Ces(Vis, o).
"1;1herll the s-type (Ces(Vy, 0))+ is not solid. By Theorem 3.14, we have that ﬂfc es(V5,0)) is not a mapping
ideal. O

Theorem 3.17 ([3]). Assume D is a pss, then J5, is an operator ideal.
According to Theorem 3.17, we deduce the following Theorem.

Theorem 3.18. If the conditions of Theorem 3.5 are satisfied, then J} e is an operator ideal.

(Ces(Vy,0

In this part, we present the sufficient conditions (not necessary) on (Ces(Vy, o))+ so that
JO‘CeS(VU o))y This implies an answer about the non-linearity of s-type (Ces(Vys, o))+ spaces (see
Rhoades [18]).

Theorem 3.19. J{toq(v, o) (9, Q) = J(S,Q), if the conditions of Theorem 3.5 are satisfied. But the converse is
not necessarily true.



A. A. Bakery, M. M. Mohammed, J. Math. Computer Sci., 28 (2023), 412428 420

Proof. To prove that J(G,Q) C J"‘Ces (Ves,0)) (S,Q), since ey € (Ces(Vy,0))r, for all y € I+
and (Ces(Vy, 0))+ is a linear space, assume that A € J(9,9), we have (ocy(A))fJozo € F. To show that
I Ces(Ves,0) (S,Q) C J(9,9), suppose A € j((XCes(vU,c))T(SIQ)' one gets (o (A))X , € (Ces(Vy, 0))+. As

T(ay (A))y:O < 00, suppose k € (0,1), one has yo € I'* \ {0} such that T ((«, (A))g‘):yo) < m, for some
00 1 o
< _ 1 . . .
b > 1, where £ = max {1, Z <y n 1) } Since «y (A) is decreasing, we have

Y=Yo

2x¢ 2x0 Zx |V (A)| Ox 1) Zx |V (A)| Ox
Oy y=01VU &y y=01vVU Xy K
Z (Vs aox, (A))7* < Z < o ) < Z ( 1 > < 2M3Eh”

x=x0p+1 x=x0p+1 X=X

Therefore, we have B € Jay, (9, Q) such that rank(B) < 2xg and

(|vola-si)™ < 3 > > ([Vola-BI|)" < g

x=2x9+1 x=x0+1

as (0x) € J Ny, we can take

0 Oy K
;0 (‘VUHA_BHD < i3y

By using inequalities (1)-(4), we have
d(A,B) =T (ax (A —B))7

3*021 ¥ _0|Visay (A —B) ‘”+ i Y3 olVooy(A—B)\ ™
N x+1 x+1

x=3xg
v A B [e'e] X+2X |VU (Xy (A B)| Ox+2x(
(‘ ol ”D + 2 x+2xo+1
x=0 X=Xp

x=0

o Vs ay (A —B) 4+ Y X290 [Wisory (A — B)|>

> (fvoin-u)" + 3 (55 N

°° 5201 1500y (A — B+ 3% Vs &y 4 2xg (A — B\
3Z(\WHA Bll\) ( y=0 K y=0 v
X=X0

x+1

X0 X0 Ox - y ..
i —olVioy (Al
o (romon) g (S n-w) £ (Bt

X=Xq

Contrarily, we have a counterexample as Iy € J EXC es(V,(022,.)))1 (G, Q), but 0y > 1 is not satisfied. O

We present here the following question, for which conditions on (Ces(Vi, 0))y, are Jice (v, o))

complete and closed?
Theorem 3.20. The subclass (J?Ces(vu,c))T’Q) is a pre-quasi Banach ideal, where Q(V) = T((sy (V));":O), if
the conditions of Theorem 3.5 are verified.

Proof. As (Ces(Vy,0))+ is a pre-modular pss, hence from Theorem 3.10, QO is a pre-quasi norm on

JfCeS(VU,G))T. Suppose (Us)¢cr+ is a Cauchy sequence in JfCes( T(9, Q). AsJ(G,9)D J?Ces(vu,c))T (G,Q),

we have

VU/O—))

[ y o o
Q(Uf—ug) _ Z <Zx—o |V28—T_(1uf Ug)|> Y > (‘VU Huf—ugHDGO,
y=0
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so (Ug)ger+ is a Cauchy sequence in J(G, Q). Since J(G, Q) is a Banach space, then there is U € J(§, Q) with
li_r)n [Ug —UJ| =0. As (sy (U.g))i_’fzo € (Ces(Vis,0)) 1, for all g € I't. From Definition 3.2, conditions (ii),
g (e 9]

(iii) and (v), one gets

Q(u) = i (ZE_O IVUsX(u)H) oy
y=0

y+1
S Yy %y y Oy
<2y 20 ‘VUS[%}(U _ug”‘ + i x=0 ‘VUS[%}(UQN‘
y=0 Y +1 y=0 y+1
3 2 (Y Vos(Ug)l) ™
< oh-1 ’ _ ‘ % oh1 1o Vosx(Ug ‘
<21 (Vo u=Ugl|) " 42 1De Y o <o
y=0 y=0
Hence, (s¢(U))%, € (Ces(Vi, 0)), then U € JfCes(vU,GnT(g,Q), =

Theorem 3.21. If G and Q are normed spaces, and having Theorem 3.5 confirmed, then (ch es(Vis o))T/Q> is a
pre-quasi closed ideal, where Q(U) =T ((sf(U))$°:O>.

Proof. As (Ces(Vy,0))+ is a pre-modular pss, from Theorem 3.10, then Q is a pre-quasi norm on
JfCeS(VU,G))T. Assume Ug € JfCes(vulc))T(S,Q), forall g € I and JE%OQ(UQ —Uu) = 0. Since J(G,Q) D

j?Ces(Vz;,c))T (G,9Q), we have

[ y o o
QU -Uy) = Z <Zx—0 |V;5§:(1U Ug)|> Y > (’VU HU_UQHDUO,
y=0

so (Ug)ger+ is a convergent sequence in J(G, Q). Since (sy(ug))‘fj’zo € (Ces(Vy,0))1, forall g € IT. By
Definition 3.2, conditions (ii), (iii) and (v), one obtains

o) = Z( E—oylvffx(u)n> ’

O (o}

o0 ZE:o’VUSm(U—UgN’ b ZEZO‘VUSM(UQN‘ ’
h—1 2 2
s2 L;) ( y+1 +Z y+1

y=0

- o X (Y IVssx(Ug)I\ Y
D N (L T R e e
y=0 y=0

y+1
Then (sy(U));":O € (Ces(Vy, 0)), therefore U € JfCES(VU,G))T(S, Q). O

We introduce in this part the sufficient conditions on (Ces(Vys, o))+ so that J?‘Ces(v& o))+ is strictly

contained for different T and powers, and J{ (v, o)), 1S minimum.

Theorem 3.22. If G and Q are Banach spaces with dim(9) = dim(Q) = oo, and the conditions of Theorem 3.5 are
satisfied with Uz (y) = U1(y) and 1 < 0181) < crfﬁ,for everyy € I, then

g8 (5,9 &7

) .
(Ces(VUl,(cS)))>T (Q,Q) = (919)

ZCes(voz,(cﬁfm)T
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Proof. Assume that U € J$ (1)))> (9,Q), then (sy(U)) € (Ces(VUl, (O'S)))>_|_. We have
T

(Ces(VU1 oy

(2) (1)
i< ‘i_owuzsx(u)n)% <i< Ei_owulsx(um)% e
y+1 = y+1 ’

y=0

then U € J¢ @
(Ces(Vus, (0D

U € IJ(G, Q) so that

(G,9Q). Next, if we take (sy(U));":O with > 7 _, ‘VUlsX(U)‘ = g(}i)i, we get

T ‘y\/y+1

i<ZE_O|V018x( )|> i 1
o, y+1 sy+1 ’

and
)

o

o0 (2) oo (2) o0
Z( Ei_ovmsx(umyy Z( 2_o|vulsx(u)||>“v Sy (! >% <OO.
o) y+1 s y+1 o y+1
Hence U ¢ IS Q)and U € I8 Q). Evidently, J$ Q

¢ (Ces( V(o )))T(9 ) (Ces(Vusy (o4 )))T(9 s Y (Ces(Vi (o )))T(g =
J(G, Q). Next, if we put (sy (U));O:O with 7, ’VU2SX U)‘ = [‘-”1 then we obtain U € J(G, Q) so that

oy /T_’_

u¢Jy (9,9). O

T

(Ces(Vu, (o))

Theorem 3.23. If G and Q are Banach spaces with dim(G) = dim(Q) = oo, and the conditions of Theorem 3.5 are

satisfied, hence JE"CQS(VU,G))T 1S minimum.
Proof. Let the sufficient conditions be verified. Hence (J&_, (V0 Q), where
- Y IVsoax(Z)\ Y
0(z2) = =0 — = ) ,
() Z < y+1

y=0

is a pre-quasi Banach ideal. Assume that jCes Ve,0) (9,9) = J(G,Q), one has o > 0 with Q(Z) < o||Z]],

for all Z € J(G, Q). From Dvoretzky’s theorem [15], for all b € I'", one gets the quotient spaces §/Yp and
subspaces My, of Q, which can be transformed onto ¥ by isomorphisms V4, and Xy, with || Vy ||| Vy ]| < 2
and || Xy ||| Xy Y| < 2. Presume that Iy, is the 1dent1ty operator on €9, Ty, is the quotient operator from §
onto §/Yy and |y, is the natural embedding operator from My, into Q. If m, is the Bernstein numbers [13],
one gets

1=ma(Ip) = ma(Xp Xy To Ve Vy 1) < (X [[ma (X, To Vi) [V, |
= [ Xollm=(JoX;, o Vo) [ V4|
< [Xolldz(JoXp To V) [V
= [Xolldz(JoXp 'To Vo To) [Vl < X6 oz (Jo Xy ' To Vo To) [V I,

for 0 < x < b. Assume that | is the greatest integer with (1) = 0. Hence we obtain

e

\xbnz Voo (JoXg To Vo To) 11V

1-1

Oy

-1

3:0 |>1(J_r%\ o < —1) oy Zgzo anx(IbXb IbeTb)

— | < UXellVy 1)
y+1 y+1
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Therefore, for some p > 1, we have

Oy

2x— O‘VUOCX JoXg To Vo To)
y+1

X 1

c

I
|v|¢

y+1

X+1
x=0 [1—
( y+1

0 1—1 _ _
<X> < pol X [V T Xy I To Vo To

0

<
Il

< o Xo [V 16Xy o Vo To |

4

X
x=0
( - ) < olXo V5 1O X5 T Vi To)

Y

Mvﬂ%v

5 y+1

Y=
po[Xo [V HIX, HTu Vo || < 4po.

This implies a contradiction, when b — oco. Hence, § and Q both cannot be infinite dimensional when
I& w0 (62Q) = (5, 2). O

Clearly, as Theorem 3.23, we can easily show the following theorem.

Theorem 3.24. If G and Q are Banach spaces with dim(G) = dim(Q) = oo, and the conditions of Theorem 3.5 are
satisfied, then Jges(vu,(r) is minimum.

We discuss here the conditions such that the class J{ v, o)), 18 simple.

Lemma 3.25 ([16]). Suppose C € J(G,Q) and C & B(G,Q), then A € I(G) and B € I(Q) with BCXey = ey, for
everyy € I't.

Theorem 3.26. Assume G and Q are Banach spaces with dim(G) = dim(Q) = oo, and the conditions of Theorem
3.5 are satisfied with Ua(y) > Uq(y) and 1 < 6181) < GgZJ,for everyy € I, then

j(jZCes(VUZ( ) ))) (5,9),9 (Ces(Vol( ))) (5, Q)) m( S(CGS(VUQ( )> (5.9),9 (CES(VU1 (G; ))> 5 Q)>

T

%@HAEJ@%mN)n@”<wmm@m@'0”dA¢mWwW&

),
y S
J(CeS(V01 (o )))T(S Q)), in view of Lemma 3.25, we have B € J(J(CES(VUZ (o)) 9,Q) and
Ce J(JS(Ces(Vul (ol ))) (g,Q )) with CABI4 = Ig. Therefore, for all g € I'*, we obtain

(1)

o0 [oF
Zg:() |v015x(19)| Y
I1gllgs b (89 Z ( —

Ces(VUl,(cry )))T y=0

< [|CAB[[[Lg]los

This contradicts Theorem 3.22. Hence A € ‘,]3(55 @
(Ces(Vus, (o)) .



A. A. Bakery, M. M. Mohammed, J. Math. Computer Sci., 28 (2023), 412428 424

Corollary 3.27. If G and Q are Banach spaces with dim(G) = dim(Q) = oo, and the conditions of Theorem 3.5 are
verified with Ua(y) > U1(y) and 1 < 0‘151) < 01(32),for everyy € I't, then

j<jS(Ces(vUZ(a; M), (5,9), 9, (Ces(Vos, (o)) . (5,9 )> (zces(vgz( ). (5,9),7 (Ces(VUl( M )))T(g Q))
Proof. Clearly, since 3 C ¥. O

Theorem 3.28. Assume G and Q are Banach spaces with dim(G) = dim(Q) = oo, and the conditions of Theorem
3.5 are confirmed, then Jjc . v is simple.
5,0)) T

Proof. Suppose that the closed ideal T(J? (Ces(Vis,0) (9 Q)) contains an operator A ¢ ;B(j?CeS(VU,G) . (G,9)).
By using Lemma 3.25, there are B, C € J(JSCeS (Ve,0) (9 Q)) with CABIy = Ig. This gives that
Iy T v, (9 )y € (T3 (Ces(Vs,0) (9 Q)). Hence J(J (Ces(Vi5,0) (S,Q)) =T(I$ (Ces(Vis,0) (9, )). Therefore,
j?Ces(VU,G))T is a simple Banach space. O

We offer here the sufficient conditions on (Ces(Vys, o))+ so that the class J with the sequence of
eigenvalues in (Ces(Vys, o))+ equals Jices (V5,00

Theorem 3.29. If G and Q are Banach spaces with dim(G) = dim(Q) = oo, and the conditions of Theorem 3.5 are
satisfied, and Vgl exists and is bounded linear, then

<3?CGS(VU/U)) ) (5,Q) = Ces(VUU (S/Q)'

Proof. Assume that U € (.’JSCeS (Vo)) ) (9,9), then (py(U))i,O:O € (Ces(Vy,0)) and |[U —py (WI]| =0,

for every y € I'*. One has U = py(U)], for every y € I, hence sy(U) = sy(py(WI) = |py(U)|, for
ally € T*. So, (sy(U))ifzo € (Ces(Vy,0))1, then U € JfCes(vU,G))T(S,Q). Next, suppose that U €
JfCeS(VU,G))T(S,Q). Hence (sy(U));":O € (Ces(Vy, 0)) 1. Therefore, we get

o0

2 (Y Y I Vssx (W
ZWUSy y<;)< x o < oo.

So limy o, Vissy(U) = 0. As Vgl exists and is bounded linear, hence limy,_, sy (U) = 0. Suppose ||U —
WI||~! exists for every y € IT. Therefore, ||U— sy (W)I||~! exists and bounded for every y € I*.

Hence, limy_o [U — sy (WI||7! = ||U||7! exists and is bounded. As (JS

operator ideal, we have

Ces(Vis,0))+ Q) is a pre-quasi

I:uu*ej&SN&thxn:m%unaﬂeC%ﬁ@,):Jg&%u)—a

We have a contradiction, as limy_,o, sy(I) = 1. Then |[U—sy(WI|| = 0, for all y € I'*, which gives
Ue (Tourvuon, ) (959) -

4. Multiplication operators on (Ces(Vy, 0))+

Some geometric and topological properties of the multiplication operators defined on the space

o0 y v O'y
(Ces(Vy, 0))+ with the function T have been introduced, where T () = Z (’W) , for
y=0

every 3 € (Ces(Vy, 0)) .
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Definition 4.1 ([3]). Suppose D is a pre-quasi normed pss and p = (py) € ¢, The operator My : D1 —
D is called a multiplication on D+, when M3 = (gpy By> € Dr,with p € Dt. If Mg € J(D7), then the
multiplication operator is said to be generated by .

Theorem 4.2. If p € €' and the conditions of Theorem 3.5 are verified, then
9 €l <= My € I((Ces(Vis, 0)) 7).

Proof. Assume that g € {s,. Then, we have & > 0 with |py| < &, forall x € IT. If B € (Ces(Vy, 0)), we
obtain

e Yy oy 00 y oy
T(Mp[g) = T(pp) = Z <Zx—0 |VU|pXBX||> < Z <Zx—0|£VU|Bx||>

0 y+1 e y+1
00 y v oy
< Sup E’o_y Z (W) — Sup E’O_‘JT(B).
y =0 Y y

Hence, M € J((Ces(Vis,0))1).
Next, suppose My, € I((Ces(Vy, 0))1) and o ¢ €. Then for every m € It, one has & € I so that
lom| > &. Hence

Z?(:o |VU|px(em)xH)

v > Zgzova‘(em)xH
y+1 ~ Z <

yT1 > > E9°T (em).

T(Myey) = Tlpen) = Y (
y=0
So, My ¢ J((Ces(Vi5,0))1). So o € L. O

Theorem 4.3. If p € €' and (Ces(Vis, o))+ is a pre-quasi normed pss, then lpyl =1, for all y € I*, if and only
if My is an isometry.

Proof. Suppose the sufficient condition is satisfied. We have

e8] y \V4 <PBx Oy 00 y_ v . oy
T(Mpﬁ)—T(p[S)_Z< x-oyﬂp p ||> 5 <S|+;5|M) |

y=0 y=0

for all B € (Ces(Vy,0))+. So, My is an isometry. Assume M, is an isometry and [py| < 1, for some
b = by. We have

0 y \v4 Oy o0 Yy \v4 Oy
T(Mgeb,) = T(pen,) = Y <Zx—0| U|Z§’1x(€bo)x||) <y ( =0 ull(ebo)xll) — Tlew,).
y=0 y+ y=0 y+t

Also if |py,| > 1, clearly, T(Mgep,) > T(ep,). We have a contradiction for the two cases. Hence, |[pp| =1,
for every b € I, O

Theorem 4.4. If p € e and the conditions of Theorem 3.5 are verified, then M € B((Ces(Vys, 0)) 1), if and
only if (9v)3_ € co, where cq is the space of null sequences of complex numbers.

Proof. Assume that M, € B((Ces(Vy,0))+), then My € F((Ces(Vy, 0))+). Suppose limy o oy # 0.
Then, we have 1 > 0 so that U, = {y € I'" : [py| > 1} g J, where 7 is the space of all sets with finite
number of elements. If {&y}er+ C Uy, then {eg : &y € Uy} € { is an infinite set in (Ces(Vis, 0))+. As

> Vilox((eg;)x — (eg,)x)l
T(Mgeg, —Mgeg, ) = T(pes, — pee,) = Z ( 0| Xy+1f 9 ‘
y=0

WV,
Me

y+1

\Y
(ZX 0|n U|((e‘£f eE’g ”) >il]’<1fT]GkT(e£f_eig)/

y=0
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for all &, &g € Uy,. So, {egg : &g € Uy} € o, which cannot have a convergent subsequence under
My. Hence M, ¢ Z((Ces(Vy,0))1). This implies M ¢ ‘B((Ces(Vys, 0))+), this gives a contradiction.
Therefore, limy_,o 9y = 0. Next, if limy_,,, 9, = 0, hence for every n > 0, we have U, = {y € It

lpyl > m} C 3. Therefore, for all n > 0, we get dim (((Ces(VU,G))T)u ) = dim ((’iu“) < 00. So
n

Mp €3 (( (Ces(Vi, 0))+ )u ) Let ps € €1, for every f € I't, where

n

, elU.,
(pr)g =479 95 e
0, otherwise.

Indeed, My, € J (( (Ces(Vy,0))+ )u ) such as dim (( (Ces(Vy,0))+ )u ) < oo, for every f € I,
1

f+1

1
f+1

As (oy) € T 1N ly with og > 1, we have

T((Mg—Mg)B) = T(((0g (pf)g)ﬁg>::0>
_ i ( 9 IVasl(px — (pf)xmxn>cg

9—0 g+1
_ i ( 20|VU|(pX—<pf)X)BX||>%
g=0,gclU ; ngl
f+1
Py (Zs_owm(px—(pf)x)fsxn)%
f+1
_ i (Zg_o|vu|pr3x||>dg
9=0,9¢U | g+1
f+1
1 i <OIVUIBH>
(f+1)0'0 gZOIgngL g+1
f+1
1 — ngo|vUH5x|| 7o 1
—_— X_— :77— .
S Fro 920( g+1 N

So, Mg —My,| < (Hﬁ This implies My is a limit of finite rank mappings. Hence, M, €
PB((Ces(Vis, 0))1). O

Theorem 4.5. If p € €' and the settings of Theorem 3.5 are confirmed, then My € S((Ces(Vis, o)1), if and
only if (py )y € Co-

Proof. Evidently, since B((Ces(Vis, 0))1) & T((Ces(Vis, 0))1). O
Corollary 4.6. Suppose that the setups of Theorem 3.5 are satisfied, then T((Ces(Vys, 0))+) & I((Ces(Vy, 0)) ).

Proof. As the multiplication mapping I on (Ces(Vy, 0))+ is generated by p = (1,1,...), this implies
I ¢ T((Ces(Vy,0))r) and I € I((Ces(Vis, 0))1). O

Theorem 4.7. Suppose that M, € I((Ces(Vs, o)), where the space (Ces(Vs, o)) is a pre-quasi Banach pss.
Then there exist v > 0 and t > 0 so that v < |py| < t, with y € (ker(p))€, if and only if, Range(M,) is closed.



A. A. Bakery, M. M. Mohammed, J. Math. Computer Sci., 28 (2023), 412428 427

Proof. Let the settings be satisfied. Then, we have n > 0 with |py| > 7, for every y € (ker(p))°. To show
the space Range(M,) is closed, suppose 1 is a limit point of Range(M,). Hence M3y € (Ces(Vy, o)),
for all y € I such that limy_,oo Mppy, = 1. Clearly, the sequence My, is a Cauchy sequence. As
(oy) € T~ Ny with 0g > 1, we have

00 y B oy
—I—(Mpﬁ)f—MpBg):Z< X—O|VU|(&)X¥§[§:)1X px(ﬁg)x)”)

y=0
o = E:O |VU|(px(Bf)Xpx(ﬁg)x)”>0y
B Z ( y+1

y=0,y€(ker(p))"

> v_ IVisl(ox(Br)x —ox(Bg)x)ll o
x=0 9
" 2 < y+1 )

y=0,y¢ (ker(p))"

S 2:0 |VU|(px(Bf)x_px(ﬁg)x)H)GU
I

WV

y=0,y€(ker(p))°

. = ¥_0|VU|(px(mf)x_px(mg)x)n)ay
=2 ( y+1

=0

Yy
- Y o IVam((me)x — (mg))ll\ *
x=0 uin flx glx . o o
-2 yil )2 T (o),

where

~(Brly, Y€ (ker(p))€,
(mely = {0, y ¢ (ker(p))°.

then, {m¢} is a Cauchy sequence in (Ces(V¢, 0))¢. Since (Ces(Vis, o))+ is complete, we have €
(Ces(Vy, 0))+ with limy o my = B. As My € J((Ces(Vy, 0))1), we get limy_,oc Mgmy = M3, But
limy 00 Mpmy = limy oo My = 1. So M = L. Hence 1 € Range(M,,). Hence Range(M,) is closed.
Next, assume that the necessity condition is verified. So, we have 1 > 0 such that T(Mp) >nT(B), with

B e ((Ces(VU,G))T> . Suppose U = {y € (ker(p)) : lpyl < n} # (), then for fy € U, we have
(ker(g))€

™M

T(Mgey,) = T((pg(efo)g)):o:(’) -

< 2—0|V0|px(ef0)x”>cg

5 g+1

9

ot

( 2:0|V0|ﬂ(6f0)x||

Og
<supn®9T(es,),
o > gpn (ef,)

0

)
I

this explains a contradiction. So U = §), one has [py| > n, withy € (ker(p))°€. O

Theorem 4.8. If (Ces(Vys, o))+ is a pre-quasi Banach pss and p € e then, one has v > 0 and t > 0 with
T <lpyl < t, for everyy € I't, if and only if, My € I((Ces(Vis,0))+) is invertible.

Proof. Let the sufficient condition be confirmed. Assume thatn € el with n, = &. From Theorem 4.2,
the operators M, and M,, are bounded linear. Then M.M;; = M;.M, = L. Hence M, = M!. Next,
if My, is invertible, therefore, Range(M,) = ((Ces(VU, o))+ )]ﬁ. So, Range(M,) is closed. By using
Theorem 4.7, one has v > 0 such that [py| > 1, for all y € (ker(p))®. One has ker(p) = 0, if p,,, = 0, with
Yo € I, this gives ey, € ker(My), so we have a contradiction since ker(M) is trivial. Hence, |py| > T, for

ally € I'", as My € {o. In view of Theorem 4.2, one has t > 0 such that |py| < t, for all y € I'". Hence,
we get T < |py| < t, withy e I O
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Definition 4.9 ([12]). Assume the space (Range(G))¢ is the complement of Range(G). An operator G €
J(D) is called Fredholm, when dim(Range(G))¢ < oo, dim(ker(G)) < co and Range(G) is closed.

Theorem 4.10. Suppose M € I((Ces(Vs, o)1), where (Ces(Vs, o))+ is a pre-quasi Banach pss. Then My is
Fredholm mapping, if and only if

() ker(p) G I is finite;
(h) lpyl = p, withy € (ker(p))“.

Proof. Assume the conditions (g) and (h) are satisfied. From Theorem 4.7, the condition (h) explains that
Range(My) is closed. The condition (g) gives that dim(ker(M,)) < oo and dim((Range(My))¢) < oo.
Hence, My, is Fredholm. If M, is the Fredholm operator, suppose ker(y) ;Ct I is infinite, hence e, €
ker(My), for every x € ker(p). Since e,’s are linearly independent, one has dim(ker(M)) = oo, which
implies a contradiction. So, ker(p) & I'™ must be finite. The condition (h) follows from Theorem 4.7.  [J
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