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1. introduction

Throughout this paper, we use the standard topological notation and terminology, mainly as in [5]. By
A or (A,Ω), we denote a topological space, while (A,Ω1,Ω2) denotes a bitopological space [10] (called
also bispace), that is a set S equipped with two (in general, unrelated) topologies. The closure and
interior of a subset S of a space (A,Ω) are denoted by Cl(S) and Int(S), respectively. When (A,Ω1,Ω2) is a
bitopological space and S ⊆ A, then Cli(S) and Inti(S), i = 1, 2, denote the closure and interior in the space
(A,Ωi). Imai and Iséki [7, 8], introduced the concept of algebras of type (2, 0) called BCK-algebras which
generalizes the concept of the algebra of sets with the set subtraction as the only essential and also it is a
generalization of implication algebra. Many researchers have combined the concepts of topological spaces
with algebras, and they studied the properties of algebras after they are equipped with a specific topology,
which they called topological algebras. Alo and Deeba [1] 1996 introduced the concept of topological
BCK-algebra and in 1998 Lee and Ryu [11] gave more properties and characterizations of topological
BCK-algebras. In 1999 Jun et al. [9] introduced topological BCI-algebras, provided some properties of this
structure, and characterized a topological BCI-algebra in terms of neighborhoods. Gonzaga [6] in 2019,
introduced the concept of a topological B-algebra which characterized a topological B-algebra concerning
open sets.

In 2017, Mehrshad and Golzarpoor [12] presented some properties of uniform topology and topologi-
cal BE-algebras. In 2019, Satirad and Iampan [14], introduced the concept of topological UP-algebras and
they obtained several properties of this concept.
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A recent study on topological B-algebras was investigated by Belleza and Vilela in [2] in 2020, which
characterized a topological B-algebra and investigated several properties of B-ideal in a topological B-
algebra.

This paper provides a study of a BCK-algebra when it is equipped with two topologies, we call it a bi-
topological BCK-algebra. It can be considered as an extension of the concept of topological BCK-algebra
which was introduced by Alo and Deeba [1] also, generalization of some of the results in Lee and Ryu
[11].

Characterizations and properties of bi-topological BCK-algebra are investigated, and the BCK-ideals
in a bi-topological BCK-algebra are studied.

2. Preliminaries

In this section, we give the basic notions of BCK-algebras and investigate the concept of a topological
BCK-algebra. For further information, on BCK-algebras we refer to [13].

Definition 2.1. By a BCK-algebra we mean an algebra (A, ·, 0) satisfying the following axioms: for every
a,b, c ∈ A,

1. ((a · b) · (a · c)) · (c · b) = 0;
2. (a · (a · b)) · b = 0;
3. a · a = 0;
4. a · b = 0 and b · a = 0⇒ a = b;
5. 0 · a = 0.

In a BCK-algebra (A, ·, 0), we define a partial order relation (6) by a 6 b if and only if a · b = 0.
From the definition of BCK-algebras we can get the following properties very easily see [4, Proposition

5.1.3].

Proposition 2.2. In a BCK-algebra A, the following statements are true for all a,b, c ∈ A:

1. a · 0 = a;
2. a · b 6 a;
3. (a · b) · c = (a · c) · b;
4. a 6 b⇒ a · c 6 b · c and c · b 6 c · a;
5. a · (a · (a · b)) = a · b.

Definition 2.3 ([4, 3]). A nonempty subset I of a BCK-algebra (A, ·, 0) is called an ideal ofA if the following
two conditions are satisfied:

1. 0 ∈ I.
2. For all a ∈ A and for all b ∈ I. If a · b ∈ I, then a ∈ I.

If there is an element 1 of A satisfying x 6 1, for all a ∈ A, then the element 1 is called unit of A. A
BCK-algebra with unit is called a bounded BCK-algebra [4].

Definition 2.4 ([15]). A BCK-algebra (A, ·, 0) is called negative implicative if a · (b · c) = (a · b) · (a · c) for
all a,b, c ∈ A.

Definition 2.5 ([1]). A BCK-algebra A equipped with a topology Ω is called a topological BCK-algebra
(for short TBCK-algebra) if f : A×A → A defined by f(x,y) = x · y is continuous for all (x,y) ∈ A×A
where A×A has the product topology. Equivalently, for each open set O containing x ·y, there exist open
sets U and V containing x and y respectively such that U · V ⊆ O.

Definition 2.6 ([4]). Let A be a BCK-algebra and a ∈ A be a fixed element. The right map Ra : A → A is
a map defined by Ra(x) = x ? a for all x ∈ A.
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Definition 2.7 ([11]). A BCK-algebra A equipped with a topology Ω is called a topological BCK-algebra
(for short TBCK-algebra) if the operation · := f : A×A → A is topologicaly continuous i.e., the inverse
image f−1(O) of each open set O containing x · y is open in the product space A×A.

Lemma 2.8 ([1]). In a TBCK-algebra A,

1. If {0} is open, then A is discrete.
2. {0} is closed if and only if A is T2.

3. (i, j)-topological BCK-algebras

In this section we introduce the concept of (i, j)-topological BCK-algebras (where i, j = 1, 2, i 6= j) and
establish some of its properties. First, we introduce the following definitions:

Definition 3.1. A function f : (A,Ω1,Ω2) → (A,Ω1,Ω2) is called (i, j)-continuous at an element x ∈ A if
for every Ωj-open set U containing f(x), there exists a Ωi-open set V containing x such that f(V) ⊆ U. f
is said to be (i, j)-open if the image of each Ωj-open set is Ωi-open. It is called (i, j)-homoeomorphism if
it is a bijection, (i, j)-continuous and (i, j)-open.

Definition 3.2. Let (A,Ω1,Ω2) be a bi-topological space. A function f : A×A → A defined by f(x,y) =
x× y for all x,y ∈ A is called (i, j)-continuous if for each Ωj-open set G containing x× y, there exist two
Ωi-open sets U and V containing x and y, respectively, such that U× V ⊆ G for i, j ∈ {1, 2}. Equivalently,
f : A×A → A is (i, j)-continuous if and only if f−1(G) is open in the product space (A,Ωi)× (A,Ωi) for
every Ωj-open set G.

Definition 3.3. A BCK-algebra A equipped with two topologies Ω1, Ω2 is called a (i, j)-topological BCK-
algebra (for short (i, j)-BCK-algebra) if f : A×A → A defined by f(x,y) = x · y is (i, j)-continuous for all
x,y ∈ A and i, j ∈ {1, 2}.

The following example shows that a (i, j)-BCK-algebra may not be either Ωi-BCK-algebra or Ωj-BCK-
algebra.

Example 3.4. Let A = {0,a,b, c} and · be defined as in the following Cayley diagram:

? 0 a b c
0 0 0 0 0
a a 0 0 a
b b b 0 b
c c c c 0

Table 1: A (i, j)-BCK-algebra which is not Ωi-BCK-algebra.

Then it can be easily checked that (A, 0, ·) is a BCK-algebra. Consider the topology

Ω1 = {φ, {0}, {a,b}, {c}, {0, c}, {a,b, c}, {0,a,b},A}, and Ω2 = {φ, {0,a,b},A}.

Then A is a (1, 2)-BCK-algebra which is neither Ω1-BCK-algebra nor Ω2-BCK-algebra.

In Example 3.4, suppose thatΩ1= {φ, {0,a}, {b}, {c}, {b, c}, {0,a,b}, {0,a, c},A} andΩ2= {φ, {a}, {0,b, c},A}.
Then A is both a Ω1-BCK-algebra and a Ω2-BCK-algebra. But it is not a (1, 2)-BCK-algebra because
a ·c = a and {0,a} · {c} 6⊆ {a}. Also, it is not a (2, 1)-BCK-algebra because b ·c = b and {0,b, c} · {0,b, c} 6⊆ {b}.

The proof of the following theorem follows directly from Definition 3.3.

Theorem 3.5. A BCK-algebra A is an (i, j)-BCK-algebra if and only if for all x.y ∈ A and every Ωj-open set G
containing x · y, there exist Ωi-open sets U and V containing x and y respectively such that U · V ⊆ G.
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Proposition 3.6. In any (i, j)-BCK-algebra A. If {0} is Ωj-open, then (A,Ωi) is a discrete space.

Proof. For every x ∈ A, we have x · x = 0 and hence, there exist some Ωi-open set U and V containing x
such that U · V = {0} because {0} is Ωj-open. Let O = U ∩ V . Then O is a Ωi-open sets and O ·O = {0}.
This implies that O = {x}. Therefore, (A,Ωi) is a discrete space.

Proposition 3.7. In any (i, j)-BCK-algebra A. If {0} is Ωj-closed, then (A,Ωi) is a Hausdorff space.

Proof. Let x and y be any two distinct points in A. Then either x · y 6= 0 or y · x 6= 0. Suppose x · y 6= 0,
Then x · y ∈ A \ {0} and by hypothesis A \ {0} is Ωj-open, so there exist some Ωi-open sets U and V

containing x and y respectively such that U · V =⊆ A \ {0}. Obviously, U ∩ V = φ because if there exists
some c ∈ U ∩ V , then we get 0 = c · c ⊆ A \ {0} which is contradiction. Thus, (A,Ωi) is a Hausdorff
space.

Corollary 3.8. If A is a finite (i, j)-BCK-algebra and {0} ∈ Ωj ∪ (Ωj)c, then (A,Ωi) is a discrete space.

Proof. The proof follows from Propositions 3.6, 3.7 and the fact that a finite Hausdorff space is discrete.

Proposition 3.9. Let A be a BCK-ideal of an (i, j)-BCK-algebra A. If 0 ∈ Intj(A), then A is Ωi-open.

Proof. For every x ∈ A, we have x · x = 0 and since 0 ∈ Intj(A), so there exists a Ωj-open set U such
that x · x = 0 ∈ U ⊆ A. Since A is a (i, j)-BCK-algebra, there exist Ωi-open sets V and W of x such that
V ·W ⊆ U ⊆ A. Now for each y ∈ V , we have x ·y ∈ A and since x ∈ A, so y ∈ A because A is a BCK-ideal
implies x ∈ V ⊆ A. Hence, A is Ωi-open.

Proposition 3.10. If I is a Ωj-open BCK-ideal of an (i, j)- BCK-algebra A, then I is also Ωi-closed.

Proof. Suppose I is an Ωj-open BCK-ideal of a (i, j)- BCK-algebra A. Let x ∈ A \ I. Since I is a BCK-ideal
of A, so x · x = 0 ∈ I. By Theorem 3.5, there exists a Ωi-open set U(x) such that U(x) ·U(x) ⊆ I. We claim
that U(x) ⊆ A \ I. If not, then U(x) ∩ I 6= φ. Then there exists y ∈ U(x) ∩ I. Hence, for all z ∈ U(x), we
have z · y ∈ U(x) ·U(x) ⊆ I. Since y ∈ I and I is a BCK-ideal, so z ∈ I. Hence, U(x) ⊆ I which implies that
x ∈ I, a contradiction. Therefore, A \ I is Ωi-open. Thus, I is Ωi-closed in A.

From Proposition 3.9 and Proposition 3.10, we obtain the following result.

Corollary 3.11. If I is a Ωj-open BCK-ideal of a (i, j)- BCK-algebra A, then I is Ωi-clopen.

Proposition 3.12. For any subsets S,R of an (i, j)-BCK-algebra A, the following statements are true:

1. Cli(S) ·Cli(R) ⊆ Clj(S · R).
2. If either Cli(S) ·Cli(R) or S · R is Ωj-closed, then the equality holds.

Proof. (1) Let y = a · b ∈ Cli(S) · Cli(R) where a ∈ Cli(S), b ∈ Cli(R) and let U be any Ωj-open set
containing y. Since A is a (i, j)-BCK-algebra, so there exist Ωi-open sets V and W containing a and b
respectively such that V ·W ⊆ U. Also we have a ∈ Cli(S) implies that S ∩ V 6= φ and b ∈ Cli(R) im-
plies that R ∩W 6= φ. Suppose that a1 ∈ S ∩ V and b1 ∈ R ∩W implies that a1 · b1 ∈ V ·W and hence
a1 · b1 ∈ U. Also, a1 · b1 ∈ S · R implies that S · R ∩ U 6= φ. Thus, y ∈ Clj(S · R) which implies that
Cli(S) ·Cli(R) ⊆ Clj(S · R).

(2) Suppose that Cli(S) ·Cli(R) is Ωj-closed, then obviously S · R ⊆ Cli(S) ·Cli(R) and hence

Clj(S · R) ⊆ Clj(Cli(S) ·Cli(R)) = Cli(S) ·Cli(R).

Hence, by (1) we get the result. The other case is obvious.
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Definition 3.13. Let A be a BCK-algebra and let a ∈ A, then we define the subset κa of A as follows:

κa = {x ∈ A : x = a · (a · x)}.

Example 3.14. let A = {0, 1, 2, 3, 4} and let the operation · be given by Table 2. Then (A, ·, 0) is a BCK-

? 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 1 0 0 0
3 3 1 1 0 0
4 4 3 2 1 0

Table 2: κx subsets of a BCK-algebra.

algebra (see [4, Example 5.1.12]). Also, we have κ0 = {0}, κ1 = {0, 1}, κ2 = {0, 1, 2}, κ3 = {0, 1, 3} and
κ4 = A.

Proposition 3.15. The following statements are true:

1. a, 0 ∈ κa for all a ∈ A.
2. κ0 = {0} κ0 ⊆ κa for all a ∈ A.
3. b ∈ κa if and only if b · (b · a) = a · (a · b) = b.
4. If b ∈ κa, then κb ⊆ κa.
5. If b ∈ κa and a ∈ κb, then a = b.
6. If c ∈ κa ∩ κb, then κc ⊆ κa ∩ κb.

Proof. (1) and (2) are obvious.
(3) Let b ∈ κa, then by definition a · (a · b) = b. Now,

b · (b · a) = b · ((a · (a · b)) · a) = b · ((a · a)(a · b)) = b · 0 = b.

The converse part is obvious.
(4) Let b ∈ κa, then by (3), b · (b ·a) = a · (a ·b) = b. Suppose that c ∈ κb, then b · (b · c) = c · (c ·b) = c.

Now c = b · (b · c) = [a · (a · b)][(a · (a · b)) · c] = [a · (a · b)][(a · c)(a · b)] 6 a · (a · c). Hence, c 6 a · (a · c).
Also, we have (a · (a · c)) · c = (a · c)(a · c) = 0, so a · (a · c)) 6 c. Therefore, a · (a · c) = c implies that
c ∈ κa and thus κb ⊆ κa.

(5) If b ∈ κa and a ∈ κb, then we have a · (a · b) = b and b · (b · a) = a. From (3), we have
b · (b · a) = a · (a · b), so a = b.

(6) Follows from (5).

Proposition 3.16. Let A be a BCK-algebra and let B = {κx : x ∈ A}. Then B forms a base for a topology on A.
This topology is denoted by Ωκ.

Proof. Since x ∈ κx for all x ∈ A, so A =
⋃
x∈A κx and from Proposition 3.15 (6), we have if c ∈ κa ∩ κb,

then κc ⊆ κa ∩ κb. Hence, B forms a base for a topology on A.

Proposition 3.17. The space (A,Ωκ) is a T0-space.

Proof. Let a,b be any two distinct points in A. Then by Proposition 3.15 (5), either a /∈ κb or b /∈ κa.
Therefore, (A,Ωκ) is T0.

Proposition 3.18. Let (A,Ω1,Ω2) be an (i, j)-BCK-algebra and a ∈ A. If κa is Ωj-open, then the following
statements are true:
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1. For each x ∈ κa there exist Ωi-open sets U and V containing a and a · x respectively such that U · V ⊆ κa.
2. For each x ∈ A, there exists a Ωi-open set U containing x such that U ·U ⊆ κa.
3. There exist Ωi-open sets U and V containing a and 0, respectively, such that U · V ⊆ κa.
4. There exist Ωi-open sets U and V containing 0 and a, respectively, such that U · V ⊆ κa.

Proof. (1) For each x ∈ κa, we have a · (a · x) = x ∈ κa. Since κa is Ωj-open and A is (i, j)-BCK-algebra,
the result follows.

(2) Follows from the fact that x · x = 0 ∈ κa.
(3) Follows from the fact that a · 0 = a ∈ κa.
(4) Follows from the fact that 0 · a = 0 ∈ κa.

Theorem 3.19. Let (A,Ω1,Ω2) be a (i, j)-BCK-algebra satisfying the condition that y = x · (x · y) for all distinct
points x,y ∈ A and x 6= 0, then for any 0 6= a ∈ S and S,R ⊆ A the following statements are true:

1. a ·Cli(R) ⊆ Clj(a · R).
2. a ·Clj(R) ⊇ Cli(a · R).
3. a · Intj(R) ⊆ Inti(a · R).
4. a · Inti(R) ⊇ Intj(a · R).
5. S · Intj(R) ⊆ Inti(S · R).

Proof. 1. Let y ∈ a · Cli(R), then y = a · b where b ∈ Cli(R) and let U ∈ Ωj with y = a · b ∈ U.
Since (A,Ω1,Ω2) is a (i, j)-BCK-algebra, then there exists V ∈ Ωi with b ∈ V and a · V ⊆ U. Since
b ∈ Cli(R), so there is c ∈ R ∩ V , thus a · c ∈ a · V ⊆ U. Therefore, a · c ∈ (a · R) ∩U which implies
y = a · b ∈ Clj(a · R). Hence, a ·Cli(R) ⊆ Clj(a · R).

2. Let c ∈ Cli(a · R) we have to show that c ∈ a · Clj(R). Let U ∈ Ωj containing a · c. As A is (i, j)-
BCK-algebra, so there exists a Ωi-open set H containing c such that a ·H ⊆ U. Since c ∈ Cli(a · R),
so (a · R) ∩H 6= φ. Let a · z ∈ (a · R) ∩H, then (a · z) ∈ H implies that z = a · (a · z) ∈ a ·H ⊆ U.
Therefore, we obtain that R∩U 6= φ. Hence a ·c ∈ Clj(R) which implies that c ∈ a ·Clj(R). Therefore,
Cli(a · R) ⊆ a ·Clj(R).

3. Let a · b ∈ a · Intj(R), then there is an Ωj-open set O such that b ∈ O ⊆ R. Since b = a · (a · b) ∈ O
and O is Ωj-open, there is a Ωi-open set V with a · b ∈ V and a · V ⊆ O. By hypothesis, we have
V = a · (a · V), so V ⊆ a ·O. Thus, a · b ∈ V ⊆ a ·O ⊆ a · R. Therefore, a · b ∈ Inti(a · R) and hence,
a · Intj(R) ⊆ Inti(a · R).

4. Let c ∈ Intj(a · R), then there is a Ωj-open set O such that c ∈ O ⊆ a · R, so we can write c =
a · x ∈ O ⊆ a · R. Since A is (i, j)-BCK-algebra, then there is a Ωi-open set V containing x such that
a · V ⊆ O. Therefore, x ∈ V ⊆ a ·O ⊆ R. Hence, x ∈ Inti(R) implies that c ∈ a · Inti(R). Thus,
a · Inti(R) ⊇ Intj(a · R).

5. Let 0 6= a ∈ S, then by (2), a · Intj(R) ⊆ Inti(a · R) ⊆ Inti(S · R). Hence, S · Intj(R) =
⋃
a∈S(a ·

Intj(R)) ⊆
⋃
a∈S Inti(a · R) ⊆ Inti(S · R).

Corollary 3.20. Let (A,Ω1,Ω2) be a (i, j)-BCK-algebra a ∈ A, then the following statements are true:

1. a ·Cli(κa) ⊆ Clj(a · κa).
2. a ·Clj(κa) ⊇ Cli(a · κa).
3. a · Intj(κa) ⊆ Inti(a · κa).
4. a · Inti(κa) ⊇ Intj(a · κa).

Proof. Follows from that fact that a · (a · x) = x for all x ∈ κa. Thus in Theorem 3.19, if we replace κa
instead of R the result follows.
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Theorem 3.21. Let (A,Ω1,Ω2) be a (i, j)-BCK-algebra and let a ∈ A. If R ⊆ A satisfying the condition x =
(x · a) · a for all x ∈ R, then the following statements are true:

1. Cli(R) · a ⊆ Clj(R · a).
2. Cli(R · a) ⊇ Clj(R) · a.
3. Intj(R) · a ⊆ Inti(R · a).
4. Inti(R) · a ⊇ Intj(R · a).
5. If the condition is true for all a ∈ A, then Intj(R) ·A ⊆ Inti(R ·A).

Proof. 1. Let y ∈ Cli(R) · a, then y = b · a where b ∈ Cli(R) and let U ∈ Ωj with y = b · a ∈ U.
Since (A,Ω1,Ω2) is a (i, j)-BCK-algebra, then there exists V ∈ Ωi with b ∈ V and V · a ⊆ U. Since
b ∈ Cli(R), so there is c ∈ R ∩ V , thus c · a ∈ V · a ⊆ U. Therefore, c · a ∈ (R · a) ∩U which implies
y = b · a ∈ Clj(R · a). Hence, Cli(R) · a ⊆ Clj(R · a).

2. Let c ∈ Cli(R · a) we have to show that c · a ∈ Clj(R). Let U ∈ Ωj containing c · a. As A is (i, j)-
BCK-algebra, so there exists a Ωi-open set H containing c such that H · a ⊆ U. Since c ∈ Cli(R · a),
so (R · a) ∩H 6= φ. Let z · a ∈ (R · a) ∩H, then (z · a) ∈ H implies that z = (z · a) · a ∈ H · a ⊆ U.
Therefore, we obtain that R∩U 6= φ. Hence c ·a ∈ Clj(R) which implies that c ∈ Clj(R) ·a. Therefore,
Cli(R · a) ⊆ Clj(R) · a.

3. Let b · a ∈ Intj(R) · a, then there is an Ωj-open set O such that b ∈ O ⊆ R. Since b = (b · a) · a ∈ O
and O is Ωj-open, there is a Ωi-open set V with a · b ∈ V and a · V ⊆ O. By hypothesis, we have
V = (V · a) · a, so V ⊆ O · a. Thus, b · a ∈ V ⊆ O · a ⊆ R · a. Therefore, b · a ∈ Inti(R · a) and hence,
Intj(R) · a ⊆ Inti(R · a).

4. Let c ∈ Intj(R · a), then there is a Ωj-open set O such that c ∈ O ⊆ R · a, so we can write c = x · a ∈
O ⊆ R ·a where x ∈ R. Since A is (i, j)-BCK-algebra, then there is a Ωi-open set V containing x such
that V · a ⊆ O. Therefore, x ∈ V ⊆ O · a ⊆ R. Hence, x ∈ Inti(R) implies that c ∈ Inti(R) · a. Thus,
Inti(R) · a ⊇ Intj(R · a).

5. Let a ∈ A, then by (2), Intj(R) · a ⊆ Inti(R · a) ⊆ Inti(R ·A). Hence,

Intj(R) ·A =
⋃
a∈A

(Intj(R) · a) ⊆
⋃
a∈A

Inti(R · a) ⊆ Inti(R ·A).

Corollary 3.22. Let (A,Ω1,Ω2) be a (i, j)-BCK-algebra satisfying the condition that y = x · (x · y) for all distinct
points x,y ∈ A and x 6= 0, then for any 0 6= a ∈ A and A,R ⊆ A the following statements are true:

1. If R is Ωj-closed, then a · R is Ωi-closed.
2. If R is Ωj-open, then A · R is Ωi-open.

Proof. The proof follows from Theorem 3.19.

Corollary 3.23. Let (A,Ω1,Ω2) be a (i, j)-BCK-algebra and let a ∈ A.If R ⊆ A satisfying the condition x =
(x · a) · a for all x ∈ R, then the following statements are true:

1. If R is Ωj-closed, then R · a is Ωi-closed.
2. If If R is Ωj-open, then R ·A is Ωi-open.

Proof. The proof follows from Theorem 3.21.

Theorem 3.24. Let (A,Ω1,Ω2) be a (i, j)-BCK-algebra and let a ∈ A. If R ⊆ A satisfying the condition that
x = a · (a · x) for all x ∈ R, then the following statements are true:

1. The left map la : A→ A defined by la(x) = a · x, is an (i, j)-homeomorphism of A onto A.
2. For any elements x,y in A such that y = a · x, there exists an (i, j)-homeomorphism f of A onto itself such

that f(y) = x.
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Proof. 1. Let x,y ∈ A and la(x) = la(y), then a · x = a · y implies that a · (a · x) = a · (a · y) and hence
x = y. Therefore, la is one-to-one. For every x ∈ A, a · x ∈ A, thus la(a · x) = a · (a · x) = x. Hence la
is onto. Let O be a Ωj-open set, then la(O) = a ·O. By Theorem 3.19 (3), a ·O is Ωi-open. Hence la
is (i, j)-open. Let x ∈ A and O be any Ωj-open set containing la(x), then by Theorem 3.19 (3), a ·O is
Ωi-open. Since la(x) = a · x ∈ O. Hence, x ∈ a ·O and la(a ·O) ⊆ O. Hence, la is (i, j)-continuous.
Thus, la is an (i, j)-homeomorphism.

2. Let x,y ∈ A, then the function f = la : A→ A is (i, j)-homeomorphism, and

la(y) = (a · y) = a · (a · x) = x.

Theorem 3.25. Let (A,Ω1,Ω2) be a (i, j)-BCK-algebra and let a ∈ A.If R ⊆ A satisfying the condition x =
(x · a) · a for all x ∈ R, then the following statements are true:

1. The right map ra : A→ A defined by ra(x) = x · a, is an (i, j)-homeomorphism of A onto A.
2. For every element x ∈ A , there exists a (i, j)-homeomorphism f of A onto itself such that f(a) = x.

Proof. 1. Let x,y ∈ A and ra(x) = ra(y), then x · a = y · a implies that (x · a) · a = (y · a) · a· and
hence x = y. Therefore, ra is one-to-one. For every x ∈ A, x · a ∈ A, thus ra(x · a) = (x · a) · a = x.
Hence ra is onto. To prove that ra is (i, j)-open, let O be a Ωj-open set in A, then ra(O) = O · a.
By Theorem 3.21 (3), O · a is Ωi-open. Hence ra is (i, j)-open. Let x ∈ A and let O be any Ωj-open
set containing la(x), then by Theorem 3.21 (3), O · a is Ωi-open. Since la(x) = x · a ∈ O. Hence,
x ∈ O · a and ra(a ·O) ⊆ O. Hence, ra is (i, j)-continuous. Thus, ra is an (i, j)-homeomorphism.

2. Let x ∈ A, we define f = rx·a : A → A as above, then rx·a is (i, j)-homeomorphism, and rx·a(a) =
(x · a) · a = x.

Theorem 3.26. Let (A,Ω1,Ω2) be an (i, j)-BCK-algebra and let S be a BCK-subalgebra satisfying the condition
y = x · (x · y) for all x,y ∈ S. If S is Ωj-open, then Inti(S) is also a BCK-subalgebra.

Proof. Let x,y ∈ Inti(S), then by hypothesis, S is a Ωj-open set containing y. Since S is closed under the
operation (·), so (x) · S ⊆ S. Hence, by Theorem 3.19 (3), x · S is Ωi-open and x · y ∈ x · S ⊆ S. Hence,
x · y ∈ Inti(S). Therefore, Inti(S) is closed under the operation (·).

Proposition 3.27. If (A,Ω1,Ω2) is a negative implicative BCK-algebra. If S is a BCK-subalgebra, then x · S is also
a BCK-subalgebra.

Proof. Let x · a, x · b ∈ (x · S), then obviously, a,b ∈ S and since S is closed, so a · b ∈ S. Therefore,
x · (a · b) ∈ x · S. Hence, by hypothesis, x · (a · b) = (x · a) · (x · b) ∈ x · S. Thus x · S is also a BCK-
subalgebra.

Proposition 3.28. Let A be an (i, j)BCK-algebra and φ 6=W ∈ Ωj, then the following statements are true:

1. If x ∈W, then there exists a Ωi-open set U containing 0 such that x ·U ⊆W.
2. If 0 ∈W, then there exists a Ωi-open set U containing x such that U ·U ⊆W.
3. If 0 ∈W, then there exist two Ωi-open sets U and V containing 0 and x respectively such that (U ·V) ⊆W.
4. If 0 ∈ W, then for each x,y ∈ A there exist two a Ωi-open sets U and V containing y · x and y respectively

such that U · V ⊆W.

Proof. 1. Obvious.
2. Let 0 ∈ W and x ∈ A. Since x · x = 0 ∈ W and A is (i, j)-BCK-algebra, then there exist two Ωi-open

sets G and H containing x such that G ·H ⊆ W. Suppose that U = G ∩H, then U is a Ωi-open set
containing x. Hence, U ·U ⊆W.
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3. Let 0 ∈W and x ∈ A. Since 0 · x = 0, and A is (i, j)-BCK-algebra, then there exist Ωi-open sets G,H
containing 0 and A such that G ·H ⊆W.

4. Let 0 ∈W and x,y ∈ A. Since x · y 6 x and A is (i, j)-BCK-algebra, then there exist a Ωi-open set U
containing x · y, and a Ωi-open set G containing x such that U ·G ⊆W.

Proposition 3.29. Let A be an (i, j)-BCK-algebra and U0 be the least Ωi and Ωj-open set containing 0. If x ∈ U0,
then U0 is the least Ωj-open set containing x.

Proof. Let x ∈ U0 and N be any Ωj-open in A which contains x. By Definition 2.1, we have x · 0 = x ∈ N.
By Theorem 3.5, there exist Ωi-open sets Nx and N0 such that Nx ·N0 ⊆ N. Since N0 is a Ωi-open set
containing 0, it follows from assumption and Proposition 2.2 that 0 = x · x ∈ Nx ·U0 ⊆ Nx ·N0 ⊆ N.
Therefore, N is a Ωj-open set containing 0. By assumption, we have U0 ⊆ N. Hence, U0 is the least
Ωj-open set containing A.

Proposition 3.30. In every (i, j)-BCK-algebra (A,Ω1,Ω2), the following statements are true:

1. If (A,Ωj) is T0, then (A,Ωi) is T1.
2. If (A,Ωj) is T1, then (A,Ωi) is T2.
3. If (A,Ωj) is T2, then (A,Ωi) is T0.

Proof. (1): Suppose that (A,Ωj) is T0 and let x,y ∈ A such that x 6= y. Thus we have either x · y 6= 0 or
y · x 6= 0 without loss of generality, assume that x · y 6= 0, so we have two cases:

Case 1: There exists a Ωj-open set W containing x · y but not 0. Since A is (i, j)-BCK-algebra, then
there exist two Ωi-open sets U and V containing x and y respectively such that U · V ⊆ W. Since 0 /∈ W
so that 0 /∈ U · V . Hence, y /∈ U and x /∈ V .

Case 2: There exists Ωj-open W containing 0 but not x · y. Since x · x = 0, y · y = 0 and A is (i, j)-BCK-
algebra, then by Proposition 3.28 there exists Ωi-open set U containing x such that U ·U ⊆W. Also, there
exists Ωi-open set V containing y such that V · V ⊆W. Obviously, y /∈ U and x /∈ V . Therefore, (A,Ωi) is
T1.

(2): Suppose that (A,Ωj) is T1 then {0} is Ωj- closed. Therefore, by Proposition 3.7, (A,Ωi) is T2. (3):
Obvious.

The converse of the above proposition is not true in general, for this if we take Ωi is a discrete space
and Ωj is any space which is not T0 on a BCK-algebra A, then (A,Ω1,Ω2) is an (i, j)-BCK-algebra.

Proposition 3.31. Let A be an (i, j)-BCK-algebra and U0 be the least Ωi and Ωj-open set containing 0. If x ∈ U0,
then U0 is the least Ωj-open set containing x.

Proof. Let x ∈ U0 and N be any Ωj-open in A which contains x. By Definition 2.1, we have x · 0 = x ∈ N.
By Theorem 3.5, there exist Ωi-open sets Nx and N0 such that Nx ·N0 ⊆ N. Since N0 is a Ωi-open set
containing 0, it follows from assumption and Proposition 2.2 that 0 = x · x ∈ Nx ·U0 ⊆ Nx ·N0 ⊆ N.
Therefore, N is a Ωj-open set containing 0. By assumption, we have U0 ⊆ N. Hence, U0 is the least
Ωj-open set containing x.

4. Conclusion

In this paper we extended the concept of topological BCK-algebra to a bitopological BCK-algebra.
We proved some properties of this concept and gave illustrative examples when they are needed. Some
relations linked with bitopological BCK-algebras to separation axioms and homeomorphisms are investi-
gated.
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