

Online: ISSN 2008-949X

Journal of Mathematics and Computer Science

Journal Homepage: www.isr-publications.com/jmcs

On bi-topological BCK-algebras

Ramadhan A. Mohammed^a, Ghazala H. Rasheed^a, Alias B. Khalaf^{b,*}

^aDepartment of Mathematics, College of Basic Education, University of Duhok, Kurdistan Region, Iraq.

Abstract

In this paper, we present the concept of bi-topological BCK-algebra. Several characterizations and properties of this concept are obtained. Also, the concept of BCK-ideal of a BCK-algebra is defined and some of its properties are found.

Keywords: BCK-algebra, bi-topological BCK-algebra, BCK-ideal.

2020 MSC: 06F35, 54B10, 54A05.

©2023 All rights reserved.

1. introduction

Throughout this paper, we use the standard topological notation and terminology, mainly as in [5]. By A or (A,Ω) , we denote a topological space, while (A,Ω_1,Ω_2) denotes a bitopological space [10] (called also bispace), that is a set S equipped with two (in general, unrelated) topologies. The closure and interior of a subset S of a space (A,Ω) are denoted by Cl(S) and Int(S), respectively. When (A,Ω_1,Ω_2) is a bitopological space and $S\subseteq A$, then $Cl_1(S)$ and $Int_1(S)$, $Int_2(S)$ and $Int_2(S)$, introduced the concept of algebras of type $Int_2(S)$ called BCK-algebras which generalizes the concept of the algebra of sets with the set subtraction as the only essential and also it is a generalization of implication algebra. Many researchers have combined the concepts of topological spaces with algebras, and they studied the properties of algebras after they are equipped with a specific topology, which they called topological algebras. Alo and Deeba [1] 1996 introduced the concept of topological BCK-algebra and in 1998 Lee and Ryu [11] gave more properties and characterizations of topological BCK-algebras. In 1999 Jun et al. [9] introduced topological BCI-algebras, provided some properties of this structure, and characterized a topological BCI-algebra in terms of neighborhoods. Gonzaga [6] in 2019, introduced the concept of a topological B-algebra which characterized a topological B-algebra concerning open sets.

In 2017, Mehrshad and Golzarpoor [12] presented some properties of uniform topology and topological BE-algebras. In 2019, Satirad and Iampan [14], introduced the concept of topological UP-algebras and they obtained several properties of this concept.

*Corresponding author

Email address: aliasbkhalaf@uod.ac (Alias B. Khalaf)

doi: 10.22436/jmcs.028.03.08

Received: 2022-04-19 Revised: 2022-05-18 Accepted: 2022-05-28

^bDepartment of Mathematics, College of Science, University of Duhok, Kurdistan Region, Iraq.

A recent study on topological B-algebras was investigated by Belleza and Vilela in [2] in 2020, which characterized a topological B-algebra and investigated several properties of B-ideal in a topological B-algebra.

This paper provides a study of a BCK-algebra when it is equipped with two topologies, we call it a bitopological BCK-algebra. It can be considered as an extension of the concept of topological BCK-algebra which was introduced by Alo and Deeba [1] also, generalization of some of the results in Lee and Ryu [11].

Characterizations and properties of bi-topological BCK-algebra are investigated, and the BCK-ideals in a bi-topological BCK-algebra are studied.

2. Preliminaries

In this section, we give the basic notions of BCK-algebras and investigate the concept of a topological BCK-algebra. For further information, on BCK-algebras we refer to [13].

Definition 2.1. By a BCK-algebra we mean an algebra $(A, \cdot, 0)$ satisfying the following axioms: for every $a, b, c \in A$,

```
1. ((a \cdot b) \cdot (a \cdot c)) \cdot (c \cdot b) = 0;

2. (a \cdot (a \cdot b)) \cdot b = 0;

3. a \cdot a = 0;

4. a \cdot b = 0 and b \cdot a = 0 \Rightarrow a = b;

5. 0 \cdot a = 0.
```

In a BCK-algebra $(A, \cdot, 0)$, we define a partial order relation (\leq) by $a \leq b$ if and only if $a \cdot b = 0$. From the definition of BCK-algebras we can get the following properties very easily see [4, Proposition 5.1.3].

Proposition 2.2. In a BCK-algebra A, the following statements are true for all $a, b, c \in A$:

```
1. a \cdot 0 = a;

2. a \cdot b \le a;

3. (a \cdot b) \cdot c = (a \cdot c) \cdot b;

4. a \le b \Rightarrow a \cdot c \le b \cdot c and c \cdot b \le c \cdot a;

5. a \cdot (a \cdot (a \cdot b)) = a \cdot b.
```

Definition 2.3 ([4, 3]). A nonempty subset I of a BCK-algebra $(A, \cdot, 0)$ is called an ideal of A if the following two conditions are satisfied:

```
1. 0 \in I.
```

2. For all $a \in A$ and for all $b \in I$. If $a \cdot b \in I$, then $a \in I$.

If there is an element 1 of A satisfying $x \le 1$, for all $a \in A$, then the element 1 is called unit of A. A BCK-algebra with unit is called a bounded BCK-algebra [4].

Definition 2.4 ([15]). A BCK-algebra $(A, \cdot, 0)$ is called negative implicative if $a \cdot (b \cdot c) = (a \cdot b) \cdot (a \cdot c)$ for all $a, b, c \in A$.

Definition 2.5 ([1]). A BCK-algebra A equipped with a topology Ω is called a topological BCK-algebra (for short TBCK-algebra) if $f: A \times A \to A$ defined by $f(x,y) = x \cdot y$ is continuous for all $(x,y) \in A \times A$ where $A \times A$ has the product topology. Equivalently, for each open set O containing $x \cdot y$, there exist open sets U and V containing x and y respectively such that $U \cdot V \subseteq O$.

Definition 2.6 ([4]). Let A be a BCK-algebra and $a \in A$ be a fixed element. The right map $R_a : A \to A$ is a map defined by $R_a(x) = x \star a$ for all $x \in A$.

Definition 2.7 ([11]). A BCK-algebra A equipped with a topology Ω is called a topological BCK-algebra (for short TBCK-algebra) if the operation $\cdot := f : A \times A \to A$ is topologically continuous i.e., the inverse image $f^{-1}(O)$ of each open set O containing $x \cdot y$ is open in the product space $A \times A$.

Lemma 2.8 ([1]). In a TBCK-algebra A,

- 1. If $\{0\}$ is open, then A is discrete.
- 2. $\{0\}$ is closed if and only if A is T_2 .

3. (i, j)-topological BCK-algebras

In this section we introduce the concept of (i,j)-topological BCK-algebras (where $i,j=1,2, i \neq j$) and establish some of its properties. First, we introduce the following definitions:

Definition 3.1. A function $f: (A, \Omega_1, \Omega_2) \to (A, \Omega_1, \Omega_2)$ is called (i,j)-continuous at an element $x \in A$ if for every Ω_j -open set U containing f(x), there exists a Ω_i -open set V containing x such that $f(V) \subseteq U$. f is said to be (i,j)-open if the image of each Ω_j -open set is Ω_i -open. It is called (i,j)-homoeomorphism if it is a bijection, (i,j)-continuous and (i,j)-open.

Definition 3.2. Let (A, Ω_1, Ω_2) be a bi-topological space. A function $f: A \times A \to A$ defined by $f(x,y) = x \times y$ for all $x, y \in A$ is called (i,j)-continuous if for each Ω_j -open set G containing $X \times y$, there exist two Ω_i -open sets G and G containing G and G containing G and G containing G and G is open in the product space G for G is open set G.

Definition 3.3. A BCK-algebra A equipped with two topologies Ω_1 , Ω_2 is called a (i,j)-topological BCK-algebra (for short (i,j)-BCK-algebra) if $f: A \times A \to A$ defined by $f(x,y) = x \cdot y$ is (i,j)-continuous for all $x,y \in A$ and $i,j \in \{1,2\}$.

The following example shows that a (i,j)-BCK-algebra may not be either Ω_i -BCK-algebra or Ω_j -BCK-algebra.

Example 3.4. Let $A = \{0, a, b, c\}$ and \cdot be defined as in the following Cayley diagram:

*	0	a	b	С
0	0	0	0	0
a	a	0	0	a
b	b	b	0	b
С	С	С	С	0

Table 1: A (i, j)-BCK-algebra which is not $\Omega_{i}\text{-BCK-algebra}.$

Then it can be easily checked that $(A, 0, \cdot)$ is a BCK-algebra. Consider the topology

$$\Omega_1 = \{\phi, \{0\}, \{\alpha, b\}, \{c\}, \{0, c\}, \{\alpha, b, c\}, \{0, \alpha, b\}, A\}, \text{ and } \Omega_2 = \{\phi, \{0, \alpha, b\}, A\}.$$

Then A is a (1,2)-BCK-algebra which is neither Ω_1 -BCK-algebra nor Ω_2 -BCK-algebra.

In Example 3.4, suppose that $\Omega_1 = \{\phi, \{0, \alpha\}, \{b\}, \{c\}, \{b, c\}, \{0, \alpha, b\}, \{0, \alpha, c\}, A\}$ and $\Omega_2 = \{\phi, \{\alpha\}, \{0, b, c\}, A\}$. Then A is both a Ω_1 -BCK-algebra and a Ω_2 -BCK-algebra. But it is not a (1, 2)-BCK-algebra because $a \cdot c = a$ and $\{0, \alpha\} \cdot \{c\} \not\subseteq \{\alpha\}$. Also, it is not a (2, 1)-BCK-algebra because $b \cdot c = b$ and $\{0, b, c\} \cdot \{0, b, c\} \not\subseteq \{b\}$. The proof of the following theorem follows directly from Definition 3.3.

Theorem 3.5. A BCK-algebra A is an (i,j)-BCK-algebra if and only if for all $x.y \in A$ and every Ω_j -open set G containing $x \cdot y$, there exist Ω_i -open sets U and V containing x and y respectively such that $U \cdot V \subseteq G$.

Proposition 3.6. *In any* (i,j)-BCK-algebra A. If $\{0\}$ is Ω_i -open, then (A,Ω_i) is a discrete space.

Proof. For every $x \in A$, we have $x \cdot x = 0$ and hence, there exist some Ω_i -open set U and V containing x such that $U \cdot V = \{0\}$ because $\{0\}$ is Ω_j -open. Let $O = U \cap V$. Then O is a Ω_i -open sets and $O \cdot O = \{0\}$. This implies that $O = \{x\}$. Therefore, (A, Ω_i) is a discrete space.

Proposition 3.7. *In any* (i,j)-BCK-algebra A. If $\{0\}$ is Ω_i -closed, then (A,Ω_i) is a Hausdorff space.

Proof. Let x and y be any two distinct points in A. Then either $x \cdot y \neq 0$ or $y \cdot x \neq 0$. Suppose $x \cdot y \neq 0$, Then $x \cdot y \in A \setminus \{0\}$ and by hypothesis $A \setminus \{0\}$ is Ω_j -open, so there exist some Ω_i -open sets U and V containing x and y respectively such that $U \cdot V = \subseteq A \setminus \{0\}$. Obviously, $U \cap V = \varphi$ because if there exists some $c \in U \cap V$, then we get $0 = c \cdot c \subseteq A \setminus \{0\}$ which is contradiction. Thus, (A, Ω_i) is a Hausdorff space.

Corollary 3.8. If A is a finite (i,j)-BCK-algebra and $\{0\} \in \Omega_i \cup (\Omega_i)^c$, then (A,Ω_i) is a discrete space.

Proof. The proof follows from Propositions 3.6, 3.7 and the fact that a finite Hausdorff space is discrete. \Box

Proposition 3.9. Let A be a BCK-ideal of an (i,j)-BCK-algebra A. If $0 \in Int_i(A)$, then A is Ω_i -open.

Proof. For every $x \in A$, we have $x \cdot x = 0$ and since $0 \in Int_j(A)$, so there exists a Ω_j -open set U such that $x \cdot x = 0 \in U \subseteq A$. Since A is a (i,j)-BCK-algebra, there exist Ω_i -open sets V and W of x such that $V \cdot W \subseteq U \subseteq A$. Now for each $y \in V$, we have $x \cdot y \in A$ and since $x \in A$, so $y \in A$ because A is a BCK-ideal implies $x \in V \subseteq A$. Hence, A is Ω_i -open.

Proposition 3.10. *If* I *is a* Ω_j -*open BCK-ideal of an* (i,j)- *BCK-algebra* A, *then* I *is also* Ω_i -*closed.*

Proof. Suppose I is an Ω_j -open BCK-ideal of a (i,j)- BCK-algebra A. Let $x \in A \setminus I$. Since I is a BCK-ideal of A, so $x \cdot x = 0 \in I$. By Theorem 3.5, there exists a Ω_i -open set U(x) such that $U(x) \cdot U(x) \subseteq I$. We claim that $U(x) \subseteq A \setminus I$. If not, then $U(x) \cap I \neq \emptyset$. Then there exists $y \in U(x) \cap I$. Hence, for all $z \in U(x)$, we have $z \cdot y \in U(x) \cdot U(x) \subseteq I$. Since $y \in I$ and I is a BCK-ideal, so $z \in I$. Hence, $U(x) \subseteq I$ which implies that $x \in I$, a contradiction. Therefore, $A \setminus I$ is Ω_i -open. Thus, I is Ω_i -closed in A.

From Proposition 3.9 and Proposition 3.10, we obtain the following result.

Corollary 3.11. If I is a Ω_i -open BCK-ideal of a (i,j)- BCK-algebra A, then I is Ω_i -clopen.

Proposition 3.12. For any subsets S, R of an (i,j)-BCK-algebra A, the following statements are true:

- 1. $Cl_i(S) \cdot Cl_i(R) \subseteq Cl_i(S \cdot R)$.
- 2. If either $Cl_i(S) \cdot Cl_i(R)$ or $S \cdot R$ is Ω_i -closed, then the equality holds.

Proof. (1) Let $y = a \cdot b \in Cl_i(S) \cdot Cl_i(R)$ where $a \in Cl_i(S)$, $b \in Cl_i(R)$ and let U be any Ω_j -open set containing y. Since A is a (i,j)-BCK-algebra, so there exist Ω_i -open sets V and W containing a and b respectively such that $V \cdot W \subseteq U$. Also we have $a \in Cl_i(S)$ implies that $S \cap V \neq \varphi$ and $b \in Cl_i(R)$ implies that $R \cap W \neq \varphi$. Suppose that $a_1 \in S \cap V$ and $b_1 \in R \cap W$ implies that $a_1 \cdot b_1 \in V \cdot W$ and hence $a_1 \cdot b_1 \in U$. Also, $a_1 \cdot b_1 \in S \cdot R$ implies that $S \cdot R \cap U \neq \varphi$. Thus, $y \in Cl_j(S \cdot R)$ which implies that $Cl_i(S) \cdot Cl_i(R) \subseteq Cl_j(S \cdot R)$.

(2) Suppose that $Cl_i(S) \cdot Cl_i(R)$ is Ω_i -closed, then obviously $S \cdot R \subseteq Cl_i(S) \cdot Cl_i(R)$ and hence

$$Cl_i(S \cdot R) \subseteq Cl_i(Cl_i(S) \cdot Cl_i(R)) = Cl_i(S) \cdot Cl_i(R).$$

Hence, by (1) we get the result. The other case is obvious.

Definition 3.13. Let A be a BCK-algebra and let $a \in A$, then we define the subset κ_a of A as follows:

$$\kappa_{\alpha} = \{ x \in A : x = \alpha \cdot (\alpha \cdot x) \}.$$

Example 3.14. let $A = \{0, 1, 2, 3, 4\}$ and let the operation \cdot be given by Table 2. Then $(A, \cdot, 0)$ is a BCK-

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	0	0	0
2	2	1	0	0	0
3	3	1	1	0	0
4	4	3	2	1	0

Table 2: κ_x subsets of a BCK-algebra.

algebra (see [4, Example 5.1.12]). Also, we have $\kappa_0 = \{0\}$, $\kappa_1 = \{0,1\}$, $\kappa_2 = \{0,1,2\}$, $\kappa_3 = \{0,1,3\}$ and $\kappa_4 = A$.

Proposition 3.15. *The following statements are true:*

- 1. $\alpha, 0 \in \kappa_{\alpha}$ for all $\alpha \in A$.
- 2. $\kappa_0 = \{0\} \ \kappa_0 \subseteq \kappa_\alpha \text{ for all } \alpha \in A.$
- 3. $b \in \kappa_a$ if and only if $b \cdot (b \cdot a) = a \cdot (a \cdot b) = b$.
- 4. If $b \in \kappa_a$, then $\kappa_b \subseteq \kappa_a$.
- 5. If $b \in \kappa_a$ and $a \in \kappa_b$, then a = b.
- 6. If $c \in \kappa_a \cap \kappa_b$, then $\kappa_c \subseteq \kappa_a \cap \kappa_b$.

Proof. (1) and (2) are obvious.

(3) Let $b \in \kappa_a$, then by definition $a \cdot (a \cdot b) = b$. Now,

$$b \cdot (b \cdot a) = b \cdot ((a \cdot (a \cdot b)) \cdot a) = b \cdot ((a \cdot a)(a \cdot b)) = b \cdot 0 = b.$$

The converse part is obvious.

- (4) Let $b \in \kappa_{\alpha}$, then by (3), $b \cdot (b \cdot a) = a \cdot (a \cdot b) = b$. Suppose that $c \in \kappa_b$, then $b \cdot (b \cdot c) = c \cdot (c \cdot b) = c$. Now $c = b \cdot (b \cdot c) = [a \cdot (a \cdot b)][(a \cdot (a \cdot b)) \cdot c] = [a \cdot (a \cdot b)][(a \cdot c)(a \cdot b)] \leqslant a \cdot (a \cdot c)$. Hence, $c \leqslant a \cdot (a \cdot c)$. Also, we have $(a \cdot (a \cdot c)) \cdot c = (a \cdot c)(a \cdot c) = 0$, so $a \cdot (a \cdot c) \leqslant c$. Therefore, $a \cdot (a \cdot c) = c$ implies that $c \in \kappa_a$ and thus $\kappa_b \subseteq \kappa_a$.
- (5) If $b \in \kappa_a$ and $a \in \kappa_b$, then we have $a \cdot (a \cdot b) = b$ and $b \cdot (b \cdot a) = a$. From (3), we have $b \cdot (b \cdot a) = a \cdot (a \cdot b)$, so a = b.

(6) Follows from (5).
$$\Box$$

Proposition 3.16. Let A be a BCK-algebra and let $\mathcal{B} = \{\kappa_x : x \in A\}$. Then \mathcal{B} forms a base for a topology on A. This topology is denoted by Ω_{κ} .

Proof. Since $x \in \kappa_x$ for all $x \in A$, so $A = \bigcup_{x \in A} \kappa_x$ and from Proposition 3.15 (6), we have if $c \in \kappa_a \cap \kappa_b$, then $\kappa_c \subseteq \kappa_a \cap \kappa_b$. Hence, \mathcal{B} forms a base for a topology on A.

Proposition 3.17. *The space* (A, Ω_{κ}) *is a* T_0 *-space.*

Proof. Let a, b be any two distinct points in A. Then by Proposition 3.15 (5), either $a \notin \kappa_b$ or $b \notin \kappa_a$. Therefore, (A, Ω_{κ}) is T_0 .

Proposition 3.18. Let (A, Ω_1, Ω_2) be an (i, j)-BCK-algebra and $\alpha \in A$. If κ_{α} is Ω_j -open, then the following statements are true:

- 1. For each $x \in \kappa_a$ there exist Ω_i -open sets U and V containing a and $a \cdot x$ respectively such that $U \cdot V \subseteq \kappa_a$.
- 2. For each $x \in A$, there exists a Ω_i -open set U containing x such that $U \cdot U \subseteq \kappa_\alpha$.
- 3. There exist Ω_i -open sets U and V containing α and 0, respectively, such that $U \cdot V \subseteq \kappa_{\alpha}$.
- 4. There exist Ω_i -open sets U and V containing 0 and α , respectively, such that $U \cdot V \subseteq \kappa_{\alpha}$.

Proof. (1) For each $x \in \kappa_{\mathfrak{a}}$, we have $\mathfrak{a} \cdot (\mathfrak{a} \cdot x) = x \in \kappa_{\mathfrak{a}}$. Since $\kappa_{\mathfrak{a}}$ is $\Omega_{\mathfrak{j}}$ -open and A is $(\mathfrak{i},\mathfrak{j})$ -BCK-algebra, the result follows.

- (2) Follows from the fact that $x \cdot x = 0 \in \kappa_{\alpha}$.
- (3) Follows from the fact that $a \cdot 0 = a \in \kappa_a$.
- (4) Follows from the fact that $0 \cdot a = 0 \in \kappa_a$.

Theorem 3.19. Let (A, Ω_1, Ω_2) be a (i, j)-BCK-algebra satisfying the condition that $y = x \cdot (x \cdot y)$ for all distinct points $x, y \in A$ and $x \neq 0$, then for any $0 \neq \alpha \in S$ and $S, R \subseteq A$ the following statements are true:

- 1. $a \cdot Cl_i(R) \subseteq Cl_j(a \cdot R)$.
- 2. $a \cdot Cl_{i}(R) \supseteq Cl_{i}(a \cdot R)$.
- 3. $a \cdot Int_i(R) \subseteq Int_i(a \cdot R)$.
- 4. $a \cdot Int_i(R) \supseteq Int_i(a \cdot R)$.
- 5. $S \cdot Int_i(R) \subseteq Int_i(S \cdot R)$.
- Proof. 1. Let $y \in a \cdot Cl_i(R)$, then $y = a \cdot b$ where $b \in Cl_i(R)$ and let $U \in \Omega_j$ with $y = a \cdot b \in U$. Since (A, Ω_1, Ω_2) is a (i, j)-BCK-algebra, then there exists $V \in \Omega_i$ with $b \in V$ and $a \cdot V \subseteq U$. Since $b \in Cl_i(R)$, so there is $c \in R \cap V$, thus $a \cdot c \in a \cdot V \subseteq U$. Therefore, $a \cdot c \in (a \cdot R) \cap U$ which implies $y = a \cdot b \in Cl_i(a \cdot R)$. Hence, $a \cdot Cl_i(R) \subseteq Cl_i(a \cdot R)$.
 - 2. Let $c \in Cl_i(\alpha \cdot R)$ we have to show that $c \in \alpha \cdot Cl_j(R)$. Let $u \in \Omega_j$ containing $\alpha \cdot c$. As A is (i,j)-BCK-algebra, so there exists a Ω_i -open set H containing c such that $\alpha \cdot H \subseteq U$. Since $c \in Cl_i(\alpha \cdot R)$, so $(\alpha \cdot R) \cap H \neq \varphi$. Let $\alpha \cdot z \in (\alpha \cdot R) \cap H$, then $(\alpha \cdot z) \in H$ implies that $z = \alpha \cdot (\alpha \cdot z) \in \alpha \cdot H \subseteq U$. Therefore, we obtain that $R \cap u \neq \varphi$. Hence $a \cdot c \in Cl_j(R)$ which implies that $c \in \alpha \cdot Cl_j(R)$. Therefore, $Cl_i(\alpha \cdot R) \subseteq \alpha \cdot Cl_j(R)$.
 - 3. Let $a \cdot b \in a \cdot Int_j(R)$, then there is an Ω_j -open set O such that $b \in O \subseteq R$. Since $b = a \cdot (a \cdot b) \in O$ and O is Ω_j -open, there is a Ω_i -open set V with $a \cdot b \in V$ and $a \cdot V \subseteq O$. By hypothesis, we have $V = a \cdot (a \cdot V)$, so $V \subseteq a \cdot O$. Thus, $a \cdot b \in V \subseteq a \cdot O \subseteq a \cdot R$. Therefore, $a \cdot b \in Int_i(a \cdot R)$ and hence, $a \cdot Int_j(R) \subseteq Int_i(a \cdot R)$.
 - 4. Let $c \in Int_j(\alpha \cdot R)$, then there is a Ω_j -open set O such that $c \in O \subseteq \alpha \cdot R$, so we can write $c = \alpha \cdot x \in O \subseteq \alpha \cdot R$. Since A is (i,j)-BCK-algebra, then there is a Ω_i -open set V containing x such that $\alpha \cdot V \subseteq O$. Therefore, $x \in V \subseteq \alpha \cdot O \subseteq R$. Hence, $x \in Int_i(R)$ implies that $c \in \alpha \cdot Int_i(R)$. Thus, $\alpha \cdot Int_i(R) \supseteq Int_i(\alpha \cdot R)$.
 - 5. Let $0 \neq \alpha \in S$, then by (2), $\alpha \cdot Int_j(R) \subseteq Int_i(\alpha \cdot R) \subseteq Int_i(S \cdot R)$. Hence, $S \cdot Int_j(R) = \bigcup_{\alpha \in S} (\alpha \cdot Int_j(R)) \subseteq \bigcup_{\alpha \in S} Int_i(\alpha \cdot R) \subseteq Int_i(S \cdot R)$.

Corollary 3.20. Let (A, Ω_1, Ω_2) be a (i, j)-BCK-algebra $a \in A$, then the following statements are true:

- 1. $a \cdot Cl_i(\kappa_a) \subseteq Cl_i(a \cdot \kappa_a)$.
- 2. $a \cdot Cl_i(\kappa_a) \supseteq Cl_i(a \cdot \kappa_a)$.
- 3. $a \cdot \operatorname{Int}_{j}(\kappa_{a}) \subseteq \operatorname{Int}_{i}(a \cdot \kappa_{a})$.
- 4. $a \cdot \operatorname{Int}_{i}(\kappa_{a}) \supseteq \operatorname{Int}_{i}(a \cdot \kappa_{a})$.

Proof. Follows from that fact that $a \cdot (a \cdot x) = x$ for all $x \in \kappa_a$. Thus in Theorem 3.19, if we replace κ_a instead of R the result follows.

Theorem 3.21. Let (A, Ω_1, Ω_2) be a (i, j)-BCK-algebra and let $\alpha \in A$. If $R \subseteq A$ satisfying the condition $\alpha = (\alpha \cdot \alpha) \cdot \alpha$ for all $\alpha \in R$, then the following statements are true:

- 1. $Cl_i(R) \cdot \alpha \subseteq Cl_i(R \cdot \alpha)$.
- 2. $Cl_i(R \cdot a) \supseteq Cl_i(R) \cdot a$.
- 3. $Int_i(R) \cdot a \subseteq Int_i(R \cdot a)$.
- 4. $Int_i(R) \cdot a \supseteq Int_i(R \cdot a)$.
- 5. If the condition is true for all $a \in A$, then $Int_i(R) \cdot A \subseteq Int_i(R \cdot A)$.
- Proof. 1. Let $y \in Cl_i(R) \cdot \alpha$, then $y = b \cdot \alpha$ where $b \in Cl_i(R)$ and let $U \in \Omega_j$ with $y = b \cdot \alpha \in U$. Since (A, Ω_1, Ω_2) is a (i, j)-BCK-algebra, then there exists $V \in \Omega_i$ with $b \in V$ and $V \cdot \alpha \subseteq U$. Since $b \in Cl_i(R)$, so there is $c \in R \cap V$, thus $c \cdot \alpha \in V \cdot \alpha \subseteq U$. Therefore, $c \cdot \alpha \in (R \cdot \alpha) \cap U$ which implies $y = b \cdot \alpha \in Cl_i(R \cdot \alpha)$. Hence, $Cl_i(R) \cdot \alpha \subseteq Cl_i(R \cdot \alpha)$.
 - 2. Let $c \in Cl_i(R \cdot \alpha)$ we have to show that $c \cdot \alpha \in Cl_j(R)$. Let $U \in \Omega_j$ containing $c \cdot \alpha$. As A is (i,j)-BCK-algebra, so there exists a Ω_i -open set H containing c such that $H \cdot \alpha \subseteq U$. Since $c \in Cl_i(R \cdot \alpha)$, so $(R \cdot \alpha) \cap H \neq \varphi$. Let $z \cdot \alpha \in (R \cdot \alpha) \cap H$, then $(z \cdot \alpha) \in H$ implies that $z = (z \cdot \alpha) \cdot \alpha \in H \cdot \alpha \subseteq U$. Therefore, we obtain that $R \cap U \neq \varphi$. Hence $c \cdot \alpha \in Cl_j(R)$ which implies that $c \in Cl_j(R) \cdot \alpha$. Therefore, $Cl_i(R \cdot \alpha) \subseteq Cl_j(R) \cdot \alpha$.
 - 3. Let $b \cdot a \in Int_j(R) \cdot a$, then there is an Ω_j -open set O such that $b \in O \subseteq R$. Since $b = (b \cdot a) \cdot a \in O$ and O is Ω_j -open, there is a Ω_i -open set V with $a \cdot b \in V$ and $a \cdot V \subseteq O$. By hypothesis, we have $V = (V \cdot a) \cdot a$, so $V \subseteq O \cdot a$. Thus, $b \cdot a \in V \subseteq O \cdot a \subseteq R \cdot a$. Therefore, $b \cdot a \in Int_i(R \cdot a)$ and hence, $Int_j(R) \cdot a \subseteq Int_i(R \cdot a)$.
 - 4. Let $c \in Int_j(R \cdot a)$, then there is a Ω_j -open set O such that $c \in O \subseteq R \cdot a$, so we can write $c = x \cdot a \in O \subseteq R \cdot a$ where $x \in R$. Since A is (i,j)-BCK-algebra, then there is a Ω_i -open set V containing x such that $V \cdot a \subseteq O$. Therefore, $x \in V \subseteq O \cdot a \subseteq R$. Hence, $x \in Int_i(R)$ implies that $c \in Int_i(R) \cdot a$. Thus, $Int_i(R) \cdot a \supseteq Int_i(R \cdot a)$.
 - 5. Let $a \in A$, then by (2), $Int_i(R) \cdot a \subseteq Int_i(R \cdot a) \subseteq Int_i(R \cdot A)$. Hence,

$$Int_{j}(R)\cdot A=\bigcup_{\alpha\in A}(Int_{j}(R)\cdot \alpha)\subseteq\bigcup_{\alpha\in A}Int_{i}(R\cdot \alpha)\subseteq Int_{i}(R\cdot A).$$

Corollary 3.22. Let (A, Ω_1, Ω_2) be a (i, j)-BCK-algebra satisfying the condition that $y = x \cdot (x \cdot y)$ for all distinct points $x, y \in A$ and $x \neq 0$, then for any $0 \neq \alpha \in A$ and $A, R \subseteq A$ the following statements are true:

- 1. If R is Ω_i -closed, then $a \cdot R$ is Ω_i -closed.
- 2. If R is Ω_i -open, then $A \cdot R$ is Ω_i -open.

Proof. The proof follows from Theorem 3.19.

Corollary 3.23. Let (A, Ω_1, Ω_2) be a (i,j)-BCK-algebra and let $\alpha \in A$. If $R \subseteq A$ satisfying the condition $\alpha = (\alpha \cdot \alpha) \cdot \alpha$ for all $\alpha \in R$, then the following statements are true:

- 1. If R is Ω_i -closed, then $R \cdot a$ is Ω_i -closed.
- 2. If If R is Ω_i -open, then R · A is Ω_i -open.

Proof. The proof follows from Theorem 3.21.

Theorem 3.24. Let (A, Ω_1, Ω_2) be a (i,j)-BCK-algebra and let $\alpha \in A$. If $R \subseteq A$ satisfying the condition that $\alpha = \alpha \cdot (\alpha \cdot \alpha)$ for all $\alpha \in A$, then the following statements are true:

- 1. The left map $l_a : A \to A$ defined by $l_a(x) = a \cdot x$, is an (i,j)-homeomorphism of A onto A.
- 2. For any elements x, y in A such that $y = a \cdot x$, there exists an (i,j)-homeomorphism f of A onto itself such that f(y) = x.

- Proof. 1. Let x, y ∈ A and $l_α(x) = l_α(y)$, then α · x = α · y implies that α · (α · x) = α · (α · y) and hence x = y. Therefore, $l_α$ is one-to-one. For every x ∈ A, α · x ∈ A, thus $l_α(α \cdot x) = α \cdot (α \cdot x) = x$. Hence $l_α$ is onto. Let O be a $Ω_j$ -open set, then $l_α(O) = α \cdot O$. By Theorem 3.19 (3), α · O is $Ω_i$ -open. Hence $l_α$ is (i, j)-open. Let x ∈ A and O be any $Ω_j$ -open set containing $l_α(x)$, then by Theorem 3.19 (3), α · O is $Ω_i$ -open. Since $l_α(x) = α \cdot x ∈ O$. Hence, $x ∈ α \cdot O$ and $l_α(α \cdot O) ⊆ O$. Hence, $l_α$ is (i, j)-continuous. Thus, $l_α$ is an (i, j)-homeomorphism.
 - 2. Let $x, y \in A$, then the function $f = l_a : A \to A$ is (i, j)-homeomorphism, and

$$l_{\alpha}(y) = (\alpha \cdot y) = \alpha \cdot (\alpha \cdot x) = x.$$

Theorem 3.25. Let (A, Ω_1, Ω_2) be a (i,j)-BCK-algebra and let $\alpha \in A$. If $R \subseteq A$ satisfying the condition $\alpha = (\alpha \cdot \alpha) \cdot \alpha$ for all $\alpha \in A$, then the following statements are true:

- 1. The right map $r_a : A \to A$ defined by $r_a(x) = x \cdot a$, is an (i,j)-homeomorphism of A onto A.
- 2. For every element $x \in A$, there exists a (i,j)-homeomorphism f of A onto itself such that f(a) = x.
- Proof. 1. Let $x,y \in A$ and $r_\alpha(x) = r_\alpha(y)$, then $x \cdot \alpha = y \cdot \alpha$ implies that $(x \cdot \alpha) \cdot \alpha = (y \cdot \alpha) \cdot \alpha \cdot \alpha$ and hence x = y. Therefore, r_α is one-to-one. For every $x \in A$, $x \cdot \alpha \in A$, thus $r_\alpha(x \cdot \alpha) = (x \cdot \alpha) \cdot \alpha = x$. Hence r_α is onto. To prove that r_α is (i,j)-open, let O be a Ω_j -open set in A, then $r_\alpha(O) = O \cdot \alpha$. By Theorem 3.21 (3), O · α is Ω_i -open. Hence r_α is (i,j)-open. Let $x \in A$ and let O be any Ω_j -open set containing $l_\alpha(x)$, then by Theorem 3.21 (3), O · α is Ω_i -open. Since $l_\alpha(x) = x \cdot \alpha \in O$. Hence, $x \in O \cdot \alpha$ and $r_\alpha(\alpha \cdot O) \subseteq O$. Hence, r_α is (i,j)-continuous. Thus, r_α is an (i,j)-homeomorphism.
 - 2. Let $x \in A$, we define $f = r_{x \cdot a} : A \to A$ as above, then $r_{x \cdot a}$ is (i, j)-homeomorphism, and $r_{x \cdot a}(a) = (x \cdot a) \cdot a = x$.

Theorem 3.26. Let (A, Ω_1, Ω_2) be an (i, j)-BCK-algebra and let S be a BCK-subalgebra satisfying the condition $y = x \cdot (x \cdot y)$ for all $x, y \in S$. If S is Ω_i -open, then $Int_i(S)$ is also a BCK-subalgebra.

Proof. Let $x,y \in Int_i(S)$, then by hypothesis, S is a Ω_j -open set containing y. Since S is closed under the operation (\cdot) , so $(x) \cdot S \subseteq S$. Hence, by Theorem 3.19 (3), $x \cdot S$ is Ω_i -open and $x \cdot y \in x \cdot S \subseteq S$. Hence, $x \cdot y \in Int_i(S)$. Therefore, $Int_i(S)$ is closed under the operation (\cdot) .

Proposition 3.27. *If* (A, Ω_1, Ω_2) *is a negative implicative BCK-algebra. If* S *is a BCK-subalgebra, then* $x \cdot S$ *is also a BCK-subalgebra.*

Proof. Let $x \cdot a, x \cdot b \in (x \cdot S)$, then obviously, $a, b \in S$ and since S is closed, so $a \cdot b \in S$. Therefore, $x \cdot (a \cdot b) \in x \cdot S$. Hence, by hypothesis, $x \cdot (a \cdot b) = (x \cdot a) \cdot (x \cdot b) \in x \cdot S$. Thus $x \cdot S$ is also a BCK-subalgebra.

Proposition 3.28. *Let* A *be an* (i,j)*BCK-algebra and* $\phi \neq W \in \Omega_i$ *, then the following statements are true:*

- 1. If $x \in W$, then there exists a Ω_i -open set U containing 0 such that $x \cdot U \subseteq W$.
- 2. If $0 \in W$, then there exists a Ω_i -open set U containing x such that $U \cdot U \subseteq W$.
- 3. If $0 \in W$, then there exist two Ω_i -open sets U and V containing 0 and x respectively such that $(U \cdot V) \subseteq W$.
- 4. If $0 \in W$, then for each $x, y \in A$ there exist two a Ω_i -open sets U and V containing $y \cdot x$ and y respectively such that $U \cdot V \subseteq W$.

Proof. 1. Obvious.

2. Let $0 \in W$ and $x \in A$. Since $x \cdot x = 0 \in W$ and A is (i,j)-BCK-algebra, then there exist two Ω_i -open sets G and H containing x such that $G \cdot H \subseteq W$. Suppose that $U = G \cap H$, then U is a Ω_i -open set containing x. Hence, $U \cdot U \subseteq W$.

- 3. Let $0 \in W$ and $x \in A$. Since $0 \cdot x = 0$, and A is (i,j)-BCK-algebra, then there exist Ω_i -open sets G, H containing 0 and A such that $G \cdot H \subseteq W$.
- 4. Let $0 \in W$ and $x, y \in A$. Since $x \cdot y \le x$ and A is (i, j)-BCK-algebra, then there exist a Ω_i -open set U containing $x \cdot y$, and a Ω_i -open set G containing X such that $U \cdot G \subseteq W$.

Proposition 3.29. Let A be an (i,j)-BCK-algebra and U_0 be the least Ω_i and Ω_j -open set containing 0. If $x \in U_0$, then U_0 is the least Ω_i -open set containing x.

Proof. Let $x \in U_0$ and N be any Ω_j -open in A which contains x. By Definition 2.1, we have $x \cdot 0 = x \in N$. By Theorem 3.5, there exist Ω_i -open sets N_x and N_0 such that $N_x \cdot N_0 \subseteq N$. Since N_0 is a Ω_i -open set containing 0, it follows from assumption and Proposition 2.2 that $0 = x \cdot x \in N_x \cdot U_0 \subseteq N_x \cdot N_0 \subseteq N$. Therefore, N is a Ω_j -open set containing 0. By assumption, we have $U_0 \subseteq N$. Hence, U_0 is the least Ω_j -open set containing A.

Proposition 3.30. *In every* (i,j)-*BCK-algebra* (A, Ω_1, Ω_2) , the following statements are true:

- 1. If (A, Ω_i) is T_0 , then (A, Ω_i) is T_1 .
- 2. If (A, Ω_i) is T_1 , then (A, Ω_i) is T_2 .
- 3. If (A, Ω_i) is T_2 , then (A, Ω_i) is T_0 .

Proof. (1): Suppose that (A, Ω_j) is T_0 and let $x, y \in A$ such that $x \neq y$. Thus we have either $x \cdot y \neq 0$ or $y \cdot x \neq 0$ without loss of generality, assume that $x \cdot y \neq 0$, so we have two cases:

Case 1: There exists a Ω_j -open set W containing $x \cdot y$ but not 0. Since A is (i,j)-BCK-algebra, then there exist two Ω_i -open sets U and V containing x and y respectively such that $U \cdot V \subseteq W$. Since $0 \notin W$ so that $0 \notin U \cdot V$. Hence, $y \notin U$ and $x \notin V$.

Case 2: There exists Ω_j -open W containing 0 but not $x \cdot y$. Since $x \cdot x = 0$, $y \cdot y = 0$ and A is (i,j)-BCK-algebra, then by Proposition 3.28 there exists Ω_i -open set U containing x such that $U \cdot U \subseteq W$. Also, there exists Ω_i -open set V containing y such that $V \cdot V \subseteq W$. Obviously, $y \notin U$ and $x \notin V$. Therefore, (A, Ω_i) is T_1 .

(2): Suppose that (A, Ω_j) is T_1 then $\{0\}$ is Ω_j - closed. Therefore, by Proposition 3.7, (A, Ω_i) is T_2 . (3): Obvious.

The converse of the above proposition is not true in general, for this if we take Ω_i is a discrete space and Ω_i is any space which is not T_0 on a BCK-algebra A, then (A, Ω_1, Ω_2) is an (i, j)-BCK-algebra.

Proposition 3.31. Let A be an (i,j)-BCK-algebra and U_0 be the least Ω_i and Ω_j -open set containing 0. If $x \in U_0$, then U_0 is the least Ω_i -open set containing x.

Proof. Let $x \in U_0$ and N be any Ω_j -open in A which contains x. By Definition 2.1, we have $x \cdot 0 = x \in N$. By Theorem 3.5, there exist Ω_i -open sets N_x and N_0 such that $N_x \cdot N_0 \subseteq N$. Since N_0 is a Ω_i -open set containing 0, it follows from assumption and Proposition 2.2 that $0 = x \cdot x \in N_x \cdot U_0 \subseteq N_x \cdot N_0 \subseteq N$. Therefore, N is a Ω_j -open set containing 0. By assumption, we have $U_0 \subseteq N$. Hence, U_0 is the least Ω_j -open set containing x.

4. Conclusion

In this paper we extended the concept of topological BCK-algebra to a bitopological BCK-algebra. We proved some properties of this concept and gave illustrative examples when they are needed. Some relations linked with bitopological BCK-algebras to separation axioms and homeomorphisms are investigated.

References

- [1] R. A. Alo, E. Y. Deeba, Topologies of BCK-algebras, Math. Japon., 31 (1986), 841-853. 1, 2.5, 2.8
- [2] K. E. Belleza, J. P. Vilela, On B-ideals in a topological B-algebra and the uniform B-topological space, Eur. J. Pure Appl. Math., 13 (2020), 830–839. 1
- [3] R. A. Borzooei, M. Bakhshi, *The lattice structure of ideals of a BCK-algebra*, J. Mult.-Valued Logic Soft Comput., **18** (2012), 387–399. 2.3
- [4] A. Dvurečenskij, S. Pulmannová, New trends in quantum structures, Kluwer Academic Publishers, Dordrecht, (2000). 2, 2.3, 2, 2.6, 3.14
- [5] R. Engelking, General Topology, PWN-Polish Scientific Publishers, Warszawa, (1977). 1
- [6] N. C. Gonzaga, Analyzing Some Structural Properties of Topological B-Algebras, Int. J. Math. Math. Sci., 2019 (2019), 7 pages. 1
- [7] Y. Imai, K. Iséki, On axiom systems of propositional calculi. XIV, Proc. Japan Acad., 42 (1966), 19-22. 1
- [8] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 26-29. 1
- [9] Y. B. Jun, X. L. Xin, D. S. Lee, On Topological BCI-Algebras, Inform. Sci., 116 (1999), 253–261. 1
- [10] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. (3), 13 (1963), 71–89. 1
- [11] D. S. Lee, D. N. Ryu, Notes on topological BCK-algebras, Sci. Math., 1 (1998), 231–235. 1, 2.7
- [12] S. Mehrshad, J. Golzarpoor, On topological BE-algebras, Math. Morav., 21 (2017), 1–13. 1
- [13] J. Meng, Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, (1994). 2
- [14] A. Satirad, A. Iampan, Topological UP-algebras, Discuss. Math. Gen. Algebra Appl., 39 (2019), 231–250. 1
- [15] Q. Zhang, C. L. Mi, X. C. Wang, Y. H. Cui, Y. L. Zhang, Negative implicative BCK-algebras, Proceedings of Annual Conference of China Institute of Communications, 2010 (2010), 273–276. 2.4