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Abstract
In this paper, new iterative method is presented of fifth-order for solving non-linear equations f (x) = 0 a devoid of

the second derivative which requires two derivative functions and evaluations for each step, using both weight functions and
synthesis techniques together. This method improves Newton’s method and thus the efficiency index has been improved from
1.414 to 1.495. The convergence analysis for the new method is discussed. We provide some numerical examples that illustrate
the performance of our proposed method by comparing them with numerical methods of fifth-order also the complex dynamics
and basins of attraction is discussed, comparing it with several methods of the same order, thus comparisons show that new
method gives the best results.
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1. Introduction

Solving nonlinear equations f(x) = 0 was and still a considerable issue in numerical analysis. While
Newton’s method was the first attempt to solve such equation, which converges quadratically, in recent
years, researchers have developed Newton’s method to achieve higher convergence and more accurate
results as, see for example the method shown in [13] has the fourth order and was the first proposed
multi-point method of this order, method shown in [8] has fifth order, method shown in [10] has the
sixth order and method shown in [1] has eighth order and references therein. In this research, we are
interested to find iterative method for solving non-linear equations of order five where methods of this
order have been found in several researches as in [7, 8, 10, 11, 14]. These iterative methods have been
constructed by using different techniques for solving the non-linear equations such as the variational
iteration technique and weight function and etc. We have innovated a new fifth-order iterative method
using both weight function and synthesis techniques together, which contains four function evaluations
generally. Efficiency in this iterative method is measured with index I ≈ p

1
m , p shows the order of
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convergence and m represents the total number of functional evaluations per iteration. Therefore, this
new method has efficiency index defined by 5

1
4 = 1.495, it is better than 1.414 the efficiency index to

Newton’s method.
The rest in this paper arranged as follows. Section 2 displays a new fifth-order iterative method

construction. Section 2.1 analyses the convergence order for our supposed method. In Section 3 we discuss
and analyze the stability using techniques of complicated dynamics and the using them to compare
different methods in terms of attraction basins and the dynamical behavior for iterative method in the
complex plane, where compare the new iterative method with several iterative methods of order five.
Section 4 illustrates numerical examinations which improve the efficiency and performance of our new
supposed method, in the last section we have some conclusion about results.

2. Construction of the new method

We present a new method of two-step where the first step is Newton’s method and the second step is
a weight function W depending on K included. Thus the iterative expression is as follows:

yn = xn −
f (xn)

f′ (xn)
, xn+1 = xn −W (Kn)

f (yn)

f′ (xn) + f′ (yn)
, (2.1)

where W (K) =
AK+BK2

C+K
and K =

f′(y)
f′(x) . The above method (2.1) has convergence of fifth order and the

number of functional evaluations per iteration of four, thus efficiency index is 1.495.

2.1. Convergence analysis
The convergence analysis of the proposed method (2.1) will be discussed in the following theorem

where using program mathematica 11 to prove that closeness order is five.

Theorem 2.1. Consider that a is a simple root of the nonlinear equation and let f : D ⊂ R → R be a real
sufficiently differentiable function in an open interval D, a ∈ D. If x0 is close enough to a and the weight function

W (K) satisfies A =
4
3

,B = 0, and C = −
1
3

, then iterative method (2.1) converges to a with order of convergence
five and the error equation is:

en+1 = −c2
2c3e

5
n +O

(
e6
n

)
,

where en = xn − a and cj =
f(j) (a)

j!f′ (a)
, j > 2.

Proof. Let en = xn−a be the error at nth iteration. Expanding f (xn) and f′ (xn) about a, by using Taylor’s
method we get

f (xn) = f′(a)
[
en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n

]
+O

(
e6
n

)
(2.2)

and
f′ (xn) = f′(a)

[
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n + 6c6e

5
n

]
+O

(
e6
n

)
. (2.3)

Now from (2.2) and (2.3) we get

f (xn)

f′ (xn)
= en − c2e

2
n +

(
2c2

2 − 2c3
)
e3
n +

(
−4c3

2 + 7c2c3 − 3c4
)
e4
n

+
(
8c4

2 − 20c2
2c3 + 6c2

3 + 10c2c4 − 4c5
)
e5
n +O

(
e6
n

)
,

(2.4)

hence from the first step of (2.1) and (2.4) we have

yn − a = en −
f (xn)

f′ (xn)
= c2e

2
n +

(
−2c2

2 + 2c3
)
e3
n +

(
4c3

2 − 7c2c3 + 3c4
)
e4
n

+
(
−8c4

2 + 20c2
2c3 − 6c2

3 − 10c2c4 + 4c5
)
e5
n +O(e6

n),
(2.5)
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from (2.5), we obtain

f (yn) = c2e
2
n +

(
−2c2

2 + 2c3
)
e3
n +

(
5c3

2 − 7c2c3 + 3c4
)
e4
n − 2

(
6c4

2 − 12c2
2c3 + 3c2

3 + 5c2c4

− 2c5
)
e5
n +O(e6

n)
(2.6)

and

f′ (yn) = 1 + 2c2
2e

2
n −

(
4c3

2 − 4c2c3
)
e3
n +

(
8c4

2 − 11c2
2c3 + 6c2c4

)
e4
n − 2c2

(
8c4

2 − 14c2
2c3 + 10c2c4

− 4c5
)
e5
n +O(e6

n).
(2.7)

Expanding the weight function variable K, we get

K =
f′ (yn)

f′ (xn)
=1 − 2c2en +

(
6c2

2 − 3c3
)
e2
n − 4

(
4c3

2 − 4c2c3 + c4
)
e3
n +

(
40c4

2 − 61c2
2c3 + 9c2

3 + 22c2c4

− 5c5
)
e4
n +

(
−96c5

2 + 198c3
2c3 − 66c2c

2
3 + 24c3c4 − 88c2

2c4 + 28c2c5 − 6c6
)
e5
n +O(e6

n).

Therefore, weight function W (K) around zero results in

W(K) =
A+B

1 +C
−

2 (B+AC+ 2BC)

(1 +C)2 c2en +
1

(1 +C)3

[
(2AC (1 + 3C) + 2B (3 +C (9 + 8C))) c2

2

− 3 (1 +C) (B+AC+ 2BC) c3

]
e2
n +

1

(1 +C)4

[(
− 8AC2 (1 + 2C) − 8B

(
2 +C

(
8 +C

(
12

+ 7C
))))

C3
2 + 4 (1 +C) (AC (1 + 4C) +B (4 +C (12 + 11C))) c2c3 − 4 (1 +C)2 (B+AC

+ 2BC
)
c4
]
e3
n +

1
(1 +C)5

[
AC
(
4 (1 + 2C)

(
−1 + 5C2) c4

2 − (1 +C) (−3 +C (22 + 61C)) c2
2c3

+ 2 (1 +C)2 (3 + 11C) c2c4 + (1 +C)2 (9Cc2
3 − 5 (1 +C) c5

) )
+B

(
4
(
10 +C

(
50 +C

(
101

+ 3C (34 + 15C)
)))

c4
2 − (1 +C) (61 +C (244 + 3C (123 + 74C))) c2

2c3 + 2 (1 +C)2 (11

+ 33C+ 30C2)c2c4 + (1 +C)2 (9 (1 + 3C (1 +C)) c2
3 − 5 (1 +C) (1 + 2C) c5

) )]
e4
n +O(e5

n),

(2.8)

from (2.3), (2.6), and (2.7) we have

f (yn)

f′ (xn) + f′ (yn)
=

1
2
c2e

2
n −

(
3
2
c2

2 − c3

)
e3
n +

1
4
(
14c3

2 − 21c2c3 + 6c4
)
e4
n

−

(
7c4

2 −
35
2
c2

2c3 +
9
2
c2

3 +
15
2
c2c4 − 2c5

)
e5
n +O(e6

n).
(2.9)

Finally, from (2.8) and (2.9), the error equation of the method of (2.1) is

en+1 = yn − a−W(K)
f(yn)

f′(xn) + f′(yn)

=

(
1 −

(A+B)

2 (1 +C)

)
c2e

2
n +

1

2 (1 +C)2

[ (
−4 (1 +C)2 +A (3 + 5C) +B (5 + 7C)

)
c2

2

− 2 (1 +C) (A+B− 2 (1 +C)) c3
]
e3
n +

1

4 (1 +C)3

[(
16 (1 +C)3 − 2B (19 + 5C (10 + 7C))

− 2A
(
7 +C

(
22 + 19C

)))
c3

2 + 7 (1 +C)
(
− 4 (1 +C)2 +A (3 + 5C) +B (5 + 7C)

)
c2c3

− 6 (1 + c)2 (A+B− 2 (1 +C)
)
c4

]
e4
n +

1

2 (1 + c)4

[(
− 16 (1 +C)4 + 2A

(
7 +C

(
31 (2.10)

+C (51 + 31C)
))

+B
(
31 +C

(
117 +C (155 + 73C)

)))
c4

2 − (1 +C)
(
− 40 (1 +C)3
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+A (35 + 3C (36 + 31C)) +B (93 +C (244 + 171C))
)
c2

2c3 + 5 (1 +C)2 (− 4 (1 +C)2

+A (3 + 5C) +B (5 + 7C)
)
c2c4 + (1 +C)2

((
− 12 (1 +C)2 + 3A (3 + 5C) + 3B (5 + 7C)

)
c2

3

− 4 (1 +C) (A+B− 2 (1 +C)) c5

)]
e5
n +O(e6

n).

Hence from (2.10) the conditions on the weight function W are:

2 (1 +C) − (A+B) = 0
−4 (1 +C)2 +A (3 + 5C) +B (5 + 7C) = 0

16 (1 +C)3 − 2A (7 +C (22 + 19C)) − 2B (19 + 5C (10 + 7C)) = 0

 .

We solve this system by using maple 15 and we get the values of A,B, and C, where A =
4
3

, B = 0, and

C = −
1
3

. If we put these values into equation (2.10), we get the error equation of any method of (2.1) as

en+1 = −c2
2c3e

5
n +O

(
e6
n

)
.

If replacing the weight function W(K) =
4K

−1 + 3K
in (2.1), we get the iterative scheme

yn = xn −
f (xn)

f′ (xn)
, xn+1 = yn +

4f′ (yn)

f′ (xn) − 3f′ (yn)
· f (yn)

f′ (xn) + f′ (yn)
. (2.11)

We will denote our new method as AMK1, where it requires only four functional evaluations per step.

3. Basins of attraction on the complex plane

In this section dynamical behavior of iterative methods of fifth-order are studied for solving nonlinear
equation f (z) = 0, where the function f : C −→ C in a complicated plane. In 1879, the complex method
of Newton’s for the basins of attraction was first started by Cayley [12], where it was solved when f (z) is
a quadratic polynomial. The Newton’s method has been outspread to other iterative methods, with con-
vergence order higher than two (see, for example [3–6, 9]). The basins of attraction for methods are used
to make a visual comparison, this method had used first by Stewart in [12], where he compared Newton’s
method and several other methods of different order such as Popovski method, Halley’s method, and
Leguerre method by presenting the attraction basins of the zeros that had established by the iterative
methods. He noticed that the basins of attraction is a manner to visually understand how an iterative
method work as a function of the various beginning points thus the iterative method is better when it has
a bigger area of convergence. For comparisons, we will use four fifth-order known methods as described
below:
method (FLM) in [7]:

yn = xn −
f (xn)

f′ (xn)
, xn+1 = yn −

5f′
2
(xn) + 3f′

2
(yn)

f′
2 (xn) + 7f′2 (yn)

· f
(yn)

f′; (xn)
(3.1)

method (M2) in [10]:

yn = xn −
2
3
f (xn)

f′ (xn)
, zn = xn −

1
2
f (xn)

f′ (xn)
−

f (xn)

3f′ (yn) − f′ (xn)
, xn+1 = zn −

f (zn)

f′ (xn)
; (3.2)

method (SH3) in [14]:

yn = xn −
f (xn)

f′ (xn)
, zn = yn −

f (xn)

f′ (xn)
·
[

f (yn)

f (xn) − 2f (yn)

]
, xn+1 = zn −

f (zn)

f′ (xn)
; (3.3)



M. Q. Khirallah, Asma M. Alkhomsan, J. Math. Computer Sci., 28 (2023), 281–293 285

method (PJ) in [11]:

yn = xn −
f (xn)

f′ (xn)
, xn+1 = yn −

(
5
4
−

f′ (yn)

2f′ (xn)
+

f′
2
(yn)

4f′2 (xn)

)
· f

(yn)

f′ (yn)
. (3.4)

In the following we will give four different polynomial examples, with different degree and we draw
the attraction basins by using five methods (2.11), (3.1), (3.2), (3.3), and (3.4). We will construct them
using this strategy: we take square [−2, 2]× [−2, 2] ⊂ C and in Examples 3.4 and 3.6 we will compute
in the square [−3, 3]× [−3, 3] ⊂ C from 256× 256, in which it contains all roots of nonlinear equation
f(z) = 0, we will give different colors for those different roots, we put a color to point for every z0 ∈ D

and D ⊂ C according to the root in which has convergence the iterative method and a black colored
one to indicate non convergence for any of those roots, which started of z0 with conditions ε = 10−3

and 20 iterative in maximum. We notice the black colored dots in the picture means that the method
failed to find the solution under the conditions specified for convergence, such as the number of steps
and the fixed stopping criterion of error allowed in the solution. For that we will introduce comparison
of Examples 3.1-3.6 in Tables 1-6 for these iterative methods. The column I/P displays the average of
iterations per point until the method decides that a root has been reached or the point is not convergent,
where measured from iterations/point. The column NB displays the number of black points and it is
clear that nonconvergent points have a significant impact on I/P values, as these points always contribute
with the maximum number of iterations allowed. The column BI displays brightness indicator where the
higher the brightness the better. Finally, the column T displays the time it took to get to the solution.
Note that the graph with higher brightness will take less iteration. Thus, the results in those Tables 1-6
show that our suggested method AMK1 is the best. We have used Mathematica 11 to solve all examples
in complex plane.

Example 3.1. We consider the nonlinear equation

f1 (z) = z3 − 1.

This polynomial has three roots as {1,−0.5 − 0.866025i,−0.5 + 0.866025i}. In Figure 1 we plotted the fifth
order methods, as PJ in [11], FLM in [7], M2 in [10], SH3 in [14], and the new method AMK1. We compare
from where the number of black points NB, the brightness index BI, the time taken to reach the solution
T , the average of iterations per point until the method decides that a root has been reached I/P. In Figure
1 each basin was given a different color to indicate whether the method had converged to the closest root.
We have also used lighter shade when the number of iterations is lower and it means if the graph has
higher brightness it will take less iterations, thus we will rule that the method is the best. The methods
are listed in the Table 1 from worst to best.

Table 1: Comparison of different methods in complex plane in Example 3.1.

Method NB BI T I/P
PJ 1907 0.401867 19.64 3.84

FLM 588 0.404924 17.11 3.80
M2 254 0.417466 16.03 3.24
SH3 254 0.417466 15.76 3.24

AMK1 1 0.428942 11.56 2.43
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Figure 1: Basins of attraction to iterative methods for f1 (z) = z3 − 1.

Example 3.2. We consider the nonlinear equation

f2 (z) = z4 − 1.

It has four roots which are {−1,+1,−i,+i} through the results shown in Table 2 the new method AMK1
is comparable with all of the methods and gives the best results. Note that the order of the methods from
worst to best are listed in the Table 2. Figure 2 illustrates the basins of attraction for each root in this
example for all methods.

Table 2: Comparison of different methods in complex plane in Example 3.2.

Method NB BI T I/P
PJ 9561 0.387804 31.84 3.98

FLM 5833 0.410141 27.34 4.57
M2 3317 0.436208 23.89 3.87
SH3 3477 0.434614 23.13 3.91

AMK1 513 0.465024 14.95 3.11
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Figure 2: Basins of attraction to iterative methods for f1 (z) = z4 − 1.

Example 3.3. We consider the nonlinear equation

f3 (z) = z4 −
5
4
z2 +

1
4

.

The roots are {−1,+1,−0.5,+0.5}. We have the basins in Figure 3. Compared the methods and results in
Table 3, the best methods are AMK1 then M2 then SH3 then FLM then PJ. Thus the fewer black points and
it was of high brightness and has less time to obtain the basins of attraction of the roots of the example
considered the methods, the better the method.

Table 3: Comparison of different methods in complex plane in Example 3.3.

Method NB BI T I/P
PJ 557 0.459471 31.64 3.63

FLM 301 0.461623 26.86 3.61
SH3 265 0.464767 26.50 3.32
M2 265 0.464759 30.03 3.32

AMK1 257 0.469977 21.79 2.81
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Figure 3: Basins of attraction to iterative methods for f3 (z) = z4 − 5
4z

2 + 1
4 .

Example 3.4. We consider the nonlinear equation

f4 (z) = z6 + 10z3 − 8.

The roots are {0.906359,−0.45318 + 0.78493I,−0.45318 − 0.78493I,−2.20663, 1.10332 + 1.911I, 1.10332 −
1.911I}. We illustrate the efficiency of the new method in complex function, comparing between the new
method and some of the known methods of fifth order for solving nonlinear equations from where the
number of black points, brightness indicator, and time to obtain the basins of attraction for these the
methods. In Table 4 AMK1 is the best methods, also the order of the methods from this example from
worst to best and the attractions basins for these roads are Illustrated in Figure 4.

Table 4: Comparison of different methods in complex plane in Example 3.4.

Method NB BI T I/P
PJ 5385 0.415969 36.89 4.15

FLM 3515 0.430532 34.39 4.30
M2 1186 0.456193 30.14 3.72
SH3 1139 0.457666 28.58 3.66

AMK1 3 0.476154 19.50 2.93
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Figure 4: Basins of attraction to iterative methods for f4 (z) = z6 + 10z3 − 8.

Example 3.5. We consider the nonlinear equation

f5 (z) = z4 − z+ I.

Its roots are {−0.759845 + 0.592595i,−0.532605 − 1.08829i, 0.181924 + 0.732098i, 1.11052 − 0.236405i}. We
compared the new iterative method AMK1 with four different methods such as PJ in [11], FLM in [7],
SH3 in [14], and M2 in [10], the new method AMK1 has less number of black points and higher brightness.
Results are given in Table 5, from worst to best. The basins of attraction for this methods are given in
Figure 5.

Table 5: Comparison of different methods in complex plane in Example 3.5.

Method NB BI T I/P
PJ 807 0.476169 33.34 3.84

FLM 176 0.48627 29.67 3.73
SH3 71 0.483391 30.86 3.29
M2 61 0.484638 27.67 3.28

AMK1 0 0.503473 15.97 2.50
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Figure 5: Basins of attraction to iterative methods for f5 (z) = z4 − z+ I.

Example 3.6. We consider the nonlinear equation

f6 (z) =
(
z5 + 10

) (
10z5 − 1

)
.

It has roots as {−1.58489,−0.51046−0.37087i,−0.51046+ 0.37087i,−0.48976−1.50732i,−0.48976+1.50732i,
0.19498 − 0.60008i, 0.19498+ 0.60008i, 0.63096, 1.28221 − 0.93158i, 1.28221 + 0.93158i}. We compared the
new iterative method AMK1 with four different methods, where the new method AMK1 has less number
of black points and higher brightness. Results are given in Table 6, from worst to best. The basins of
attraction for this methods are given in Figure 6.

Table 6: Comparison of different methods in complex plane in Example 3.6.

Method NB BI T I/P
PJ 10208 0.413022 97.52 5.09

FLM 9145 0.419687 91.75 5.31
SH3 3912 0.460927 79.69 4.81
M2 3433 0.464424 78.58 4.93

AMK1 223 0.488489 41.68 3.85
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Figure 6: Basins of attraction to iterative methods for f6 (z) =
(
z5 + 10

) (
10z5 − 1

)
.

4. Numerical testing

In this section, we compared the new iterative method with some fifth-order iterative methods, we
will compared it by using two different ways: the first way comparing using some numerical examples
and the second way comparing using the asymptotic constant.

4.1. Comparing using some the numerical examples
We present five numerical examples in real domain to illustrate efficiency of the new fifth-order it-

erative method described as AMK1, comparing it with some fifth-order iterative methods such as FLM
method in [7], M2 method in [10], PJ method in [11], and SH3 method in [14]. We performed all the cal-
culations in Table 7 by using the Mathematica 11 with 128 significant digits, where 10 digits are displayed
for xn, we use the number of iteration n = 4 and with precision ε = 10−50. The stopping criterion is used
in computer program as |f(xn+1)| < ε. In Table 7, we calculated computation of the iterative process error
|x4 − x3|, we calculated |f (x4)| and (COC) the computational order of convergence, as it is approximated
using the following formula:

COC ≈ ln |(xn+1 − xn) / (xn − xn−1)|

ln |(xn − xn−1) / (xn−1 − xn−2)|
.

Now we will give the numerical examples for numerical testing and comparing between the methods.

f1(x) = x3 + 4x2 − 10, x0 = 1, f2(x) = sin2 x− x2 + 1, x0 = 2,



M. Q. Khirallah, Asma M. Alkhomsan, J. Math. Computer Sci., 28 (2023), 281–293 292

f3(x) = x2 − e−x − 3x+ 2, x0 = 2.5, f4(x) = cos x− x, x0 = 1.7,

f5(x) = x3 − 10, x0 = 2.5.

Table 7: Comparing of the iterative methods over some the examples in real domain.

Method x0 x4 COC |x4 − x3| |f(x4)| Time
f1 1
PJ 1.36523001341409 5.00 2.695× 10−62 0.× 10−125 0.0016
FLM 1.36523001341409 5.00 1.502× 10−67 0.× 10−125 0.0009
SH3 1.36523001341409 5.00 7.118× 10−79 0.× 10−124 0.0014
M2 1.36523001341409 5.00 7.118× 10−79 0.× 10−125 0.0008
AMK1 1.36523001341409 4.99 2.739× 10−99 0.× 10−125 0.0013
f2 2
PJ 1.40449164821534 4.99 1.143× 10−51 0.× 10−125 0.0023
FLM 1.40449164821534 4.99 9.483× 10−52 0.× 10−125 0.0021
SH3 1.40449164821534 4.99 7.941× 10−56 0.× 10−124 0.0023
M2 1.40449164821534 4.99 1.867× 10−56 0.× 10−126 0.0022
AMK1 1.40449164821534 4.99 4.490× 10−79 0.× 10−125 0.0019
f3 2.5
PJ 2.10935699557101 4.99 3.658× 10−70 0.× 10−122 0.0015
FLM 2.10935699557101 4.99 1.764× 10−70 0.× 10−122 0.0020
SH3 2.10935699557101 4.99 7.429× 10−77 0.× 10−118 0.0015
M2 2.10935699557101 4.99 7.107× 10−77 0.× 10−122 0.0061
AMK1 2.10935699557101 4.99 2.892× 10−111 0.× 10−122 0.0014
f4 1.7
PJ 0.73908513321516 4.99 1.108× 10−106 0.× 10−126 0.0013
FLM 0.73908513321516 4.99 2.798× 10−107 0.× 10−126 0.0017
SH3 0.73908513321516 4.99 3.890× 10−94 0.× 10−125 0.0017
M2 0.73908513321516 4.99 2.418× 10−96 0.× 10−126 0.0026
AMK1 0.73908513321516 4.99 8.927× 10−118 0× 10−126 0.0014
f5 2.5
PJ 2.15443469003188 4.99 3.716× 10−91 0.× 10−125 0.0008
FLM 2.15443469003188 4.99 7.574× 10−92 0.× 10−125 0.0012
SH3 2.15443469003188 4.99 2.966× 10−102 0.× 10−124 0.0006
M2 2.15443469003188 4.99 2.966× 10−102 0.× 10−125 0.0011
AMK1 2.15443469003188 5.00 1.4× 10−124 0.× 10−125 0.0006

From the results that’s in Table 7 we notice that new method was comparable with all methods, where
it gives the best result in the examples that mentioned above.

4.2. Comparing using asymptotic constant

We will compare the methods by using asymptotic constant c4
2, where The asymptotic constant affects

the speed of convergence but not to the extent of the order in [2]. In the Table 8, we compare all the
methods that mentioned above with our suggested method in terms of the asymptotic error constant c4

2,
where the error equations are given to all methods and we will arrange the methods from the worst to
the best.
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Table 8: Comparison between asymptotic error constant c4
2.

Method approximation Co c4
2

PJ
(
4c4

2 − c2
2c3
)
e5
n +O

(
e6
n

)
4

FLM
(

7
2
c4

2 − c2
2c3

)
e5
n +O

(
e6
n

)
3.5

SH3
(
2c4

2 − 2c2
2c3
)
e5
n +O

(
e6
n

)
2

M2
(

2c4
2 − 2c2

2c3 +
2
9
c2c4

)
e5
n +O

(
e6
n

)
2

AMK1 −c2
2c3e

5
n +O

(
e6
n

)
0

In the Table 8 the results indicate that whenever the asymptotic error constant is lower, the method
will be the better because it affects the velocity of convergence, that is converges faster to zero, so the new
method is the better.

5. Conclusions

In the present article, we have given a two-step method of fifth-order for solving nonlinear equations
f (x) = 0, which contains two evaluations of the function and two evaluations of the first derivative for
each step. We compared these methods with the examples in real domain also compared it from the
asymptotic error constant c4

2 in complex domain and also have been illustrated and discussed the basins
of attracting in methods. From the comparisons, it has been shown that our supposed method gives the
best results.
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