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Abstract

In this article we consider a delayed one dimensional transport equation. The method of lines with Runge-Kutta method
is applied to solve the problem. It is proved that the present method is stable and convergence of order O(At + h*). Numerical
examples are presented to illustrate the method presented in this article.
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1. Introduction

Delay differential equations frequently arise in a fast variety of scientific problem as relativistic dy-
namics, nuclear reactor, neural network, electric circuit and control engineering [4, 6, 13, 27]. In general,
we must provide the values of unknown functions on some segments in order to solve delay differential
equations. When introduced in an explicit way, time delays may change the qualitative behavior of a
model; for example, an epidemic model with generalized logistic dynamics can have periodic solutions
when the time in the stage of infection is constant [9]. Changing to a delay for the infectious period does
destabilize the endemic equilibrium for a small parameter set and leads to periodic solutions in the infec-
tious fraction as the population size approaches extinction [5, 8]. Stein [28] gave a differential-difference
equation model incorporating stochastic effects due to neuron excitation and later [29] he generalized
the model to deal with the distribution of postsynaptic potential amplitudes. Various other models for
neuronal activity have been proposed and many are discussed in [10, 21]. A hyperbolic partial differential
equation (HPDE) is one of the types of partial differential equations. There are many examples of HPDEs;
for instance, wave equation and telegraph equation. The wave equation is exercised to describe waves, as
they occur in classical physics, such as water, sound and seismic waves [3]. For hyperbolic delay differen-
tial equations, the authors Sharma and Singh [23, 25] and Karthick and Subburayan [11, 12] discussed the
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Forward Time Backward Space (FIBS) and Backward Time Backward Space (BTBS) numerical techniques.
Numerical methods for partial differential equations have been well studied in the literature, to cite a few
[14, 15, 18, 26, 30]. Numerical treatments and convergence analysis for ordinary delay differential equa-
tions and hyperbolic partial differential equations have been studied in the literature [1, 17, 33, 35]. The
application of such a technique necessitates a significant amount of computational techniques discussed
n [24]. The maximum principle has been thoroughly examined for hyperbolic, parabolic, and elliptical
differential equations [2, 16, 20]. Runge-Kutta techniques are used to solve systems of ordinary differen-
tial equations that arise from the discretization of spatial derivatives in hyperbolic equations using the
method of lines. In this context unconditionally-stable fully implicit method has been studied in [22, 34].
Implicit Runge-Kutta (IRK) methods are among the more advanced time discretization schemes discussed
in [7]. These methods provide high orders of accuracy together with desirable stability properties, error
estimators, and other interesting features. These methods exploit the structure arising from carefully cho-
sen time discretization formulae, such as diagonally or singly implicit Runge-Kutta methods. Since the
systems arising from spatial discretization of a time-dependent partial differential equation (PDE) can be
extremely large, specialized methods that also exploit the structure arising from discretization in space.

The paper is organized as follows: The problem under consideration is given in Section 2. Section 3
present the maximum principle and properties of the solution. In Section 4, we describe time semi-discrete
problem using backward Euler scheme in temporal direction. In Section 5, we discretize the spatial
domain using fourth order Runge-Kutta method with piecewise cubic Hermite interpolation. Statement
of the problem described in Section 2 with discontinuous initial data function presents in Section 6. The
Section 7 presents the numerical illustration. The paper is concluded in Section 8.

Throughout the paper it is assumed that, C is generic positive constant, M and N are positive integers.

2. Problem statement

Motivated by the works of [23, 25], we consider the following problem: Find u € C(D)n C11(D)
such that

Lu:= 2;: + ag—u +bu(x,t) +cu(x—95,t) =f(x,t), (x,t) € D, 2.1)
u(x, t) = d(x,t), (x,t) € [-5,0] x [0, T], (2.2)
u(x,0) = ug(x), x € [0,%¢], $(0,0) =10(0), (2.3)

where a(x,t) > a>0,b(x,t) > >0,y <c(x,t) <0,D = (0,x¢] x (0, T], 5 is a delay argument such that
d < x¢ and 15 < x¢ for some positive integer r such that 16 < x¢ < (r+ 1)d. Further the functions a, b, c,
f, 1 and uy are sufficiently differentiable on their domains. The above equation (2.1) can be written as

U= at + aax +bu = f—C(I)(X 6 t)/ (X/ ) [0 6] (O,T], (2 4)
Tl % et bu=f—cu(x—5,t),(x,t) € (8, x (0,T], ‘
u(0,t) = ¢1(0,t),t € [0, T], u(x,0) =up(x), x € [0, x¢]. (2.5)

3. Stability analysis and propagation of discontinuities

3.1. Stability result

In this section we present the maximum principle and the stability results of the above problem (2.4)-
(2.5).

Theorem 3.1 (Maximum principle). Let € C(D) N CYY (D) be any function satisfying £ >0, (x,t) € D,
P(0,t) >0, t€[0,T], P(x,0) >0, x € [0,x¢]. Then P(x,t) > 0,V(x,t) € D.

A consequence of the above theorem is the following stability result.
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Theorem 3.2 (Stability result). Let € C(D) N C1Y (D) be any function, then

b (x, t)] < Cmax{max[(0,t)], max[b(x,0), sup [Edb(x, )]}, V(x,t) €D.
t x (x,t)eD
3.2. Propagation of discontinuities
Let t be fixed. Then from the equation (2.1)-(2.3):

0 0
YaE s bu(x, t) +cu(x—9,t) = f(x,t),

fu = ot ox

we have

AUyx = T — Uyt — QxUyx — by — buy —cxu(x — 8, 1) — cuy (x — 5, )],
lim QUxx = fx(éiz t) _uxt(éiz t) - ax(éil t)ux(éiz t) - bx(éiz t)u(éir t) - b(éir t)ux(éil t)]

Xx—0~
—cx (07, )u(07,t) — (67, t)uy (07, 1)
=1 (07, 1) — Uyt (07, 1) — ax (07, t)ux (87, t) — by (87, t)u(d,t) —b(0, t)uy (67, t)]
- Cx(é—/ t)d)(o—rt) - 0(5_/t)¢x(0_/t)]

and

hm AQUyxx = fX(6+/ t) _uxt(6+/ t) - aX(6+/t)uX(6+/ t) - bX(6+/ t)u(6+/t) - b(6+/t)ux(6+/t)

x—d+
—cx (87, )u(0T, 1) — (81, t)ux (07, 1)
= (81, 1) — Ut (87, 1) — ax (87, t)ux (87,1) — by (87, t)u(6T,t) + (6T, t)ux (67, 1)]
—cx (81, )u(0T, 1) — (67, t)u, (0T, ).
It is observed that, a(8™, t)uxx(07,t) # a(d™, t)uxx (8, 1), since dpx (07, t) # uy (0", t). Similarly one can
show that, Uyxx (207, t) # uxxx (26", t). These points b, 26, 39, ... are primary discontinuities [4]. Hence

these point are considered as mesh points while constructing the spatial mesh.

3.3. Derivative estimates
From the given differential equation (2.1)-(2.3), one can obtain the following.

Lemma 3.3. The solution u(x,t) of (2.1)-(2.3) satisfies the following estimate

il <C 0K <2,

4. Semi-discretization in temporal direction

Let us divide the time domain [0, T] into equally spaced M subdomains, then we have the temporal
mesh OM = {t; = i At}{\io, At = % On the mesh we discretize the problem (2.1)-(2.3) in temporal
direction. Let u%(x) = ug(x), x € [0, x¢). Further let, 1 (x) be the solution of

S (x): =D (x, tj) +alx, tj)ui(x, tj) +b(x, tj)uj (x, t5) +clx, tj)uj (x —9,t5) = f(x, t;),

_ ' 4.1)
u](x) = d)(xltj)l X € [_610]/ ] = 1/2/' . '/M/
where Dyu (x, tj) = u(x’t")xé(x’tjfl).
For fixed t = t;, the above equation can be written as,
dw . . .
At a(x, t,-)d%(x) + (14 At b(x, )W (x, 1) + At c(x, 5w (x — 5,15) = Atf(x, tj) + WL (x, t5_1), w2

j=1,2,...,M.
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Lemma 4.1. Let u be the solution of (2.1)-(2.3) and 1 (x) be the solution of (4.1) at t = t;, then |[u—w|| < C At.
Proof. Let Ej(x) =u(x, t;) — w (x), and let x be fixed. Then
,SjE)' (x) = DtE]’ (x) + a(x, t; )Ej (x) +b(x, t; )E)' (x) +c(x, tj )Ej (x —9, tj)
= Deu(x, tj) — Do (x, 1) + alx, ;) (ul (x, t5) =W (x, 1)) + blx, tj) (wlx, tj) —w (x, t;))
+ C(X/tj)(u;(x_ 6/t)) —U-] (X_ 6/t]))r

using [19, Lemma 4.1] we can have Ej(x) = (D¢ — at)u( x,t;) and |Ej(x)| < O(At), Vj = 1,2,..., M, V¥x
which implies ||E;(x)|| < C(At), therefore [[u—u (x)|| < C( ) O

5. Fully discretized problem

In this section the semi-discrete problem (4.2) is further discretized in spatial direction using fourth
order Runge-Kutta method with piecewise cubic Hermite interpolation on [0, x¢].

5.1. Spatial mesh points

From the Section (3.2), we observe that, §,25,... are primary discontinuous points. Therefore, we
divide the domain [0, x¢] in the following way: [0, 3], [5,26],...,[(r —1)5, 78] and [rd, x¢]. Divide each sub-
domain with % sub-domain. Hence QY = {xi}iN:O, Xi{ = Xij—1 + hy, where h; =x;_1+hy,1=1,2,...,N.

The problem (4.2) can be written in the following way:

1
W[Atf(x,t)) (1+Db(x, tj)At)u w(x, t5) G.1)

+uw 1 (x, tj_1) —c(x, 1 )AtW L (x)].

*(x, W, W1 ) =

One can refer [31, 32] for numerical scheme of piecewise cubic Hermite interpolation for interpolating the
solution u(x; — 9, t;) in the interval [5,x¢]. We apply fourth order Runge-Kutta method with piecewise
cubic Hermite interpolation in space direction on [0, x¢], we get

C1
u{H—u1+6[K1+2K2+2K3+K4],i:o,l,...,N—1,j:l,z,...,M, (5.2)
where,
1 .
Klzm{Atf(Xizt]‘)+U] 1(Xi/tj—1)—(1+b(xu ) AW (xi,t5) —c(xi, t )Atu)I(Xl)
1Y)
1 hi i1 K1 h Kl
Ky = Atf(xqi + —, t; uw 1b1—AtU)
2 a(xﬁ%’t.mt{ (X+2 i)+ (U +2) (1+bxi + 5 tj)At)( 2)
hi hy
—c(xi+—+ 5 tj)At (W (x Hrj))},
1 hi_ i1 K2 h KZ
Ks = Atf(xi + =, t5) + (W + 1+b At u’
3 a(xi+%,tj)At{ (xi > i)+ (U 2) ( (xi + bX tj)At)( 2)
hy hy
—c(xi + =5, ) At W (x + —5))),
27 2
1 . .
K= i t')At{Atf(xi+hi,tj)+(U{ ' K3) — (14 b(xi +hy, t)At) (W +Ks)
1 17 %)
— clxi + hy, t) At (U (i + ha))),
d(xi —9,t5), if (x; —9) <0,

W (x) = § WAk + Uk Ares (4) -
FBi () (e, WL, UL 45) Bt (0 F* (i, Wy, WY 1), 0F (% — 8) >0,
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and k is an integer such that x; — 8 € (xx, Xx+1).

2x—xi) | [ x—xi41 17 2(x — X 41) x—xk |7
Ax(x) = |1— , Ars1(x) = [1— ,
Xk = Xk+1] [ Xk — Xk+1 Xk+1 — Xk Xk+1 — Xk
_ _ 2 _ . 2
By(x) = (x —x1)(x Xk2+1) , Biu(x) = (¢ —xp 1) (x ;(k) k=i

(X — Xi41) (Xk41 — Xk)

To prove the stability of the solution, equation (5.1) can be written as

duw

7:1:* ’ J'/ j_l,t' ’ .:1,2,...,M.
Ix (x,W,u i),

Expanding the right hand side of the above equation about (x;, tj), we get

dw 1 . 1 1
“dx = mmtf(xiz tj) — (1 +b(xq, tj)At)uJ (xi, tj) +wW (%, tj—l) —c(xq, tj)Atu]' (xi)].

Since u’i_1 and u]i’l are known functions, can be considered as u(xi) and y(xi). Therefore the above
equation becomes,

Ki = ™ (f 4 A — cy(x)) — S(A+ b,
a a
Ko = 1+ Mlx) — ey (x) — A+ D)l + LKy ]
= E (f +Au(x) —cy(x)) [1 —(A +b)€21h} — E(7\—i- b)ui [1 —€21(7\+b)h} ,
a a a a
h

h .
Kz = — (f+Au(x) —cy(x)) — (A +b)a(u)i + 31K + €32K2)

=0

2
= A — ey(0)) [1 40 M — b M — (7\+b)2hz€32€21]
a a a a
2

, h h h? h3
+ LL]- (7\ + b)27€31 — (7\ + b)* + (7\ -+ b)27€32 — (}\ + b)37€21g32 ,
v a? a a? ad
h .
Ky = a[f + Au(x) —cy(x) — (A4 b) () + €1 Ky + LKz + Li3K3)]

h h h L h2
= (f+Ap(x) —cy(x)){1 = (A + b)a% —(A+ b)g&z +(A+Db) 5521(542

h ,h? ,h? 4 h3
—(A+ b)a%a +(A+Db) 333&43 +(A+Db) 5(832243 —(A+Db) 5921(332("43}
3

j sh h? s3h? 4h
+u{—(A+b) 5531343+(7\+b) 5343—(7\+b) 5532f43+(?\+b) @%1@32(’/43

h h? h? h3
—(A+b)=+ A+b) g + (A +Db)* Sl — (A+ ) = lp),
) ) a a a a
qul = U.)i + W1Kq + WrKy + W3Ks + WyKy,
, - h , h? 5 h3 , ht
w,=u [l—(A+b)a+(A+b) P —(A+Db) @+(A+b) YT

2 3
# 2 (1A = ev(0) 1= (A4 0) % + (b5 — (40

j j _ R*> R Rh*] h COR2 R
) 1) _ R _ _ _ _ _
Wi =W [1 h+ > 5t 12] + (f + Apx) —cv(x)) [1 h+ ] ,
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where,

h 1
p A= At Co =11, c3 =131 +1{3p, cq4 =y + Ly + g3, W1 +Wo + W3+ W, =1,
1

1 1
Wher + Wises + Wyey = =, Wiacols) +W4(C2€42 +c3lyz) = =, Wy o g Iy = —.
2 6 24

The above method is stable if |h| < 1. That is % + %h < 1. Let us assume that %h < % and ﬁ < %
Then the above scheme is stable and convergence.

h=(A+b)

Theorem 5.1 ([4]). Let u(xi,t;) be the solution of the problem (4.2) and U{ be the solution of the problem (5.2),
then Hu(xi,tj) — U1H < C(FL4)

The following theorem gives an error estimate for the above method.

Theorem 5.2. Let u{ be the exact solution of (2.1) at the point (x,t;) and U]% be the numerical solution of (5.2),
then |u(xi, t;) — W || < C(At+h?).

Proof. Using the Lemma 4.1 and Theorem 5.1, one can prove that,

=W ==+ = W< =]+ ] = W] < C(At+RY).

6. Discontinuous initial data

Let us assume that x* be a point at which the function 1 has a jump discontinuity. Then the method
discussed in the above section can be applied to the problem,

0 0
Liu: = qu + oSt +bu(x, t) +cu(x—95,t) = f(x,t),
ot ox

u(x,t) = d(x,t), (x,t) € [-5,01 x [0,T],
u(XI O) = uO(X)/ X € (O/Xf]/ d)(olo) = LL()(O),

Remark 6.1. For j =1, then the differential equation
dw . . 0
At a +bw +cw(x—208) =Atf(x, t;) +u’(x).

It is noted that the right hand side function is discontinuous at x = x*, so that the function w(x, tj) is not
smooth at x = x*. Further, the function W (x) is not smooth enough at x* +§, x* 429, .... So that while
dividing the domain [xg, x¢], these points x*,x* + 8, x* +29, ... are to be considered as mesh points.

Similar to the above Theorem 5.2, we have the estimate for the difference between the exact and numer-
ical solution as follows. Due to the presence of the delay argument, the initial discontinuity propagates
in the forward direction.

Theorem 6.2. Let u]% be the exact solution of (2.1) and u(x;, t;) be the numerical solution of (5.2), then ||u(xi, tj) —
j 4

W < ClAt+RY).

7. Numerical examples

Two examples are given in this section to illustrate the numerical methods presented in this paper. We
use the half mesh principle to estimate the maximum error. For this we put

ENM — max | W (h, At) — U (h/2,At/2) |, 0Si< N, 0<j <M,

i,j

where U%(h, At) and U%(%,At/Z) are the numerical solution at the node (x;, tj) with mesh sizes (h, At)
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and (%, At/2), respectively. Graph of the numerical solutions, numerical solution at different time level
and the maximum point-wise error plot are drawn.

Example 7.1. Consider the following first order hyperbolic delay differential equation.

ou al

3t +a(x,t) ™ +b(x, thu(x,t) +c(x, thu(x—5,t) =0, (x,t) € (0,4] x (0,4],

u(x,t) =0, (x,t) € [-5,0] x [0,4],
u(x,0) :xexp(—(4x—1)2/2) x (2—x), x€[0,2],
u(x,0) = (x—2) x (4—x) x exp(—(4x—1)2/10), x € [2,4],

3+x2 417

/t - —/
alxt) 14 2tx +2x2

b(x,t) =1, c(x,t) = —2.

In this problem, it is assumed that, 8 = 1. Numerical solution is plotted in the Figure 1 and for
different time levels the solution curves are plotted in Figure 2. The maximum point-wise error is given
in Table 1. The maximum error is plotted in Figure 3.

Figure 1: The surface plot of the U-numerical solution of Example 7.1.

U - Numerical Solution at Different Time Level

— &0 N=200
— =01 M=100
08 02| | g
— 03
07— 04
0.5

Numerical solution
&
T

Figure 2: U-numerical solution of Example 7.1 at different time level.



S. Karthick, R. Mahendran, V. Subburayan, ]J. Math. Computer Sci., 28 (2023), 270-280 277

Figure 3: Maximum point-wise error of the Example 7.1.

Table 1: Maximum error for the Example 7.1 using conditional method.
Nand 6 =1

M| 64 128 256 512 1024 2048 4096

64 2.3175e-03 | 1.1365e-03 | 5.6285e-04 | 2.8009e-04 | 1.3971e-04 | 6.9773e-05 | 3.4866e-05
128 | 3.8978e-03 | 1.8843e-03 | 9.2652e-04 | 4.5942e-04 | 2.2876e-04 | 1.1414e-04 | 5.7013e-05
256 | 6.6230e-03 | 3.1471e-03 | 1.5356e-03 | 7.5853e-04 | 3.7698e-04 | 1.8792e-04 | 9.3821e-05
512 | 1.0256e-02 | 4.7577e-03 | 2.2978e-03 | 1.1299e-03 | 5.6030e-04 | 2.7901e-04 | 1.3922e-04
1024 | 1.5652e-02 | 6.7670e-03 | 3.1902e-03 | 1.5526e-03 | 7.6626e-04 | 3.8069e-04 | 1.8974e-04

Example 7.2. Consider the following first order hyperbolic delay differential equation,

?3% + a(x,t)%;L +o0x, ulx, t) +clx, ulx—5,1) =0, (x,t) € (0,4] x (0,4],
u(x,t) =0, (x,t) € [=5,0] x [0,4],
u(x,0) = xexp(—(4x —1)?/2) x (2—x), x € [0,2],

u(x,0) =0.1, x € (2,4],
34+x2 412

/‘t T ———
alxt) 14 2tx +2x2

b(x,t) =1, c(x,t) = 2.

In this problem, it is assumed that, 8 = 1. Numerical solution is plotted in the Figure 4 and for
different time levels the solution curves are plotted in Figure 5. The maximum point-wise error is given
in Table 2. The maximum error is plotted in Figure 6.

IS

Numercal Solution

9

Figure 4: The surface plot of the U-numerical solution of Example 7.2.
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Maximum error

Numerical solution
=
Iy
b
T

U - Numerical Solution at Different Time Level

— =01

=0.2
— =03
=04
t=0.5

—t0

N=200
M=100
0=1

Figure 5: U-numerical solution of Example 7.2 at different time level.

°
2
@

Figure 6: Maximum point-wise error of the Example 7.2.

Table 2: Maximum error for the Example 7.2 using conditional method.

Nand 6 =1
M| 64 128 256 512 1024 2048 4096
64 1.8966e-03 | 9.4441e-04 | 4.7126e-04 | 2.3540e-04 | 1.1764e-04 | 5.8806e-05 | 2.9400e-05
128 4.2727e-03 | 2.1272e-03 | 1.0613e-03 | 5.3009e-04 | 2.6490e-04 | 1.3242e-04 | 6.6199e-05
256 8.3897e-03 | 4.1851e-03 | 2.0901e-03 | 1.0444e-03 | 5.2206e-04 | 2.6099e-04 | 1.3049e-04
512 1.6388e-02 | 8.1765e-03 | 4.0839e-03 | 2.0409e-03 | 1.0202e-03 | 5.1001e-04 | 2.5499e-04
1024 | 3.2511e-02 | 1.6220e-02 | 8.1012e-03 | 4.0484e-03 | 2.0236e-03 | 1.0117e-03 | 5.0581e-04

8. Conclusions

In this article, we considered the first order hyperbolic delay differential equation with space delay,
which serves the model for more scientific applications. For the numerical solution of this problem,
we apply semi-discretization in temporal direction on uniform mesh using backward finite difference
scheme and the truncation error of this method produces first order convergence for fixed x, that is
O(At). The semi-discretized problem is, then further discretized using fourth order Runge-Kutta method
with piecewise cubic Hermite interpolation in spatial direction and the method produces O(At + h*). The
problem (2.1) with smooth and non-smooth data functions and its properties of the solutions are also
discussed. The numerical examples are given to validate the theoretical results in the form of Figures 1-6
and Tables 1-2. It is observed that, for fixed integer M and for increasing the size of N, the maximum error
decreases, whereas for fixed N and for increasing M the maximum error increases. Since the method is
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conditionally stable. That is if h < 1, then only the method is stable. From Figures 3 and 6, it is observed
the same, that is the method is stable only if h < CAt.
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