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Abstract

This paper investigates the initial value problem of singular difference systems with maxima. An
algorithm based on quasilinearization is suggested to solve the initial value problem for the nonlinear
singular difference system with maxima, and the quadratic convergences of the sequence of successive
approximations are obtained. c©2016 All rights reserved.
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1. Introduction

Difference equations with maxima are a special type of difference equations that contain the
maximum of the unknown function over a previous interval(s). The presence of the maximum
function in the equation requires not only more complicated calculations but also a development of
new methods for qualitative investigations of the behavior of their solutions (see the monograph [5]
and references cited therein). Some results of difference equations with maximum are presented in
[4, 9, 10, 12, 15], in which, Hristova, Golev and Stefanova [10] discussed the initial value problem for
difference equations with maximum by using the method of quasilinearization [6, 11] which has been
used in the proof of the existence results for a wide variety of nonlinear problems.

Recently, much attention has been paid to singular discrete systems as they exist extensively in
application fields (see [1, 7, 8]). For example, the discrete dynamic input-output system is a typical

∗Corresponding author
Email address: pgwang@hbu.edu.cn (Peiguang Wang)

Received 2016-03-30



P. G. Wang, X. Liu, J. Math. Computer Sci. 16 (2016), 227–238 228

singular system [16], the mathematical modeling of which is

x(k) = Ax(k) +B[x(k + 1)− x(k)] + d(k),

where x(k) is a n× 1 output vector, d(k) is a n× 1 final consume vector. A = (aij)n×n is a consume
coefficient matrix; B = (bij)n×n is an investment coefficient matrix, which is usually singular. Hence,
besides their theoretical interest, they are very important in terms of applications.

Up till now, there have been a few results for singular difference equations (SDEs). Anh and
Loi [3] have studied the solvability of initial-value problems for SDEs; Wang and Zhang [14] have
investigated the existence of extremal solutions for singular discrete systems by employing a monotone
iterative technique combined with the method of upper and lower solutions; Anh and Hoang [2] have
obtained some necessary and sufficient conditions for the stability properties of SDEs by employing
Lyapunov functions and Wang and Kong [13] have analyzed the rapid convergence of solution of
nonlinear singular difference system. However, we have not found any results for singular difference
systems with maxima.

In this paper, we discuss the convergence of approximate solutions for nonlinear singular difference
systems with maximum by the method of quasilinearization and prove the quadratic convergence of
the successive approximations.

2. Preliminaries

First of all, we introduce some notations and definitions.
Let Z be the set of all integers, Z[a, b] = {z ∈ Z : a ≤ z ≤ b} for a, b ∈ Z, a < b.
Consider the following nonlinear singular difference system with “maxima”{

Ax(k + 1) = f(k, x(k), max
s∈Z[k−h,k]

x(s)), k ∈ J1,

x(k) = ϕ(k), k ∈ J2,
(2.1)

where A is a singular n× n matrix, x(k) ∈ Rn for all k ∈ J , f : J1 × Rn × Rn → Rn, ϕ : J2 → Rn,
J1 = Z[0, K], J2 = Z[−h, 0], J = J1 ∪ J2, h and K is any positive integer.

For x(k), y(k) ∈ Rn, k ∈ Z, x(k) ≤ y(k) means xi(k) ≤ yi(k), i = 1, 2, · · · , n. x(k)y(k) =
(x1(k)y1(k), x2(k)y2(k), · · · , xn(k)yn(k))T .

Let the functions α0, β0 : J → Rn be such that α0(k) ≤ β0(k), and define the following sets.
Ω(α0, β0) = {(k, x, y) ∈ J1 ×Rn ×Rn | α0(k) ≤ x ≤ β0(k), max

s∈Z[k−h,k]
α0(s) ≤ y ≤ max

s∈Z[k−h,k]
β0(s)}.

Definition 2.1. The function α0 : J → Rn is said to be a lower solution of (2.1) if it satisfies the
following difference inequalities{

Aα0(k + 1) ≤ f(k, α0(k), max
s∈Z[k−h,k]

α0(s)), k ∈ J1,

α0(k) ≤ ϕ(k), k ∈ J2.
(2.2)

An upper solution of (2.1) is defined analogously by reversing the above inequalities.
In our further discussion, we will need some results on linear singular difference systems and

inequalities.
For the linear singular difference system

Ax(k + 1) +M(k)x(k) = g(k), x(0) = x0, k ∈ J1, (2.3)

where A and M(k) are n×n matrices and g(k) is a vector in Rn for all k ∈ J , we have the following
result.
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Lemma 2.2 ([7], Theorem 3.6.2). Assume that the following conditions hold.

(H2.1) There exists a constant λ such that L(k) = [λA+M(k)]−1 ≥ 0 exists, Â = L(k)A is a constant
matrix and M̂ = L(k)M(k) = I − λÂ on J1.

(H2.2) y0 lies in the set {Ŵ +R(Â)}, where Ŵ = (I − ÂÂD)M̂Dĝ(0) and ĝ(k) = L(k)g(k).

Then the unique solution x(k) of (2.3) is given by

x(k) = (−ÂDM̂)kÂÂDx0 + ÂD

k−1∑
i=0

[−ÂDM̂ ]k−i−1g(i) + (I − ÂÂD)M̂Dg(k),

where index(A) = 1, the notations ÂD and M̂D indicate the Drazin inverse of the matrices Â and
M̂ respectively.

For the singular difference inequalities

Ax(k + 1) +M(k)x(k) ≤ 0, x(0) ≤ 0, k ∈ J1, (2.4)

where A, M(k) are n× n matrices and A is singular on J1, we have the following result.

Lemma 2.3 ([13], Lemma 1.1). Assume that the condition (H2.1) of Lemma 2.2 holds, and

(H2.3) There exists a nonsingular matrix Q such that [L(k)Q]−1 exists and Q−1, [L(k)Q], [L(k)Q]−1 ≥
0, satisfying

Q−1ÂQ =

(
C 0
0 0

)
, Q−1M̂Q =

(
I1 − λC 0

0 I2

)
,

where C is a diagonal matrix with C−1 < 0, C−1(I1 − λC) + I1 < 0.

Then x(0) ≤ 0 implies x(k) ≤ 0 on J1.

Now, we will prove the existence result which is of vital importance for our further discussion.

Lemma 2.4. Assume that the conditions (H2.1)-(H2.3) hold, and

(H2.4) The functions α0, β0 : J → Rn are lower and upper solutions of (2.1), respectively, and
α0(k) ≤ β0(k) on J ;

(H2.5) The function f : Ω(α0, β0)→ Rn is continuous with respect to its second and third arguments,
the Fréchet derivative fy exists and is nonnegative, and

f(k, y, u)− f(k, x, u) ≤M(x− y),

where α0(k) ≤ y ≤ x ≤ β0(k), max
s∈Z[k−h,k]

α0(s) ≤ u ≤ max
s∈Z[k−h,k]

β0(s) and M = M(k0), k ∈ J1,

k0 ∈ J1.

Then (2.1) has a solution x(k) that satisfies α0(k) ≤ x(k) ≤ β0(k) on J .
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Proof. Let αn+1(k) and βn+1(k) be the solutions of the following singular difference systems:{
Aαn+1(k + 1) = f(k, αn(k), max

s∈Z[k−h,k]
αn(s))−M(αn+1(k)− αn(k)), k ∈ J1,

αn+1(k) = ϕ(k), k ∈ J2,
(2.5)

and {
Aβn+1(k + 1) = f(k, βn(k), max

s∈Z[k−h,k]
βn(s))−M(βn+1(k)− βn(k)), k ∈ J1,

βn+1(k) = ϕ(k), k ∈ J2
(2.6)

for n = 0, 1, 2, · · · , which exist because of Lemma 2.2. Accordingly, we obtain the sequences {αn(k)}
and {βn(k)}.

First, we show that α0(k) ≤ α1(k) ≤ β1(k) ≤ β0(k) on J .
For this purpose, setting m(k) = α0(k) − α1(k) so that m(k) ≤ 0 on J2, using the condition

(H2.4), we obtain

Am(k + 1) ≤ f(k, α0(k), max
s∈Z[k−h,k]

α0(s))− [f(k, α0(k), max
s∈Z[k−h,k]

α0(s))

−M(α1(k)− α0(k))]

≤ −Mm(k), k ∈ J1.

By Lemma 2.3, we have α0(k) ≤ α1(k) on J1. Thus, we conclude that α0(k) ≤ α1(k) on J . Analo-
gously, we can prove that β1(k) ≤ β0(k) on J .

We next prove that α1(k) ≤ β1(k) on J . Taking m(k) = α1(k) − β1(k) so that m(k) = 0 on J2,
and utilizing the condition (H2.5), we have

Am(k + 1) = [f(k, α0(k), max
s∈Z[k−h,k]

α0(s))−M(α1(k)− α0(k))]

− [f(k, β0(k), max
s∈Z[k−h,k]

β0(s))−M(β1(k)− β0(k))]

≤ [f(k, α0(k), max
s∈Z[k−h,k]

β0(s))−M(α1(k)− α0(k))]

− [f(k, β0(k), max
s∈Z[k−h,k]

β0(s))−M(β1(k)− β0(k))]

≤M(β0(k)− α0(k))−M(α1(k)− α0(k)) +M(β1(k)− β0(k))

= −Mm(k), k ∈ J1.

As before, we obtain that α1(k) ≤ β1(k) on J . Thus, we have

α0(k) ≤ α1(k) ≤ β1(k) ≤ β0(k), k ∈ J.

Continuing with this process, by induction, we conclude that

α0(k) ≤ α1(k) ≤ ... ≤ αn(k) ≤ βn(k) ≤ ... ≤ β1(k) ≤ β0(k), k ∈ J.

Fixed any fixed k ∈ J , the sequence {αn(k)} is monotone nondecreasing and bounded by β0(k).
Therefore, the nondecreasing sequence {αn(k)} converges pointwise to a function x(k) that satisfies
α0(k) ≤ x(k) ≤ β0(k). In view of (2.5), we can easily see that x(k) is a solution of (2.1). Therefore,
(2.1) has a solution x(k) which satisfies α0(k) ≤ x(k) ≤ β0(k) on J . The proof is complete.
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3. Main results

In this section, we use the method of quasilinearization for nonlinear singular difference system
with maxima. We will prove that the convergence of the sequence of successive approximations is
quadratic.

Theorem 3.1. Assume that

(A3.1) The function f : Ω(α0, β0)→ Rn is continuous with respect to its second and third arguments,
the Fréchet derivatives fxx, fxy, fyy exist, and the following equalities are valid for (k, x, y) ∈
Ω(α0, β0):

fxx(k, x, y) ≥ 0, fxy(k, x, y) ≥ 0, fyy(k, x, y) ≥ 0;

(A3.2) The conditions (H2.1)-(H2.5) and the nonnegative matrix M̄ for M(k) = −fx(k, x, y), N(k) =
−fy(k, x, y), N̂(k) = L(k)N(k), (k, x, y) ∈ Ω(α0, β0) hold, where

M̄ =
{
I − max

s∈Z[0,K]

{
− ÂD

s−1∑
i=0

[−ÂDM̂ ]s−i−1N̂(i)− (I − ÂÂD)M̂DN̂(s)
}}−1

.

Then there exist two monotone sequences {αn(k)}, {βn(k)} which converge to the solution of (2.1)
on J and the convergence is quadratic.

Proof. It follows from the assumption (A3.1) that the inequality

f(k, x1, y1) ≥ f(k, x2, y2) + fx(k, x2, y2)(x1 − y1) + fy(k, x2, y2)(x2 − y2) (3.1)

holds for (k, x1, y1), (k, x2, y2) ∈ Ω(α0, β0), x1 ≥ x2, y1 ≥ y2.
Now, consider the following singular difference systems with maxima

Ax(k + 1) = f(k, αn(k), max
s∈Z[k−h,k]

αn(s))

+ fx(k, αn(k), max
s∈Z[k−h,k]

αn(s))(x(k)− αn(k))

+ fy(k, αn(k), max
s∈Z[k−h,k]

αn(s))( max
s∈Z[k−h,k]

x(s)− max
s∈Z[k−h,k]

αn(s))

≡ Fn(k, x(k), max
s∈Z[k−h,k]

x(s)), k ∈ J1,

x(k) = ϕ(k), k ∈ J2.

(3.2)

and 

Ay(k + 1) = f(k, βn(k), max
s∈Z[k−h,k]

βn(s))

+ fx(k, αn(k), max
s∈Z[k−h,k]

αn(s))(y(k)− βn(k))

+ fy(k, αn(k), max
s∈Z[k−h,k]

αn(s))( max
s∈Z[k−h,k]

y(s)− max
s∈Z[k−h,k]

βn(s))

≡ Gn(k, y(k), max
s∈Z[k−h,k]

y(s)), k ∈ J1,

y(k) = ϕ(k), k ∈ J2.

(3.3)

Let n = 0 in (3.2) and (3.3). Initially, we can prove that α0(k) and β0(k) are lower and upper
solutions of (3.2), respectively. Then, by Lemma 2.4, we conclude that there exists a solution α1(k)
of (3.2) with α1(k) = ϕ(k) on J2 such that α0(k) ≤ α1(k) ≤ β0(k) on J .
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Similarly, we can also prove that α1(k) and β0(k) are lower and upper solutions of (3.3) respec-
tively. Then, it follows from Lemmas 2.4 that (3.3) has a solution β1(k) such that α1(k) ≤ β1(k) ≤
β0(k) on J .

Furthermore, using the above results, we can prove that α1(k) and β1(k) are lower and upper
solutions of (2.1) respectively. Hence, we have

α0(k) ≤ α1(k) ≤ β1(k) ≤ β0(k), k ∈ J.

The method of mathematical induction can be applied to prove that for all n

α0(k) ≤ α1(k) ≤ ... ≤ αn(k) ≤ βn(k) ≤ ... ≤ β1(k) ≤ β0(k), k ∈ J.

Since αn, βn are lower and upper solutions of (2.1) respectively, and all the assumptions of Lemma
2.4 are satisfied, we can conclude that there exists a solution x(k) of (2.1) such that αn(k) ≤ x(k) ≤
βn(k) on J . Hence, we have

α0(k) ≤ α1(k) ≤ ... ≤ αn(k) ≤ x(k) ≤ βn(k) ≤ ... ≤ β1(k) ≤ β0(k), k ∈ J.

For any fixed k ∈ J , the sequences {αn(k)}, {βn(k)} are monotone nondreasing and monotone
nonincreasing, and they are bounded by α0(k), β0(k), respectively. Therefore, they are convergent
on J , that is, there exist functions ρ(k), r(k) such that

lim
n→∞

αn(k) = ρ(k) ≤ x(k) ≤ r(k) = lim
n→∞

βn(k).

To show the quadratic convergence. Define the function an+1(k) as follows:

an+1(k) = x(k)− αn+1(k) ≥ 0, k ∈ J.

Let k ∈ J2. It is clear that an+1(k) = 0.
Let k ∈ J1. Using the mean value theorem and the assumption fy ≥ 0, we arrive at

Aan+1(k + 1) = fx(k, αn(k), max
s∈Z[k−h,k]

αn(s))(x(k)− αn+1(k))

+ fy(k, αn(k), max
s∈Z[k−h,k]

αn(s))( max
s∈Z[k−h,k]

x(s)− max
s∈Z[k−h,k]

αn+1(s))

− fx(k, αn(k), max
s∈Z[k−h,k]

αn(s))(x(k)− αn(k))

− fy(k, αn(k), max
s∈Z[k−h,k]

αn(s))( max
s∈Z[k−h,k]

x(s)− max
s∈Z[k−h,k]

αn(s))

+
(∫ 1

0

fx(k, σx(k) + (1− σ)αn(k), max
s∈Z[k−h,k]

x(s))dσ
)

(x(k)− αn(k))

+
(∫ 1

0

fy(k, αn(k), σ max
s∈Z[k−h,k]

x(s) + (1− σ) max
s∈Z[k−h,k]

αn(s))dσ
)

× ( max
s∈Z[k−h,k]

x(s)− max
s∈Z[k−h,k]

αn(s))

≤ fx(k, αn(k), max
s∈Z[k−h,k]

αn(s))(x(k)− αn+1(k))

+ fy(k, αn(k), max
s∈Z[k−h,k]

αn(s)) max
s∈Z[k−h,k]

(x(s)− αn+1(s))

+ [fx(k, x(k), max
s∈Z[k−h,k]

x(s))− fx(k, αn(k), max
s∈Z[k−h,k]

αn(s))](x(k)− αn(k))
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+ [fy(k, αn(k), max
s∈Z[k−h,k]

x(s))− fy(k, αn(k), max
s∈Z[k−h,k]

αn(s))]

× ( max
s∈Z[k−h,k]

x(s)− max
s∈Z[k−h,k]

αn(s))

≤ −M(k)an+1(k)−N(k) max
s∈Z[−h,T ]

an+1(s) + A1 +B1,

where

A1 = [fx(k, x(k), max
s∈Z[k−h,k]

x(s))− fx(k, αn(k), max
s∈Z[k−h,k]

αn(s))](x(k)− αn(k)),

B1 = [fy(k, αn(k), max
s∈Z[k−h,k]

x(s))− fy(k, αn(k), max
s∈Z[k−h,k]

αn(s))]× ( max
s∈Z[k−h,k]

x(s)− max
s∈Z[k−h,k]

αn(s)).

Using the mean value theorem and the condition (A3.1), we get

A1 ≤ (an(k))T
(∫ 1

0

fxx(k, σx(k) + (1− σ)αn(k), max
s∈Z[k−h,k]

x(s))dσ
)
an(k)

+ ( max
s∈Z[k−h,k]

an(s))T
(∫ 1

0

fxy(k, αn(k), σ max
s∈Z[k−h,k]

x(s) + (1− σ) max
s∈Z[k−h,k]

αn(s))dσ
)

× an(k)

≤
( n∑

j=1

|fxjx(k, σx(k) + (1− σ)αn(k), max
s∈Z[k−h,k]

x(s))|
)

(an(k))2

+
1

2

( n∑
j=1

|fxjy(k, αn(k), σ max
s∈Z[k−h,k]

x(s) + (1− σ) max
s∈Z[k−h,k]

αn(s))|
)

(an(k))2

+
1

2

( n∑
j=1

|fyjx(k, αn(k), σ max
s∈Z[k−h,k]

x(s) + (1− σ) max
s∈Z[k−h,k]

αn(s))|
)

( max
s∈Z[k−h,k]

an(s))2

≤M11(an(k))2 +
1

2
M12(an(k))2 +

1

2
M13( max

s∈Z[k−h,k]
an(s))2

≤ [M11 +
1

2
(M12 +M13)] max

s∈Z[−h,K]
|an(s)|2,

and

B1 ≤ ( max
s∈Z[k−h,k]

an(s))T
(∫ 1

0

fyy(k, αn(k), σ max
s∈Z[k−h,k]

x(s) + (1− σ) max
s∈Z[k−h,k]

αn(s))dσ
)

× max
s∈Z[k−h,k]

an(s)

≤
( n∑

j=1

|fyjy(k, αn(k), σ max
s∈Z[k−h,k]

x(s) + (1− σ) max
s∈Z[k−h,k]

αn(s))|
)

( max
s∈Z[k−h,k]

an(s))2

≤M14 max
s∈Z[−h,K]

|an(s)|2,

where
∑n

j=1 |fxjx(k, x, y)| ≤M11,
∑n

j=1 |fxjy(k, x, y)| ≤M12,
∑n

j=1 |fyjx(k, x, y)| ≤M13,∑n
j=1 |fyjy(k, x, y)| ≤ M14 for (k, x, y) ∈ Ω(α0, β0), M11 M12, M13 and M14 are positive matrices.

Then, from the above discussion, we have

Aan+1(k + 1) +M(k)an+1(k) ≤ −N(k) max
s∈Z[−h,K]

an+1(s) +M1 max
s∈Z[−h,K]

|an(s)|2, k ∈ J1,

an+1(k) = 0, k ∈ J2,
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where M1 = M11 + 1
2
(M12 + M13) + M14. According to Lemma 2.3, we find that an+1(k) ≤ x(k) on

J1, where u(k) is a solution of

Au(k + 1) +M(k)u(k) = −N(k) max
s∈Z[−h,K]

an+1(s) +M1 max
s∈Z[−h,K]

|an(s)|2, k ∈ J1,

u(k) = 0, k ∈ J2.

Furthermore, using the expression of x(k) in Lemma 2.2, we have

max
s∈Z[−h,K]

an+1(s) ≤
{
I − max

s∈Z[0,K]

{
− ÂD

s−1∑
i=0

[−ÂDM̂ ]s−i−1[λA+M(i)]−1N(i)

− (I − ÂÂD)M̂D[λA+M(s)]−1N(s)
}}−1

× max
s∈Z[0,K]

{
ÂD

s−1∑
i=0

[−ÂDM̂ ]s−i−1[λA+M(i)]−1M1 max
s∈Z[−h,K]

|an(s)|2

+ (I − ÂÂD)M̂D[λA+M(s)]−1M1 max
s∈Z[−h,K]

|an(s)|2
}
.

Then, by suitable estimates, we can get

|an+1|0 ≤ K1|an|20,

where K1 is a positive constant matrix and |a|0 = max
s∈J
|a(s)| = (max

s∈J
|a1(s)|, · · · ,max

s∈J
|an(s)|)T . The

convergence of {αn(k)} is quadratic.
Similarly, we define the function bn+1(k) as follows:

bn+1(k) = βn+1(k)− x(k) ≥ 0, t ∈ J.

Let k ∈ J2. We can see that bn+1(k) = 0.
Let k ∈ J1. In view of the mean value theorem and the condition fy ≥ 0, it can be deduced that

Abn+1(k + 1) ≤ fx(k, αn(k), max
s∈Z[k−h,k]

αn(s))(βn+1(k)− x(k))

+ fy(k, αn(k), max
s∈Z[k−h,k]

αn(s)) max
s∈Z[k−h,k]

(βn+1(s)− x(s))

+ [fx(k, βn(k), max
s∈Z[k−h,k]

βn(s))− fx(k, αn(k), max
s∈Z[k−h,k]

αn(s))](βn(k)− x(k))

+ [fy(k, x(k), max
s∈Z[k−h,k]

βn(s))− fy(k, αn(k), max
s∈Z[k−h,k]

αn(s))]

× ( max
s∈Z[k−h,k]

βn(s)− max
s∈Z[k−h,k]

x(s))

≤ −M(k)bn+1(k)−N(k) max
s∈Z[−h,T ]

bn+1(s) + A2 +B2,

where

A2 = [fx(k, βn(k), max
s∈Z[k−h,k]

βn(s))− fx(k, αn(k), max
s∈Z[k−h,k]

αn(s))](βn(k)− x(k)),

B2 = [fy(k, x(k), max
s∈Z[k−h,k]

βn(s))− fy(k, αn(k), max
s∈Z[k−h,k]

αn(s))]× ( max
s∈Z[k−h,k]

βn(s)− max
s∈Z[k−h,k]

x(s)).



P. G. Wang, X. Liu, J. Math. Computer Sci. 16 (2016), 227–238 235

By using the mean value theorem and the assumption (A3.1), we can get

A2 ≤ (bn(k) + an(k))T
(∫ 1

0

fxx(k, σβn(k) + (1− σ)αn(k), max
s∈Z[k−h,k]

βn(s))dσ
)
bn(k)

+ ( max
s∈Z[k−h,k]

bn(s) + max
s∈Z[k−h,k]

an(s))T

×
(∫ 1

0

fxy(k, αn(k), σ max
s∈Z[k−h,k]

βn(s) + (1− σ) max
s∈Z[k−h,k]

αn(s))dσ
)
bn(k)

≤
( n∑

j=1

|fxjx(k, σβn(k) + (1− σ)αn(k), max
s∈Z[k−h,k]

βn(s))|
)

(bn(k) + an(k))bn(k)

+
( n∑

j=1

|fxjy(k, αn(k), σ max
s∈Z[k−h,k]

βn(s) + (1− σ) max
s∈Z[k−h,k]

αn(s))|
)

(bn(k))2

+
1

2

( n∑
j=1

|fyjx(k, αn(k), σ max
s∈Z[k−h,k]

βn(s) + (1− σ) max
s∈Z[k−h,k]

αn(s))|
)

× [( max
s∈Z[k−h,k]

an(s))2 + ( max
s∈Z[k−h,k]

bn(s))2]

≤M11(bn(k))2 +
1

2
M11(an(k))2 +

1

2
M11(bn(k))2 +M12(bn(k))2

+
1

2
M13( max

s∈Z[k−h,k]
an(s))2 +

1

2
M13( max

s∈Z[k−h,k]
bn(s))2

≤ 1

2
(M11 +M13) max

s∈Z[−h,K]
|an(s)|2 +

1

2
(3M11 + 2M12 +M13) max

s∈Z[−h,K]
|bn(s)|2

and

B2 ≤ (an(k))T
(∫ 1

0

fyx(k, σx(k) + (1− σ)αn(k), max
s∈Z[k−h,k]

βn(s))dσ
)

max
s∈Z[k−h,k]

(bn(s))

+ ( max
s∈Z[k−h,k]

bn(s) + max
s∈Z[k−h,k]

an(s))T

×
(∫ 1

0

fyy(k, αn(k), σ max
s∈Z[k−h,k]

βn(s) + (1− σ) max
s∈Z[k−h,k]

αn(s))dσ
)

max
s∈Z[k−h,k]

bn(s)

≤ 1

2

( n∑
j=1

|fxjy(k, σx(k) + (1− σ)αn(k), max
s∈Z[k−h,k]

βn(s))|
)

(an(k))2

+
1

2

( n∑
j=1

|fyjx(k, σx(k) + (1− σ)αn(k), max
s∈Z[k−h,k]

βn(s))|
)

( max
s∈Z[k−h,k]

bn(s))2

+
( n∑

j=1

|fyjy(k, αn(k), σ max
s∈Z[k−h,k]

βn(s) + (1− σ) max
s∈Z[k−h,k]

αn(s))|
)

× ( max
s∈Z[k−h,k]

bn(s) + max
s∈Z[k−h,k]

an(s)) max
s∈Z[k−h,k]

bn(s)

≤ 1

2
M12(an(t))2 +

1

2
M14( max

s∈Z[k−h,k]
an(s))2 +

1

2
(M13 + 3M14)( max

s∈Z[k−h,k]
bn(s))2

≤ 1

2
(M12 +M14) max

s∈Z[−h,K]
|an(s)|2 +

1

2
(M13 + 3M14) max

s∈Z[−h,K]
|bn(s)|2.
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Then, we conclude from above discussion that

Abn+1(k + 1) +M(k)bn+1(k) ≤ −N(k) max
s∈Z[−h,K]

bn+1(s)

+M2 max
s∈Z[−h,K]

|an(s)|2 +M3 max
s∈Z[−h,K]

|bn(s)|2, k ∈ J1,

bn+1(k) = 0, k ∈ J2,

where M2 = 1
2
(M11 + M12 + M13 + M14), and M3 = 1

2
(3M11 + 2M12 + 2M13 + 3M14). Hence, by

Lemma 2.3, we obtain that bn+1(k) ≤ u(k) on J1, where u(k) is a solution of

Au(k + 1) +M(k)u(k) = −N(k) max
s∈Z[−h,K]

bn+1(s)

+M2 max
s∈Z[−h,K]

|an(s)|2 +M3 max
s∈Z[−h,K]

|bn(s)|2, k ∈ J1,

u(k) = 0, k ∈ J2.

Then, using the expression of x(k) in Lemma 2.2, we have

max
s∈Z[−h,K]

bn+1(s)

≤
{
I − max

s∈Z[0,K]

{
− ÂD

s−1∑
i=0

[−ÂDM̂ ]s−i−1[λA+M(i)]−1N(i)

− (I − ÂÂD)M̂D[λA+M(s)]−1N(s)
}}−1

max
s∈Z[0,K]

{
ÂD

s−1∑
i=0

[−ÂDM̂ ]s−i−1[λA+M(i)]−1

× (M2 max
s∈Z[−h,K]

|an(s)|2 +M3 max
s∈Z[−h,K]

|bn(s)|2)

+ (I − ÂÂD)M̂D[λA+M(s)]−1(M2 max
s∈Z[−h,K]

|an(s)|2 +M3 max
s∈Z[−h,K]

|bn(s)|2)
}
.

Taking suitable computation, we obtain

|bn+1|0 ≤ K2|bn|20 +K3|an|20,

where K2 and K3 are positive constant matrices. Thus, the convergence of {βn(k)} is quadratic. The
proof is complete.

Theorem 3.2. Assume that the condition (A3.2) hold, and

(A3.3) The function f : Ω(α0, β0)→ Rn is continuous with respect to its second and third arguments,
the Fréchet derivatives fxx, fxy, fyy exist, and the following equalities are valid for k ∈ J1,
(k, x, y) ∈ Ω(α0, β0):

fxx(k, x, y) ≤ 0, fxy(k, x, y) ≤ 0, fyy(k, x, y) ≤ 0.

Then there exist two monotone sequences {αn(k)}, {βn(k)} which converge to the solution of (2.1)
on J and the convergence is quadratic.
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Proof. Consider the following singular difference systems with maxima

Ax(k + 1) = f(k, αn(k), max
s∈Z[k−h,k]

αn(s))

+ fx(k, βn(k), max
s∈Z[k−h,k]

βn(s))(x(k)− αn(k))

+ fy(k, βn(k), max
s∈Z[k−h,k]

βn(s))( max
s∈Z[k−h,k]

x(s)− max
s∈Z[k−h,k]

αn(s))

≡ Fn(k, x(k), max
s∈Z[k−h,k]

x(s)), k ∈ J1,

x(k) = ϕ(k), k ∈ J2,

(3.4)

and 

Ay(k + 1) = f(k, βn(k), max
s∈Z[k−h,k]

βn(s))

+ fx(k, βn(k), max
s∈Z[k−h,k]

βn(s))(y(k)− βn(k))

+ fy(k, βn(k), max
s∈Z[k−h,k]

βn(s))( max
s∈Z[k−h,k]

y(s)− max
s∈Z[k−h,k]

βn(s))

≡ Gn(k, y(k), max
s∈Z[k−h,k]

y(s)), k ∈ J1,

y(k) = ϕ(k), k ∈ J2.

(3.5)

Analogous to the proof of Theorem 3.1, we can get the convergence is quadratic.

Remark 3.3. The above result can be extended to the situation where f(k, x, y) = F (k, x, y) −
g(k, x, y), and F (k, x, y) and g(k, x, y) satisfy

Fxx(k, x, y) ≥ 0, Fxy(k, x, y) ≥ 0, Fyy(k, x, y) ≥ 0,

gxx(k, x, y) ≥ 0, gxy(k, x, y) ≥ 0, gyy(k, x, y) ≥ 0.

By using the method of generalized quasilinearization, we can obtain the result that there exist two
monotone sequences which converge quadratically to the solution of (2.1). Similarly, when F (k, x, y)
and g(k, x, y) satisfy

Fxx(k, x, y) ≤ 0, Fxy(k, x, y) ≤ 0, Fyy(k, x, y) ≤ 0,

gxx(k, x, y) ≤ 0, gxy(k, x, y) ≤ 0, gyy(k, x, y) ≤ 0,

we can also obtain the quadratic convergence. We omit the details.
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[9] A. Gelişken, C. Çinar, A. S. Kurbanli, On the asymptotic behavior and periodic nature of a difference
equation with maximum, Comput. Math. Appl., 59 (2010), 898–902. 1

[10] S. Hristova, A. Golev, K. Stefanova, Quasilinearization of the initial value problem for difference equa-
tions with “maxima”, J. Appl. Math., 2012 (2012), 17 pages. 1

[11] V. Lakshmikantham, A. S. Vatsala, Generalized quasilinearization for nonlinear problems, Kluwer Aca-
demic Publishers, Dordrecht, (1998). 1
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