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Abstract

Pythagorean fuzzy set is one of the successful extensions of the fuzzy set for handling uncertainties in information. Under
this environment, in this paper, we introduce a new type of generalized fuzzy sets is called CR-fuzzy sets and compare CR-fuzzy
sets with Pythagorean fuzzy sets and Fermatean fuzzy sets. The set operations, score function and accuracy function of CR-fuzzy
sets will study along with their several properties.
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1. Introduction

In 1965, Zadeh [15] introduced fuzzy sets. After the introduction of the concept of fuzzy sets, several
researches were conducted on the generalizations of fuzzy sets. The integration between fuzzy sets and
some uncertainty approaches such as soft sets and rough sets have been discussed in [1, 4, 5]. The concept
of intuitionistic fuzzy set has been introduced by Atanassov [3] as a generalization concept of fuzzy sets.
The intuitionistic fuzzy set theory is useful in various application areas, such as algebraic structures,
control systems and various engineering fields. Many researchers have explored various applications of
intuitionistic fuzzy set such as medical application, real life situations, education and networking [7-9].
Recently, Yager [14] launched a nonstandard fuzzy set referred to as Pythagorean fuzzy set which is
the generalization of intuitionistic fuzzy sets. The construct of Pythagorean fuzzy sets can be used to
characterize uncertain information more sufficiently and accurately than intuitionistic fuzzy set. Garg [6]
presented an improved score function for the ranking order of interval-valued Pythagorean fuzzy sets.
Ibrahim et al. [10] defined a new generalized Pythagorean fuzzy set is called (3, 2)-Fuzzy sets. In 2020,
Fermatean fuzzy sets proposed by Senapati and Yager [13], can handle uncertain information more easily
in the process of decision making. They also defined basic operations over the Fermatean fuzzy sets. The
main advantage of Fermatean fuzzy sets is that it can describe more uncertainties than Pythagorean fuzzy
sets, which can be applied in many decision-making problems. The relevant research can be referred to
[11, 12]. Al-shami [2] introduced a new extensions of fuzzy sets called square-root fuzzy sets (briefly,
SR-Fuzzy sets).
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2. CR-fuzzy sets

In this section, we study the notion of CR-fuzzy sets in details, and introduce some new operations
on CR-fuzzy sets along with their several properties. For computations, we use only six decimal places in
whole paper.

Definition 2.1. Let Y be a universal set. Then, the CR-fuzzy set (briefly, CR-FS) H which is a set of ordered
pairs over Y is defined as follows:

H={y,Auly),unly)):y Yy

where An(y) : Y — [0,1] is the degree of membership and puy(y) : Y — [0,1] is the degree of non-
membership of y € Y to H, such that

0< Any)®+Vunly) <1,

then, there is a degree of indeterminacy of y € Y to H defined by
m(y) =1—[(An(y)? + Vuny)l

It is clear that (A (y))® + ¥/un(y) + mH(y) = 1. Otherwise, ry(y) = 0 whenever (Ay(y))2 + &/ un(y) =
1.

In the interest of simplicity, we shall mention the symbol H = (Ay, un) for the CR-FS H = {(y, A (y),

HH(U)> 'y e Y}-
The space of CR-fuzzy membership grades is given in Figure 1.

—

Figure 1: Grades space of CS-FSs.

Definition 2.2. Let Y be a universal set. Then, the intuitionistic fuzzy set (IFS) [3] (resp. Pythagorean fuzzy
set (PFS) [14], Fermatean fuzzy set (FFS) [13] and SR-Fuzzy set (SR-FS) [2]) is defined by the following;:

H={(y,Ay), unly)) 1y €Yy,

including the condition 0 < An(y) + pu(y) < 1 (resp. 0 < Au(y))? + (ku(y))? < 1, 0 < Au(y))® +
(tr(y))® <land 0 < (An(y))? + /un(y) < 1), where Ay (y) : Y — [0,1] is the degree of membership and
ur(y) : Y — [0,1] is the degree of non-membership of every y € Y to H.
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Remark 2.3. From Figure 2, we get that

1. the space of Fermatean membership grades is larger than the space of CR-fuzzy membership grades;

2. H = (Ay =~ 0.168678, uy ~ 0.985671) is a point of intersection between CR-fuzzy and Pythagorean
tuzzy;

3. for Ay € (0,0.168678) and pun € (0.985671,1) the space of CR-fuzzy membership grades start to be
larger than the space of Pythagorean membership grades;

4. for Ay € (0.168678,1) and pup € (0,0.985671) the space of CR-fuzzy membership grades start to be
smaller than the space of Pythagorean membership grades.

Figure 2: Comparison of grades space of IFSs, SR-FSs, CR-FSs, PFSs, and FFSs.

Definition 2.4. Let H = (Ay, un), Hi = (An,, uH,) and Hy = (An,, un,) be three CR-fuzzy sets (CR-FSs),
then

1. H1 N H2 = (mln{)\le }\Hz}/ max{qul HHZ})I
2. Hi UHy = (max{An,, An, ), min{un,, uh,};
3. H® = (Y, (An)?).

Example 2.5. Suppose that H; = (0.167,0.986) and H, = (0.8,0.2) are both CR-FSs for Y = {y}. Then,

1. Hi NHy = (min{An,, An, ), max{pn,, uH,}) = (min{0.167, 0.8}, max{0.986,0.2}) = (0.167,0.986);
2. Hy UHy = (max{An,, AH, )}, min{pn,, HH,}) = (max{0.167,0.8}, min{0.986,0.2}) = (0.8,0.2);
3. H{ =~ (0.998435,0.000000).

Theorem 2.6. If H = (A, un) is a CR-FS, then H¢ is also a CR-FS and (H®)¢ = H.
Proof. Since 0 < A}, < 1,0 < ¥y < 1and 0 < (Aw)® + /i < 1, then

0< (Vi) + /()2 = An)® + ¥ < 1

and hence 0 < (/i) + ¥/(An)° < 1. Thus, HE is a CR-FS and it is obvious that (H¢)¢ = (/i1 (An)?)€ =
(}\H/ l’LH) O
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Theorem 2.7. Let Hy = (An,, uH,) and Hy = (An,, UH,) be two CR-FSs, then the following properties hold:
1. HH1NHy =HyNHy;
2. HHUH; = Hy UH;j.
Proof. From Definition 2.4, we can obtain:
1. Hy N Hy = (min{An,, An, b, max{pp,, i, ) = (minf{An,, Ay, }, max{pn,, uH,}) = Ho N Hy;
2. the proof is similar to 1. O
Theorem 2.8. Let Hy = (An,, un,) and Hy = (An,, UH,) be two CR-FSs, then
1. (Hi NHy)UH,; = Hy;
2. (H{UH)NHy = H,.

Proof. From Definition 2.4, we can obtain:
1.

(Hi N H2) UHy = (min{An,, An, b, max{un,, kH, P U (AH,, UH,)
= (max{min{An,, An, }, A, b, min{max{un,, uH, }, kH,H = (An,, HH,) = Ha;
2. the proof is similar to 1. O

Theorem 2.9. Let Hy = (An,, uH,), Ho = (AH,, UH,), and Hz = (An,, U, ) be three CR-FSs, then
1. Hi N (Hz N H3) = (Hl N Hz) N Hs;
2. HiU(Hy UH3) = (H; UH) U Hs.

Proof. For the three CR-FSs H;, Hy, and Hj3, according to Definition 2.4, we can obtain:
1.

Hy N (Ha N H3) = (Any, Biy ) N (min{Av,, A, |, max{pn,, U, )

mln{AHl ’ min{}\Hgi }\Hg, }}I max{qu s maX{HHzl HUH; }})
mln{mln{}\Hl s AHz }/ AH3 }/ maX{maX{ UH;, LH, }/ HUH; })

= (
= (
= (
= (min{Ap,, An, b, max{pn,, b, 0 (Ang, kH,) = (Hr N H2) NH3.

2. the proof is similar to 1. O

Theorem 2.10. Let Hy = (An,, UH,) and Hy = (AH,, UH,) be two CR-FSs, then
1. (Hy NHy)¢ = HE UHS;
2. (HHUHy)¢ = Hf N chz

Proof. For the two CR-FSs H; and Hy, according to Definition 2.4, we can obtain:
1.
(Hi N Hy)¢ = (min{An,, An, ), max{pn,, HH, )¢
= (max{\g/ HUH;, \9/ qu}/ min{()\Hl)g, (}\Hz)g}) = (\9/ HH;, (}\H1 )9) U (\9/ HUH,, ()\Hz)g) = Hf U Hgl
2. the proof is similar to 1. O
Definition 2.11. Let H; = (An,, uH,) and Hy = (An,, uH,) be two CR-FSs, then

1. Hy = Hy if and only if Ay, = An, and pn, = Uh,;
2. Hy > Hy if and only if Ay, > An, and pH, < HH,;
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3. Hy € Hy or H; D Hy if Hy > Hy.
Example 2.12. Let Y = {y3, Yo}, then

1. Hy = H; for Hy ={(y1,0.5,0.6), (y»,0.4,0.7)} and H, = {(y1,0.5,0.6) , (y»,0.4,0.7)};
2. H2 < H1 and H2 C H1 for H1 = {<y1,0.6, 04> ’ <y2, 05, 06>} and H2 = {<y1,0.5, 06> ’ <y2, 0.4., 07>}

In order to rank CR-FSs, we define the score function and accuracy function of the CR-FS.
Definition 2.13.

1. The score function of an CR-FS H = (A, un ) is defined as score(H) = ?\“;’1 — JUH.
2. The accuracy function of an CR-FS H = (Ay, puy) is defined as accuracy(H) = )‘?1 + .

Example 2.14. Since H ={(y1,0.5,0.6), (y»,0.4,0.7)}is CR-FS in Y = {y1, y»}, then we find that score(H)(y1)
~ —0.718433, score(H)(y2) ~ —0.823904, accuracy(H)(y1) ~ 0.968433, and accuracy(H)(yz2) ~ 0.951904.

Theorem 2.15. Let H = (A, un) be any CR-ES, then the suggested score function score(H) € [—1,1].

Proof. Since for any CR-FS H, we have ?\?4 + ¥ < 1. Hence, 7\?1 — JuH < 7\%{ < 1and 7\%4 — YUy =
—/mH = —1 . Therefore, —1 < )‘?1 — J/in < 1, namely score(H) € [—1, 1]. In particular, if H = (0, 1), then
score(H) = —1 and if H = (1,0), then score(H) = 1. O

Remark 2.16. For any CR-FS H = (A, un), the suggested accuracy function accuracy(H) € [0, 1].

Definition 2.17. Let H = (A, un), Hi = (Any, uHy) and Hy = (An,, uh,) be three CR-FSs and 6 be a
positive real number (5 > 0), then we define the following operations:

1 Hy @ Ha = (/A% + ALy, = N ALy b b )

2. H1 ® Hy = (A, An,, (Y, + ¢/Fr, — 0H, V0, )°);

3. 0H = ({1 (1=A)% )5

4. H = (A, (1—(1— ¥mn)®)?).

Example 2.18. Suppose that H; = (Ay, = 0.52, uyy, = 0.61) and Hy = (An, = 0.51, uy, = 0.63) are both
CR-FSs for Y = {y}. Then,

1.
HieHy = (\3/7\?41 + 7\3H2 — 7\?4]7\3Hz, K, HHZ)
= <\3/0.523 +0.513 — (0.52)3(0.51)3, (0.61)(0.63)> ~ (0.633807,0.3843);
2.

Hy @ Ha = My Ay, (G + G — B, V)
= ((0.52)(0.51), (v/0.61 + v/0.63 — \3/0.61\3/0.63)3) = (0.2652,0.936351);

3. 6H; = (3 1—(1 —Agl)ﬁ,ugl) — (3/1— a —0.523)2,0.612) ~ (0.639431,0.3721), for & = 2;
4 HE = (Agl, 1—(1 —WHl)éP) - (0.522,(1 (- \3/0.61)2)3> — (0.2704,0.932358), for 5 — 2.

Theorem 2.19. If Hy = (An,, un,) and Hy = (An,, uh,) are two CR-FSs, then Hy @& Hy and Hy ® Hy are also
CR-FSs.
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Proof. For CR-FSs H; = (An,, uH,) and Hy = (An,, un,) the following relations are evident:

0<Ay, <L, 0< ¥, <1, 0< (M)’ + /i, <

and
0< A, <1, 0< ¥, <1, 0< (A,)’ + i, <

Then, we have
Ay =M AL Ay AN, T2 AR A, =0

and

VEH, 2 YUH VB Hy, VBH, 2 VEH VBRHy 12 i YRR, 2 0,
which indicates that

Ny + M, — A AT, > 0 implies {/A, +AT, — AT A, >0,

and

B, + ¥/, — /i, OB, 2 0 implies (¢, + /i, — /R, OBR,)° 2 0
Since 7\?{2 <land 0<1 —7\%{1, then 7\?{2(1 —7\?{1) <1 —7\?{1) and we get 7\?{1 +7\?12 —7\?{17\%{2 <1and
hence {/?\3H1 + ?\‘;’12 — ?\%_[1)\%[2 <1.
Similarly, we can get

(P, + i, — i Vi) < 1
It is obvious that
0< ¥, <1 —7\%(1 and 0 < J/pp, <1 —?\%2,

then we can get

(/M A, = A AT, VBT, < Ny 8, — A AR, + (=N (1A, = 1.

Therefore,

0< YA, + M, — MMy, <1, 0< i, <1,

0< \/AHl N, — MNP+ i <1

Similarly, we have

0 < A A, <1, 0 < (I, + i, — B, Vi) < 1,
0 < (A, AH,) +\/\/HH + B, — ¢, o, ) < 1

These indicate that both of H; ® H; and H; ® Hy are CR-FSs. O
Theorem 2.20. Let H = (Any, uy) be a CR-FS and & be a positive real number. Then, SH and H?® are also CR-FSs.
Proof. Since 0 < )\?4 <L0< ¥ g <land 0 < 3+ ¥in < 1, then

0< Vi <1-A} = 0<(1—7\~L)"’
= 1-(1-2A})°

= 0<{1-(1-A)<Vi=1.
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It is obvious that 0 < ug, < 1, then we can get
0< (/1= (1=A3)8)P + Yud <1—(1-A°+(1-7A})° =1.

Similarly, we can also get

0< (AP + /(1 - (1— Vin)P)P < 1.
Therefore, 6H and H® are CR-FSs. O

Theorem 2.21. Let Hy = (An,, uH,) and Hy = (An,, UH,) be two CR-FSs, then the following properties hold:

1. Hi & Hy = Hy ® Hy;
2. Hi ® H, = H, ® Hj.

Proof. From Definition 2.17, we can obtain:
1y @ Ha = (/A% + Ay, = M Al b ) (/8 + A, = MMy iz, ) = Ho @ Hy;

2. Hy ® Hy = (A, Any, (3, + B, — B, O, )°) = (M Any, (VBR, + ¢/, — A o, )°) = Ho @
Hj. O

Theorem 2.22. Let H = (Aw, un), Hi = (A, un,) and Hy = (An,, UH,) be three CR-FSs, then
1. 8(H; @ Hp) = 6Hy & 0Hp, for & > 0;
2. (51 +&)H=6H® 62H,f01’ 01,00 > 0;
3. (H1®H,)® =HY @ HY, for & > 0;
4. H¥ @ H® = H(81%32) for §1,8, > 0.

Proof. For the three CR-FSs H, H; and H, and §, 81,8, > 0, according to Definition 2.17, we can obtain:

(/M + A, = MM v, )
Y= =N, = A, + AN (i)
Y= 0= R0 = A2, e, )

—5
(
(

SH; @ 5Hy — (3 1— (1—>\5;h)5,p5H1) @ (3 1— (1—7\?42)6,;3,42)
(
= (

PT==R)P 1= (1=A)P = (1= (1= N ) (1= (1=, )0), iy i, )

Y= 0= P A=A)%, i, ) = 8(Hy @ Hy);

(01 +02)H = (81 + 62) (Ar, UH)

i/li 1— )\3 51+8; H81+62>

(\3/1 (T=A)% (1 =A%, u?f&)

\3/1 (1—=2A3)% +1—(1—A3)82 — (1— (1 —=2A3)5)(1— (1—A3,)%2), ui&u*”)

/1 — (1— )\3 b, 61> < 1—(1—7\3)52 >—51H@52H
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3.
(H1 ® H2)® = (A, Ay, (B, + i, — /B, /B 3)5
(}\Hl)\HZ (I—( 1_\/HH _\/HHZ_{_\/HHI\/H'HZ 3)
= (WA, (1= (1= Ying)° (1 = Yimg,)*)°)
(7\Hlf 1—\3/1*71) 1) ® Ay, (1= (1= ¢im,)°)°) = HY @ H3;
4.

HO @ HS2 — <Ai§,(1 1 —3/@)51)3) ® (Aif,(l (1 —3/@)52)3)
= (AW 1= (1= Y™ +1— (1= Y™ — (1= (1= V)™ (1 - (1= Yiu) ™))
_ <A5H1+52’(1 —(1 _m)61+62)3) — H(®1+82)

O
Theorem 2.23. Let Hy = (An,, uH,) and Hy = (An,, U, ) be two CR-FSs and & > 0, then
1. 8(Hy UHy) = dHy USHy;
2. (HiUH,)® = HY UHY.
Proof. For the two CR-FSs H; and Hy, and & > 0, according to Definitions 2.4 and 2.17, we can obtain:
1.
5(H1 U Ha) = 8(max(An, v}, minfiur, i) = (/1 (1—max(h,,, A3, D®, minfusdy,, u,))
§H; U SHy — ( /1 (13, )3, uéHl) U ( /1 (1-23,)3, uéHz)
= (max{{/1— (1=A},)%, §/1— (1= A}, )%} min(ufy,, ufy,})
= <\3/1 — (1 —max{A3 1,7\%_[2})5,min{pfill, péHz}) = §(Hy UHy);
O

2. the proof is similar to 1.
Theorem 2.24. Let H = (Aw, un), Hi = (An,, un,) and Hy = (An,, U, ) be three CR-FSs, and & > 0, then
1. (Hl D Hz)c = Hf ® HS;
(Hl X Hz)c = Hf @ HS;
(H®)® = (8H)¢;
§(H)¢ = (H®)
Proof. For the three CR-FSs H,H; and Hj, and & > 0, according to Definitions 2.4 (3) and 2.17, we can
obtain:
1.

2.
3.
4.

Cc
\/}\3 A, — AL Aﬁz,ququ)

Vi, (W L~ M)’
(\g/p'iHl\/9 Hry/ (A 2 o 7\?‘[1)\?‘[2)3)
(i, (An,)*) @ WHZ, (An,)°) = HE @ HS;

(Hi®Hp)¢ =
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2.
(H1 ® H2)® = (A Ay, (B, + /H, — \3/HH1\3/MH2)3)C

= (\/ VRH, R — V)%, (A AR )

:(\3/ JIH; R, — VR, (An) (7\H2)9)

= (Y, (AMy)?) @ (B, (M,)°) = HE @ HS;
3.

(HO)® = (i, (w)®)® = ((JAD)°, (1 — (1 - A%)°P) = ( - (1—?\3H)5,ufi1> — (5H)";

4.

C

S()° = S(Yr, (vl = ({1 (1= J0, ((n)? ) = (0 (1= (1= 90 F)° = ()

O
Theorem 2.25. Let Hy = (An,, uH,), Ho = (AH,, UH,), and Hz = (An,, UH,) be three CR-FSs, then
1. (HiNHy) ®Hz = (Hy @ Hz) N (Ha @ H3);
2. (H{UH2) @ Hz = (Hy @ H3) U (Ha @ H3);
3. (Hl N Hz) ® Hs = (H1 ® H3) N (H2 X Hg),'
4. (HiUH2) ® H3 = (H; ® H3) U (H ® Ha).

Proof. By Definitions 2.4 and 2.17, we can obtain:
1.

(Hl N HZ) s> H3 = (mln{)\]—[l, }\Hz} max{qul qu}) (}\Hy uH:;)
{’/mm{?\?’ ,)\39’12} + ?\3 — ?\3 mm{7\3 Y ?\3 } max{pH,, qu}uH3)
\/ 1 - )\3 mln{)\?’ 1’ A%"[Z} + )\3 3’ maX{”’H] HH;, HH, HH3})

= (
= (
(Hy @ Ha) N (Hy & Hs) = <\/>\ —A?{l?\H,leuH3)ﬂ(\3/7\?42+7\?{3—)\?{2)\?13,sz“,43)
= (
= (

mm{\/?\3 +7\ —?\3 7\?{,\3/7\3 +7\3 —?\3 7\3 },max{letuquuHa})
mln{\/l )\3 )}\3 +)\3 /\/(17)\3 ))\3 +}\3 }max{”’Hlp'Hyp'HzHHg,})

<\/(1 =AYy, minAg, AT AT max{p, By, BH, HH3}) ,

thus, (Hy N Hz) © Hz = (Hy © Hz) N (Ha @ H3);
2. the proof is similar to 1;
3.

(H1 N Hz) ® Hz = (min{An,, An, ), max{puy,, uH,}) ® Hs

= (min{Ap,, Ari A, (max{y/im,, i} + /B, — &/, max{ i, i)
= (min{Ar, Ay, A A}, (1 — /B ) max{ /iy, i) + i) )

(A, Ay, (VG + /i, — /i vi,)°)

(Hi ®Hz) N (Hy ® H3) =
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N (MM s, (Y, + i, — i Vi )°)
= (M, Ars, (1 — /) /B, + )°) 0 (Mo A, (1 — Y0 i, + Vi )°)
= (min{Ar, Arty, Arp A ) max { (1 — /) /i, + /i)’ (1
— Vi)Y, + Vi)’ )
= (min{Ar, Ay, A A}, (1 — /B ) max{ /iy, i) + i) )
thus, (H; " Hy) ® Hy = (H; ® H3) N (Hp ® H3);
4. the proof is similar to 3. O

Theorem 2.26. Let Hy = (An,, uH,), Ho = (AH,, UH,), and Hz = (An,, UH,) be three CR-FSs, then

1. HHeHy ® Hy = Hy @ Hz @ Hp;
2. H1®H2®H3:H1®H3®H2.

Proof.
1.
Hy @ Hy ® Hz = (An,, HH,) © (A, BH,) @ (AH,, HH;)

= (W + M — N Ny i) @ (g, i)
_ (Q/PH] FA3, A, A, AT O AT, — AR L), b e uH?,)
= (/W + N + M = MM = MM — MM + Al MM i i b )
= (/M + M = MM + M = M O, + AT = M A, b gy )
e <</7\:]3—[] + A?—[S - }\?—[17\?_[31 l‘LHl HH?,) EB (AHZ’ HHZ)
= H; ¢ Hs & Ho.

2. The proof is similar to 1. -

3. Conclusions

In this paper, we have defined CR-fuzzy sets and compared their relationship with other types of the
generalized fuzzy sets. In addition, some operators on CR-fuzzy sets are introduced and their relationship
have been studied.
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