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Abstract

In this paper, a new optimized explicit two-derivative Runge-Kutta (TDRK) method with frequency-
depending coefficients is proposed, which is derived by nullifying the dispersion, the dissipation, and the first
derivative of the dispersion. The new method has algebraic order four and is dispersive of order five and
dissipative of order four. In addition, the phase analysis of the new method is also presented. Numerical
experiments are reported to show the efficiency of the new method. c©2016 All rights reserved.
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1. Introduction

In this paper, we are concerned with efficient integrations of the following system of first-order ordinary
differential equations (ODEs):

y′ = f(x, y), y(x0) = y0, (1.1)

where y ∈ RN , and f : R×RN → RN is a smooth function. Such problems arise in different fileds such as
astrophysics, celestial mechanics and molecular physics and so forth.

Many efficient numerical methods have been developed for the numerical solution of problem (1.1),
among which, Runge-Kutta (RK) type methods are favorable, because the initial values that are available
are sufficient for them to run. In fact, during the last four decades, many efficient RK type methods are
designed, such as the exponentially-fitted RK method in [4, 5], the optimized RK method in [6], the phase-
fitted RK method in [7], etc. Quite recently, Chan, et al. [2] presented a new type RK method, that is
the Two-Derivative Runge-Kutta (TDRK) method, which incorporates the second order derivative in the
scheme. Compared with the classical RK type methods, the most prominent characteristic of the TDRK
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method is that it can reach higher order with the same number of stages. In fact, the TDRK method has
received the attention of many researchers, and many TDRK methods have been designed. For example,
Zhang, et al. [9] firstly extended the idea of trigonometrical fitting to TDRK methods, and proposed a
trigonometrically fitted fifth-order TDRK method. Then, Fang, et al. [3] further studied the trigonometrical
fitting TDRK (TFTDRK) method and proposed four TFTDRK methods of order four or five. Similarly,
in [8], Yang, et al. developed an exponentially fitted TDRK, and applied it to the resonant-state problem
of the Woods Saxon potential with fixed step-size and the Lennard-Jones potential with variable step-size.
The numerical results in [3, 8, 9] indicate that these new TDRK methods are quite efficient when compared
with some famous RK methods in the literature.

Very recently, Anastassi, et al. [1] designed an optimized RK method with zero phase-lag and its
derivatives, which is tested to by very efficient for the radial Schrödinger equation. In this paper, we intend
to propose a new TDRK method based on the idea of [1]. The rest of the paper is organized as follows. In
Section 2, we introduce some necessary definitions for designing the new method. The coefficients of the
new optimized TDRK method are presented in Section 3. Section 4 studies the phase property of our new
optimized method, and some numerical experiments are given in Section 5. Finally, Section 6 is devoted to
some conclusive remarks.

2. The explicit TDRK method

By [2], we can define a modified explicit TDRK method as follows:
Yi = yn + cihf(xn, yn) + h2

i−1∑
j=1

aijg(xn + cjh, Yj), i = 2, . . . , s,

yn+1 = yn + hβf(xn, yn) + h2
s∑
i=1

big(xn + cih, Yi),

(2.1)

where g(x, y) = y′′(x, y) := ∂f(x,y)
∂x + ∂f(x,y)

∂y f(x, y), and aij , bi, ci(1 ≤ j < i ≤ s) and β are some real constants.
Obviously, the coefficients of the above iterative scheme can be expressed by the following Butcher tableau:

0
c2
...
cs

β

0
a12 0
...

...
...

as1 · · · as,s−1

b1 · · · bs−1 bs

It is clear that the above TDRK reduces to a traditional TDRK in [2] if β = 1.
Now we present the phase properties of the above TDRK method following the line of traditional RK

method. By applying the explicit TDRK method (2.1) to the following linear scalar equation:

y′ = iωy, i2 = −1, (2.2)

in which ω > 0 is an estimate of the principle frequency of the studied problem, we obtain

yn+1 = M(v)yn, v = ωh. (2.3)

Here M(v) is called the stability function.

Definition 2.1 ([3]). For the explicit TDRK method (2.1) with stability function M(v), the following
quantities are called the phase-lag (or dispersion) and the amplification factor error (or dissipation error),
respectively:

P (v) = v − arg(M(v)), D(v) = 1− |M(v)|.
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In addition, the method is said to be dispersive of order q and dissipative of order p if

P (v) = O(vq+1), D(v) = O(vp+1).

If P (v) = 0 and D(v) = 0, the method is called phase fitted (zero dispersive) and amplification fitted (zero
dissipative), respectively.

Denoting M(v) = U(v)+ iV (v) with U(v) and V (v) the real and imaginary parts of M(v), we can derive

U(v) = 1− v2b>(I + v2A)−1e, V (v) = v(1− v2b>(I + v2A)−1c),

where e = (1, 1, . . . , 1)> ∈ Rs×1. Thus, we get

P (v) = v − arctan
V (v)

U(v)
), D(v) = 1−

√
U(v)2 + V (v)2. (2.4)

Then, we can rewrite the functions U(v) an V (v) in the following expand form:

U(v) = 1− r1v2 + r2v
4 − r3v6 + . . .+ (−1)srsv

2s,

V (v) = vβ − q1v3 + q2v
5 − q3v7 + . . .+ (−1)sqsv

2s+1,

where the coefficients ri, qi(i = 1, 2, . . . , s) are defined by the above TDRK parameters b and A.

3. The new optimized explicit TDRK method

For simplicity, we consider the two-stage TDRK method given by the Butcher tableau:

0
1
2

β(v)

0 0
1
8 0

b1(v) b2(v)

In which, β(v), b1(v), b2(v) are some real even functions of v = hω. Obviously, if we set {β(v), b1(v),
b2(v)} = {1, 16 ,

1
3}, that is the constant coefficients, a classical fourth-order TDRK method in [2] is recovered.

In the following, considering that the solution to the problem (1.1) is often oscillatory, we shall derive some
frequency-depending coefficients by optimizing the dispersion and dissipation error properties. Motivated
by the ideas in [3, 9], by a simple computation, we get the dispersion, the first derivative of dispersion, and
the dissipation error of the TDRK method (2.1), which depend on β(v), b1(v), b2(v) as follows:

P (v) = tan(v)− M

N
,

D(v) = 1−
√
M2 +N2,

DP (v) = sec2(v)− M ′N −MN ′

N2
,

(3.1)

in which

M =β(v)v − 1

2
b2(v)v3,

N =1− (b1(v) + b2(v))v2 +
1

8
b2(v)v4.

Setting the system of equations in (3.1) equals to zero and solving it yields

β(v) =
2 sin (v) cos (v) + (sin (v))2 v + 4 sin (v)− 2 v

v (4 cos (v) + sin (v) v)
,

b1(v) =(−1/2− 8 cos (v) v − 4 sin (v) v2 + 8 sin (v) cos (v) + 16 sin (v)

− 3 sin (v) v2 cos (v)− v3 + 8 (sin (v))2 v)/(v3 (4 cos (v) + sin (v) v)),

b2(v) =− 4
sin (v) cos (v) + v − 2 sin (v)

v3 (4 cos (v) + sin (v) v)
.

(3.2)



Y. Wang, M. Sun, H. Sun, J. Math. Computer Sci. 16 (2016), 205–210 208

In some cases, the following Taylor series expansions of (3.2) must be used

β(v) = 1− 1

120
v4 +

1

560
v6 +

1

30240
v8 + · · · ,

b1(v) =
1

6
+

1

30
v2 − 17

2520
v4 +

149

362880
v6 − 1027

15966720
v8 + · · · ,

b2(v) =
1

3
− 1

30
v2 +

1

252
v4 +

11

181440
v6 +

2881

39916800
v8 + · · · .

Now we are going to check the algebraic order conditions given by [3] for the new optimized method.
Second algebraic order:

2∑
i=1

bi(v) =
1

2
− 1

360
v4 +

19

40320
v6 +

19

2419200
v8 + · · · = 1

2
+O(v4).

Third algebraic order:

2∑
i=1

bi(v)ci =
1

6
− 1

60
v2 +

1

504
v4 +

11

362880
v6 +

2881

79833600
v8 + · · · = 1

6
+O(v2).

Fourth algebraic order:

2∑
i=1

bi(v)c2i =
1

12
− 1

120
v2 +

1

1008
v4 +

11

725760
v6 +

2881

159667200
v8 + · · · = 1

12
+O(v2).

Therefore, our new proposed method is of order four. By a simple computation, we get the local
truncation error of the above method:

L.T.E. =
h5

17280
(2880y(5) + 144f + 288y′′ + 120g2y

(3)) +O(h6).

4. Analysis of phase properties

Definition 4.1. For the TDRK with stability function M(iθ, v), the following two quantities

P̃ (θ, v) = θ − arg(M(iθ, v)), D̃(θ, v) = 1− |M(iθ, v)|

are called the phase-lag (dispersion) and amplification factor error (dissipation), respectively. If

P̃ (θ, v) = cφθ
q+1 +O(θq+3), D̃(θ, v) = cdθ

p+1 +O(θp+3),

then the corresponding TDRK is said to be of a phase lag order q and dissipation order p, respectively.

Setting r = v/θ = ω/λ, in which λ denotes the real frequency of the studied fist-order differential
equation and ω is the corresponding fitting frequency, we can deduce the phase lag and the dissipation error
of the optimized explicit TDRK method derived in the above section:

P̃ (θ, rθ) =
(1− r2)2

120
θ5 +O(θ7),

D̃(θ, rθ) =
(r2 − 1)(4r2 − 5)

720
θ6 +O(θ8).

Thus, the new optimized explicit TDRK has a phase-lag of order four and a dissipation of order five.
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5. Numerical results

In this section, we shall compare the new method with some existing highly efficient integrators in the
scientific literature, which are listed as follows:

(i) MTDRKA: The first modified TDRK method derived by Fang et al in [3].

(ii) MTDRKB: The second modified TDRK method derived by Fang et al in [3].

(iii) NETDRK: The new explicit TDRK method derived in Section 3.

Problem 5.1. Consider the following inhomogeneous equation

y′′ + 100y = 99 sin(x), y(0) = 1, y′(0) = 11,

which has the following exact solution:

y(x) = cos(10x) + sin(10x) + sin(x).

Here, we choose ω = 10 and solve the problem numerically on the interval [0, 100]. We list the end-point
global error in Table 1, in which h denotes the step-size.

Table 1: Comparison of the end-point global errors

h MTDRKA MTDRKB NETDRK

1/28 1.7745×10−7 3.5285×10−7 1.8245×10−9

1/29 5.5992×10−9 1.1082×10−8 1.1370× 10−10

1/210 1.7850× 10−10 3.4981× 10−10 7.0784× 10−12

Problem 5.2. Consider the following linear periodic problem:

y′′ + 10000y = (10000− 4x2) cos(x2)− 2 sin(x2), y(0) = 1, y′(0) = 100,

which has exact solution:
y(x) = sin(100x) + cos(x2).

Here we take ω = 100, and the numerical results given in Table 2 are derived with the constant step-size
h = 2−9−i, i = 1, 2, 3, 4 on the interval [0, 100].

Table 2: Comparison of the end-point global errors

h MTDRKA MTDRKB NETDRK

1/210 1.7× 10−3 1.6× 10−3 1.7× 10−3

1/211 8.4215× 10−4 8.3939× 10−4 8.4172× 10−4

1/212 4.1945× 10−4 4.1939× 10−4 4.1946× 10−4

1/213 2.0936× 10−4 2.0936× 10−4 2.0936× 10−4

The results in Tables 1-2 indicate that our method is comparable to the other two methods.

6. Conclusion

In this paper, a new optimized explicit two-derivative Runge-Kutta method is proposed, which nullifies
the dispersion, the dissipation, and the first derivative of the dispersion, and its local truncation error is
also given. Some numerical experiments are presented at the end.
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