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Abstract

In this paper, we introduce exact solutions for the initial value problems of two classes of a linear system of fractional
ordinary differential equations with constant coefficients. This article concerns a linear system of fractional order, where the
orders are equal or different rational numbers between zero and one. The conformable fractional derivative presented by [R.
Khalil, M. Al Horani, A. Yousef, M. Sababheh, J. Comput. Appl. Math., 264 (2014), 65–70] is considered. Two different approaches
are adopted to give analytic solutions for fractional order systems. The presented methods are illustrated by analyzing some
numerical examples that show the effectiveness of the implemented methods.
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1. Introduction

Fractional derivatives are significant tools for describing memory and genetic properties of a wide
range of materials and phenomena [8, 29, 31]. This is the most significant benefit of fractional derivatives
over classical integer-order derivatives.

Many articles have been published on the differential equations of fractional order in several fields
of science and engineering [8, 11, 14, 20–23, 27]. The analytic and approximate solutions of linear and
nonlinear systems of ordinary differential equations of fractional order have been discussed by several
authors, see [4, 13, 19, 25, 30]. In particular, Odibat [26] investigated the existence, uniqueness, and
stability of the exact solution for linear Caputo fractional differential equations systems.

In 2014, the authors Khalil et al. defined a new fractional derivative in [18]. It is based on the definition
of the basic limit of the derivative. The new simple fractional derivative is called the conformable frac-
tional derivative. Since then the conformable fractional derivatives have been the focus of many studies.
In [1], the author appointed the basic concepts in fractional calculus based on the conformable fractional
derivative. In particular, the fractional chain rule, the fractional power series, and the fractional version
of the Laplace transform have been presented. A general solution of the fractional Cauchy Euler equation
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has been investigated in [5]. Moreover, in [2], the form of the Wronskian for conformable fractional linear
differential equations with variable coefficient and a formulation of Abel’s formula have been discussed.
Fractional Fourier series has been introduced to solve the fractional partial differential equations in [3].
For more detailed information, refer to references [6, 7, 9, 10, 12, 15, 17, 24].

In this paper, we provide an exact solution for the nonhomogeneous linear system of fractional ordi-
nary differential equations with constant coefficients:

Dα1x1(t) =

n∑
j=1

a1jxj + f1(t), Dα2x2(t) =

n∑
j=1

a2jxj + f2(t), . . . Dαnxn(t) =
n∑
j=1

anjxj + fn(t), (1.1)

where Dαi = dαi
dtαi is the conformable fractional derivative of order αi ∈ (0, 1], for i = 1, 2, . . . ,n and the

coefficients aij are constants. The system is subject to the initial conditions

x1(0) = c1, x2(0) = c2, . . . , xn(0) = cn.

If α = α1 = α2 = · · · = αn, then the system is called a commensurate linear order system, otherwise
system (1.1) denotes an incommensurate linear order system.

The article is organized as follows. In Section 2, we present some basic definitions and notations
adopted throughout the article. Section 3 is devoted to solve commensurate linear system of fractional
order, where two methods have been implemented. Finding an exact solution of incommensurate linear
system has been discussed in Section 4. Finally, conclusions are presented in Section 5.

2. Preliminaries and notations

In this section, we present the main definitions and properties of the conformable fractional derivative
and the fractional Laplace transform.

Definition 2.1. The conformable fractional derivative of order α, 0 < α 6 1 of f : (0,∞) → R is defined
by

Tα(f)(x) := lim
ε→0

f(x+ εx1−α) − f(x)

ε

for all x > 0. If the limit exists, we say that f is α-differentiable at x. Moreover, if f is α-differentiable in
some (0,a), a > 0, and lim

x→0+
Tα(f)(x) exists, then define

Tα(f)(0) := lim
x→0+

Tα(f)(x).

In contrast with other common fractional derivatives, f can be α-differentiable at a point but not nec-
essarily differentiable at that point. For example, the function f(x) =

√
x is not differentiable at 0 but

T1/2(f)(0) = lim
x→0+

T1/2(f)(x) = 1/2.

The conformable fractional derivative satisfies all main properties of the usual derivative, e.g., linearity,
multiplication, quotient rules, besides the chain rule.

The relation between the conformable fractional and usual first derivative is given by the following
remark.

Remark 2.2. Let α ∈ (0, 1] and f be differentiable and α-differentiable for all x > 0. Then

Tα(f)(x) = x
1−α df

dx
(x).

The fractional exponential function, denoted by e
1
αx

α
, is defined by

e
1
αx

α

=

∞∑
j=0

xαj

αjj!
.
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Remark 2.3. The conformable fractional derivative of common functions are

• Tα(c) = 0, for any constant c;

• Tα(x
r) = rxr−α, r ∈ R;

• Tα(sin 1
αx
α) = cos 1

αx
α;

• Tα(cos 1
αx
α) = − sin 1

αx
α;

• Tα(sinh 1
αx
α) = cosh 1

αx
α;

• Tα(cosh 1
αx
α) = sinh 1

αx
α.

• Tα(e
1
αx

α
) = e

1
αx

α
.

Next, we introduce the fractional integral of order α.

Definition 2.4. Let α ∈ (0, 1] and x ∈ [a, ∞), a > 0. The conformable fractional integral of order α is
given by

(Iaαf)(x) :=

∫x
a

f(t)dα(t,a) =
∫x
a

(t− a)α−1f(t)dt.

When a = 0, we use dα(t).

Theorem 2.5. Let f : [a, ∞)→ R be any continuous function, then for all x > 0 and α ∈ (0, 1],

TαI
a
α(f)(x) = f(x).

Now we define a fractional version of Laplace transform which will be very useful in solving a linear
system of fractional differential equations.

Definition 2.6. The fractional Laplace transform of order α ∈ (0, 1] is defined by

Lα{f(t)} = Fα(s) :=
∫∞

0
e−s

tα

α f(t) dα(t) =

∫∞
0
e−s

tα

α f(t) tα−1dt.

The following theorem gives the fractional Laplace transform of the derivative of a function.

Theorem 2.7. Consider f : [0,∞)→ R be differentiable real valued function. Then

Lα{f(α)(t)} = sFα(s) − f(0), s > 0.

Proof. By the definition, using Remark 2.2, we obtain

Lα{f(α)(t)} =
∫∞

0
e−s

tα

α f(α)(t) tα−1dt =

∫∞
0
e−s

tα

α f ′(t) dt.

Using integration by parts with u = e−s
tα

α and dv = f ′(t), we obtain

Lα{f(α)(t)} = lim
k→∞(e−s

tα

α f(t)
∣∣∣k
0
) + s

∫∞
0
f(t)tα−1e−s

tα

α dt = −f(0) + sFα(s).

Remark 2.8. The following are fractional Laplace transform of common functions

• Lα{1}(s) = 1
s , s > 0;
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• Lα{t}(s) = α1/α Γ(1+1/α)
s1+1/α , s > 0;

• Lα{tr}(s) = αr/α
Γ(1+r/α)
s1+r/α , s > 0;

• Lα{eλ
tα

α }(s) = 1
s−λ , s > λ;

• Lα{sinωt
α

α }(s) = ω
s2+ω2 , s > 0;

• Lα{cosωt
α

α }(s) = s
s2+ω2 , s > 0;

• Lα{sinhωt
α

α }(s) = ω
s2−ω2 , s > ω;

• Lα{coshωt
α

α }(s) = s
s2−ω2 , s > ω;

• Lα{e−c
tα

α sin t
α

α }(s) = 1
(s+c)2+1 , s > −c.

If f and g are functions that are equal to zero for t < 0, then the convolution of f and g, denoted by
f ∗ g is defined by

(f ∗ g)(t) =
∫t

0
f(t− x)g(x)dx.

Remark 2.9. If Lα(f)(t) = Fα(s) and Lα(g)(t) = Gα(s), then

Lα{(f ∗ g)(t)} = Fα(s).Gα(s).

The sequential conformable fractional derivative of order n is defined by

Tnαf(x) = TαTα . . . Tα︸ ︷︷ ︸
n times

f(x).

Another useful property of the fractional Laplace transform which is used in solving incommensurate
system is given in the following theorem. For proof refer to [16].

Theorem 2.10. If f : [a, ∞)→ R be any function in Cn, then

Lα{Tnα(f)(t)} = snFα(s) − sn−1f(0), 0 < α 6 1/n.

3. Commensurate fractional order linear system

In this section, we derive the exact solution for the linear system of ordinary differential equations of
fractional order Eq. (1.1), where all the fractional derivatives are in the same order, i.e., α1 = α2 = · · · =
αn = α. The system can be expressed by

dα

dtα
x(t) = Ax(t) + f(t), t ∈ (0,a], (3.1)

where x ∈ Rn, A = [aij] ∈ Rn×Rn, f(t) = [f1(t), f2(t), . . . , fn(t)]T and dα

dtα is the α-conformable fractional
derivative. The corresponding homogeneous system of (3.1) is given by

dα

dtα
x(t) = Ax(t), t ∈ (0,a]. (3.2)

Definition 3.1. The solution x(t) of system (3.2) is called stable if, for any initial condition x0, there exists
ε > 0 such that ||x(t)|| 6 ε for all t > 0. The solution is called asymptotically stable if it is stable and
||x(t)||→ 0 as t→∞.
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Stability of conformable fractional systems has been investigated in [28] where some stability condi-
tions have been derived. In [28], the following results are presented

Theorem 3.2. The solution of system (3.2) is given by

x(t) = x0e
1
αAt

α

,

whenever the solution is differentiable on (0, ∞).

Theorem 3.3. The system (3.2) is asymptotically stable if and only if the eigenvalues of A have strictly negative
real parts, i.e., λi + λi < 0 for all λi ∈ σ(A).

In this paper, we investigate two methods to solve the system (3.1). The first approach is based on
finding the eigenvalues and the corresponding eigenvectors of the matrix A, while the second approach
is based on using the fractional Laplace transform.

3.1. The eigenvalue-eigenvector approach

Let λ1, λ2, . . . , λn be the eigenvalues of A and their corresponding eigenvectors are v(1), v(2), . . . , v(n),
respectively, i.e., satisfy (A − λiI)v(i) = 0, for all i = 1, 2, . . . ,n. Therefore the general solution of the
system (3.2) is

x(t) = c1v(1)eλ1
tα

α + c2v(2)eλ2
tα

α + · · ·+ cnv(n)eλn
tα

α ,

where c1, c2, . . . , cn are arbitrary constants. If [x1(t), x2(t), . . . , xn(t)]T is the solution of the system (3.2)
and the initial condition x(0) = x0, then the initial value problem

dα

dtα
x(t) = Ax(t) + f(t), t ∈ (0,a], x(0) = x0,

has the solution ([26]) 
x1(t)
x2(t)

...
xn(t)

+


∫t

0 x1(τ− t)f1(τ)dτ∫t
0 x2(τ− t)f2(τ)dτ

...∫t
0 xn(τ− t)fn(τ)dτ

 .

3.2. The fractional Laplace transform approach

Applying the fractional Laplace transform Lα on both sides of the system (3.1), using Theorem 2.7,
we obtain 

sX1(s) − x1(0)
sX2(s) − x2(0)

...
sXn(s) − xn(0)

 = A


X1(s)
X2(s)

...
Xn(s)

+


F1(s)
F2(s)

...
Fn(s)

 ,

where Xi(s) = Lα{xi(t)} and Fi(s) = Lα{fi(t)}, for i = 1, 2, . . . ,n. By reordering the terms, we have


X1(s)
X2(s)

...
Xn(s)

 =



1
s−a11

(x1(0) + F1(s) +
∑n
j=1,
j6=1

a1jXj(s))

1
s−a22

(x2(0) + F2(s) +
∑n
j=1,
j6=2

a2jXj(s))

...
1

s−ann
(xn(0) + Fn(s) +

∑n
j=1,
j6=n

anjXj(s))


. (3.3)
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Solving system (3.3) and applying the inverse Laplace transform, we obtain the exact solution of the
system (3.1). For the homogeneous system (3.2), one can define

M(s) =


a11 − s a12 . . . a1n
a21 a22 − s . . . a2n

...
...

...
an1 a2n . . . ann − s

 .

It follows from Cramer’s rule that the solution can be obtained by

Xk(s) =
det(Mk(s))

det(M(s))
,

for k = 1, 2, . . . , n, where Mk(s) is the matrix reshaped by replacing the kth column of M(s) by
x1(0)
x2(0)

...
xn(0)

 .

Example 3.4. Consider the homogeneous commensurate linear system of fractional ordinary differential
equations d

αx1
dtα
dαx2
dtα
dαx3
dtα

 = A

x1
x2
x3

 , A =

0 1 0
1 −1 1
0 1 0

 , (3.4)

where 0 < α 6 1.
Two approaches are used for solving the initial value problem consisting of the system (3.4) and the

initial condition x(0) = x0. The first is based on finding the eigenvalues and the corresponding eigenvec-
tors of the coefficients matrix A, while the second is based on using the fractional Laplace transform.

First method: The eigenvalues of the matrix A are λ1 = −2, λ2 = 0, λ3 = 1 and their corresponding
eigenvectors are v(1) = [1,−2, 1]T , v(2) = [1, 0,−1]T , v(3) = [1, 1, 1]T , respectively. Therefore, the general
solution of (3.4) is

x(t) = c1

 1
0
−1

+ c2

 1
−2
1

 e− 2
αt
α

+ c3

1
1
1

 e 1
αt
α

,

where c1, c2 and c3 are arbitrary constants. In particular, the initial value problem consisting of the system
(3.4) and the initial condition x1(0)

x2(0)
x3(0)

 =

 2
−5
0

 (3.5)

has the unique solution

x(t) =

 1
0
−1

+ 2

 1
−2
1

 e−2
α t

α

−

1
1
1

 e 1
αt
α

. (3.6)

The exact solution (3.6) is shown in Figure 1 when α = 1, α = 0.95, α = 0.5 and α = 0.1. The solution
components decay towards −∞ as t increases due to the existence of the positive eigenvalue λ3, the
negative coefficient c3, and the nonzero components of the corresponding eigenvector. As shown in
Figure 1, the system (3.4) is not stable.
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(a) α = 1. (b) α = 0.95.

(c) α = 0.5. (d) α = 0.1.

Figure 1: Plots of x1(t), x2(t) and x3(t) versus t for Example 3.4.

Second method: Applying fractional Laplace transform Lα to both sides of the system (3.4), we obtain

sX1(s) −X2(s) =x1(0), −X1(s) + (s+ 1)X2(s) −X3(s) =x2(0), −X2(s) + sX3(s) =x3(0), (3.7)

where X1(s) = Lα{x1(t)}, X2(s) = Lα{x2(t)} and X3(s) = Lα{x3(t)}. Solving the linear system (3.7), we
obtain

X1(s) =
1
s

[
x1(0) +

x1(0) + x3(0)) + sx2(0
s2 + s− 2

]
,

X2(s) =
x1(0) + x3(0) + sx2(0)

s2 + s− 2
,

X3(s) =
1
s

[
x3(0) +

x1(0) + x3(0) + sx2(0)
s2 + s− 2

]
.

Substituting the initial condition (3.5), using the following decompositions

1
(s+ 2)(s− 1)

= −
1

3(s+ 2)
+

1
3(s− 1)

,

s

(s+ 2)(s− 1)
=

2
3(s+ 2)

+
1

3(s− 1)
,

1
s(s+ 2)(s− 1)

= −
1
2s

+
1

6(s+ 2)
+

1
3(s− 1)

,

we obtain

X1(s) =
1
s
+

2
(s+ 2)

−
1

(s− 1)
, X2(s) =

−4
s+ 2

−
1

s− 1
, X3(s) =

−1
s

+
2

(s+ 2)
−

1
(s− 1)

. (3.8)

Now, applying the inverse fractional Laplace transform to the system (3.8), and using Remark 2.8, we get
the solution

x1(t) = 1 + 2e
−2
α t

α

− e
1
αt
α

, x2(t) = −4e
−2
α t

α

− e
1
αt
α

, x3(t) = −1 + 2e
−2
α t

α

− e
1
αt
α

,

which agrees with the solution given by the first method.
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Example 3.5. Consider the nonhomogeneous commensurate linear system
d1/2x1
dt1/2

d1/2x2
dt1/2

d1/2x3
dt1/2

 = A

x1
x2
x3

+

 1
t

t1/2

 , A =

0 1 0
1 −1 1
0 1 0

 , (3.9)

subject to the initial condition [x1(0), x2(0), x3(0)] = [1, −1, 0]. Applying fractional Laplace transform
L1/2 to the system (3.9), using the initial condition, and partial fractions decomposition, we obtain

X1(s) = −
15
48s

+
1

8s2 −
3

4s3 +
5

6(s− 1)
+

23
48(s+ 2)

,

X2(s) = −
7
8s

−
3

4s2 +
5

6(s− 1)
−

23
24(s+ 2)

,

X3(s) = −
63
48s

−
7

8s2 +
1

4s3 +
5

6(s− 1)
+

23
48(s+ 2)

.

(3.10)

Applying the inverse Laplace transform to Eq. (3.10) and using Remark 2.8, we get the following exact
solution

x1(t) = −
15
48

+
1
8
t1/2 −

3
2
t+

5
6
e2t1/2

+
23
48
e−4t1/2

,

x2(t) = −
7
8
−

3
4
t1/2 +

5
6
e2t1/2

−
23
24
e−4t1/2

,

x3(t) = −
21
16

−
7
8
t1/2 +

1
2
t+

5
6
e2t1/2

+
23
48
e−4t1/2

.

The exact solution of the initial value problem is shown in Figure 2.

Figure 2: Plots of x1(t), x2(t), and x3(t) versus t for Example 3.5.

Example 3.6. Consider the initial value problem(
d1/4x
dt1/4

d1/4y

dt1/4

)
=

(
−5 1
4 −2

)(
x

y

)
,
(
x(0)
y(0)

)
=

(
1
0

)
. (3.11)

According to our method, the exact solution is given by

x(t) =
4
5
e−24t1/4

+
1
5
e−4t1/4

, y(t) = −
4
5
e−24t1/4

+
4
5
e−4t1/4

.

All eigenvalues of A are negative real numbers. Therefore, the system (3.11) is asymptotically stable, see
Figure 3.
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Figure 3: Plots of x(t) and y(t) versus t for Example 3.6.

Example 3.7. Consider the systemd
αx1
dtα
dαx2
dtα
dαx3
dtα

 = A

x1
x2
x3

 , A =

5 −4 −6
2 1 −2
2 −3 −3

 , (3.12)

where 0 < α 6 1. The eigenvalues of the matrix A are λ1 = −1, λ2 = 2 + i, λ3 = 2 − i and their corre-
sponding eigenvectors are v(1) = [1, 0, 1]T , v(2) = [1 − i,−1 − i, 1]T , v(3) = [1 + i,−1 + i, 1]T , respectively.
Therefore, the general solution of the system (3.12) is

x(t) = c1

1
0
1

 e− 1
αt
α
+ c2

 1
−1
1

 e 2+i
α t

α
+ c3

 1
−1
1

 e 2−i
α t

α
+
c2

i

1
1
0

 e 2+i
α t

α
−
c3

i

1
1
0

 e 2−i
α t

α
, (3.13)

where c1, c2, and c3 are arbitrary constants. If we consider α = 1, then the general solution (3.13) can be
written as

x(t) = c1

1
0
1

 e−t + c2e
2t

cos t

 1
−1
1

+ sin t

1
1
0

+ c3e
2t

cos t

−1
−1
0

+ sin t

 1
−1
1

 .

By Figure 4, we can detect that the system (3.12) is not asymptotically stable for the given values of α.

(a) α = 1. (b) α = 0.9.

(c) α = 0.5. (d) α = 0.1.

Figure 4: Plots of x1(t), x2(t) and x3(t) versus t for Example 3.7.
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Example 3.8. Consider the systemd
αx1
dtα
dαx2
dtα
dαx3
dtα

 = A

x1
x2
x3

 , A =

−2 0 1
1 1 0
0 0 −2

 , (3.14)

where 0 < α 6 1. The eigenvalues of the matrix A are λ1 = −1, λ2 = −2 with multiplicity of 2, and
their corresponding eigenvectors are v(1) = [0, 1, 0]T , v(2) = [−3, 1, 0]T , respectively. To find the third
eigenvector, we solve

(A+ 2I)v(3) =

−3
1
0


to get

v(3) =

 1
0
−3

 .

Therefore, the general solution of (3.14) is

x = c1

0
1
0

 e− 1
αt
α

+ c2

−3
1
0

 e− 2
αt
α

+ c3

−3
1
0

 tα

α
e−2 1

αt
α

+

 1
0
−3

 e−2 1
αt
α

 .

As shown in Figure 5, the system (3.14) is asymptotically stable.

(a) α = 0.9. (b) α = 0.5

Figure 5: Plots of x1(t), x2(t) and x3(t) versus t for Example 3.8.

4. Incommensurate fractional order linear system

This section concerns with the incommensurate linear system of differential equations of fractional
order,

dα

dtα
x(t) = Ax(t) + f(t), t ∈ (0,a], (4.1)

where x ∈ Rn, A ∈ Rn ×Rn, f(t) = [f1(t), f2(t), . . . , fn(t)]T and α = [α1, α2, . . . , αn] denotes the
fractional orders, d

α

dtα =
[
dα1
dtα1 , dα2

dtα2 , . . . , dαn

dtαn

]
and dαi

dtαi is the conformable fractional derivative of order
αi ∈ (0, 1]. In fact, we can write αi = ri/mi for some ri, mi ∈ N for i = 1, 2, . . . , n. Let µ = 1/m
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where m = L.C.M.{m1, m2, . . . , mn}, then αi = kiri/m for some ki ∈N. Applying the fractional Laplace
transform Lµ to the system (4.1), using Theorem 2.10, we obtain

sk1X1(s) − s
k1−1x1(0)

sk2X2(s) − s
k2−1x2(0)

...
sknXn(s) − s

kn−1xn(0)

 = A


X1(s)
X2(s)

...
Xn(s)

+


F1(s)
F2(s)

...
Fn(s)

 ,

where Xi(s) = Lµ{xi(t)} and Fi(s) = Lµ{fi(t)} for all i = 1, 2, . . . , n.

Example 4.1. Consider the initial value problem(
d1/2x
dt1/2

d1/3y

dt1/3

)
= A

(
x

y

)
, A =

(
a 0
c d

)
,
(
x(0)
y(0)

)
=

(
x0
y0

)
, (4.2)

where a, c, d ∈ R. The initial value problem (4.2) can be rewritten as:(
d3/6x
dt3/6

d2/6y

dt2/6

)
= A

(
x

y

)
, A =

(
a 0
c d

)
,
(
x(0)
y(0)

)
=

(
x0
y0

)
. (4.3)

Applying Laplace transform L1/6 to (4.3), using Theorem 2.10, we obtain

X(s) =
s2

s3 − a
x0, Y(s) =

s2

(s2 − d)(s3 − a)
cx0 +

s

s2 − d
y0,

where X(s) = L1/6{x(t)} and Y(s) = L1/6{y(t)}. In particular, in case a = 1, c = 6, and d = −1, using
partial fractions decompositions, we obtain

X(s) =
s2

s3 − 1
x0 =

[
1

3(s− 1)
+

2s+ 1
3(s2 + s+ 1)

]
x0,

Y(s) =
6s2

(s2 + 1)(s3 − 1)
x0 +

s

s2 + 1
y0 = x0

[
1

s− 1
+

2(s+ 1/2) − 3
(s+ 1/2)2 + (

√
3/2)2

+
3(−s+ 1)
s2 + 1

]
+ y0

s

s2 − 1
.

Applying the inverse fractional Laplace transform, we get the exact solution

x(t) =
x0

3
(e6t1/6

+ 2e−3t1/6
cos 3

√
3t1/6),

y(t) = x0(e
6t1/6

+ 2e−3t1/6
cos 3

√
3t1/6 − 3e−3t1/6

sin 3
√

3t1/6 − 3 cos 6t1/6 + 3 sin 6t1/6) + y0 cos 6t1/6.

Example 4.2. Consider the initial value problem(
d1/2x
dt1/2

d1/3y

dt1/3

)
= A

(
x

y

)
+

(
1
t1/6

)
, A =

(
a 0
0 d

)
,
(
x(0)
y(0)

)
=

(
x0
y0

)
, (4.4)

where a, d ∈ R . Applying Laplace transform L1/6 to the initial value problem (4.4), we obtain

X(s) =
s2

s3 − a
x0 +

1
s(s3 − a)

, Y(s) =
s

s2 − d
y0 +

1
6s2(s2 − d)

.

In particular, in case a = 1, and d = −1 we have

X(s) =
s2

s3 − 1
x0 +

1
s(s3 − 1)

, Y(s) =
s

s2 + 1
y0 +

1
6s2(s2 + 1)

. (4.5)
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Applying the inverse fractional Laplace transform to Eq. (4.5), using the following decompositions

s2

s3 − 1
=

1
3(s− 1)

+
2
3

s+ 1/2
[(s+ 1/2)2 + (

√
3/2)2]

,

1
s(s3 − 1)

= −
1
s
+

1
3(s− 1)

+
2
3

s+ 1/2
[(s+ 1/2)2 + (

√
3/2)2]

,

1
s2(s2 + 1)

= −
1
s2 +

1
s2 + 1

,

we obtain the following exact solution

x(t) =
x0

3
(e6t1/6

+ 2e−3t1/6
cos 3

√
3t1/6) − 1 +

1
3
(e6t1/6

+ 2e−3t1/6
cos 3

√
3t1/6),

y(t) = y0 cos 6t1/6 − t1/6 +
1
6

sin 6t1/6.

Example 4.3. Consider the initial value problem


dx
dt

d1/2y

dt1/2

d1/2z
dt1/2

 =


−2 3 1

0 −1 −2

0 4 5



x

y

z

 ,


x(0)

y(0)

z(0)

 =


x0

y0

z0

 . (4.6)

In agreement with our approach, applying fractional Laplace transform L1/2 to the initial value problem
(4.6), using Theorem 2.10, we achieve

X(s) =
x0s

3 − 4x0s
2 + (3x0 + 3y0 + z0)s+ (−11y0 − 5z0)

(s2 + 2)(s− 1)(s− 3)
,

Y(s) =
y0s− (5y0 + 2z0)

(s− 3)(s− 1)
,

Z(s) =
z0s+ (4y0 + z0)

(s− 1)(s− 3)
.

(4.7)

Adopting the inverse Laplace transform to Eq. (4.7), using the following decompositions

1
(s− 3)(s− 1)

=
1/2
s− 3

−
1/2
s− 1

,

s

(s− 3)(s− 1)
=

3/2
s− 3

−
1/2
s− 1

,

1
(s2 + 2)(s− 3)(s− 1)

=
1/22
s− 3

−
1/6
s− 1

+
4s+ 1

33(s2 + 2)
,

s

(s2 + 2)(s− 3)(s− 1)
=

3/22
s− 3

−
1/6
s− 1

+
s− 8

33(s2 + 2)
,

s2

(s2 + 2)(s− 3)(s− 1)
=

9/22
s− 3

−
1/6
s− 1

+
−8s− 2

33(s2 + 2)
,

s3

(s2 + 2)(s− 3)(s− 1)
=

27/22
s− 3

−
1/6
s− 1

+
−2s+ 16
33(s2 + 2)

,



A. Al-Habahbeh, J. Math. Computer Sci., 28 (2023), 123–136 135

and using Remark 2.8, we obtain the following exact solution

x(t) =
1
3
(4y0 + 2z0)e

2t1/2
−

1
11

(y0 + z0)e
6t1/2

+
1
33

(33x0 − 41y0 − 19z0) cos 2
√

2t1/2

−
1

33
(35y0 + 13z0) sin 2

√
2t1/2,

y(t) = (2y0 + z0)e
2t1/2

− (y0 + z0)e
6t1/2

,

z(t) = (−2y0 − z0)e
2t1/2

+ 2(y0 + z0)e
6t1/2

.

5. Conclusions

The main intent of this work has been to construct an analytic solution for commensurate and incom-
mensurate classes of linear fractional order systems. The intent has been attained by using the eigenvalue-
eigenvector method and the fractional Laplace transform method. These methods provide the solutions
in terms of exponential functions. Numerical examples have been given to exhibit that the two methods
are efficient.
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