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Abstract

In the hybrid context of hesitant bipolar-valued fuzzy hypersoft relations, the modern notion of extended roughness is
constructed to rough approximations of hypersoft sets and fuzzy sets based on such context in this research. Then, corresponding
examples are proposed, and further verified in connections between the hesitant bipolar-valued fuzzy hypersoft relations and
the upper (resp., lower) rough approximations of hypersoft sets and fuzzy sets. Specifically, relationships are shown between the
non-rough hypersoft sets (resp., non-rough fuzzy sets) and hesitant bipolar-valued fuzzy hypersoft reflexive relations together
with hesitant bipolar-valued fuzzy hypersoft antisymmetric relations. To find the optimal multi-parameter of a hypersoft set such
that the best choice exists, the notion of the set-valued measurement issues and decision-making algorithm for such objective is
developed in the terms of rough set theory. Associated with the aforementioned accomplishments, the notion of novel models
has been used to semigroups. Subsequently, the argumentation within relationships concerning the upper (resp., lower) rough
approximations of hypersoft quasi-ideals and fuzzy quasi-ideals are proved under hypersoft homomorphism problems.
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1. Introduction

A philosophical standpoint of vagueness is reflected in the notion of set theory as discussed in [9, 40]
by computer scientists and mathematicians. Then, discovered that the meaning of vagueness is considered
as the property of sets and general sense reasoning based on natural language. Furthermore, vagueness
may be camouflaged in a decision-making problem for computer science, machine learning, artificial
intelligence. In the study of vagueness in classical set theory, a detailed study on properties of rough set
theory can be found. The logical implication of rough set theory was originally introduced by Pawlak
[39] in 1982. The notion of rough (inexact) and definable (exact) sets was introduced in approximation
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spaces based on equivalence relations, where upper and lower approximations are two crisp (precise) sets
(or two basic operations in approximation spaces) depending on vague (imprecise) data. This theory can
be characterized as a mathematical model in the following.

Given a non-empty universe V and an equivalence relation E on V, (V,E) is denoted as a Pawlak’s
approximation space, and [v]¢ is denoted as an equivalence class of v € V induced by E. In the following,
let (V,E) be a given Pawlak’s approximation space and let X be a subset of V. Upon a collection of all
equivalence classes generated by all elements in V, Pawlak suggests an approximation model as follows:

[XTe = |J{WE : Men X # 0}

vev

is said to be an upper approximation of X within (V, E). The set

(XJe = J{Me: Me X

vev

is said to be a lower approximation of X within (V, E). A difference [X]¢ — | X]g is said to be a boundary
region of X within (V, E). As introduced above, such sets are obtained the following interpretation.

(i) [X]e is a set of all elements, which can be possibly classified as X using E (are possibly X in view of
E). In this way, a complement of [X] is said to be a negative region of X within (V, E).

(i) [X]g is a set of all elements, which can be certain classified as X using E (are certainly X in view of
E). In this way, such a set is said to be a positive region of X within (V, E).

(iii) [X]e — |X]E is a set of all elements, which can be classified neither as X nor as non-X using E.

In what follows, a pair ([ X]g, | X]¢) is said to be a rough (or an inexact) set of X within (V, E) if [X]¢ — | X]&
is a non-empty set. In this way, X is said to be a rough set. X is said to be a definable (or an exact) set
within (V, E) if [X]g — [ X]E is an empty set.

As mentioned above, observe that if the boundary region of a set is empty it means that the set is
crisp. In the opposite case, the set is rough. Besides, if the boundary region of a set is non-empty it means
that our information (or knowledge) about the set is not satisfactory to define the set exactly.

In Pawlak’s approximation spaces, rough set theory is developed to expand notions, namely, rough
fuzzy sets and rough soft sets. In 1965, fuzzy set theory was introduced by Zadeh [53]. Because of its
wide applicability and also due to natural theoretical interest there had been many kinds of research on
fuzzy set theory. In a fuzzy context, the notion of the roughness of fuzzy sets was proposed by Dubois
and Prade [15] in 1990. A detailed study on upper and lower approximations of a fuzzy membership
function can be found. In 1999, soft set theory was introduced by Russian researcher Molodtsov [31].
This theory has been applied to many different fields with great success. Especially, it is used in decision-
making problems. Under the combination of rough set theory and soft set theory, the roughness of soft
sets was introduced by Feng et al. [17] in 2010. In this concept, upper and lower approximations of a
set of approximate elements (or alternative objects) of a soft set are studied. From the concept under
decision-making problems in sense of soft set theory, the optimal parameter has one element for the best
alternative. To find multi-parameter such that the best choice exists, the concept of hypersoft sets is one
of many powerful tools for this finding. Such a concept is referred to as a generalization of soft sets. This
generalized notion was proposed by Smarandache [46] in 2018. Moreover, many fundamental operations
on hypersoft sets are introduced by Abbas et al. [1] in 2020. In particular, the notion of roughness for
hypersoft sets with applications was proposed by Rahman et al. [45] in recent years. This approach is
based on Pawlak’s approximation spaces. Hypersoft sets are constantly researched and the results are
interesting as can be seen in [8, 12, 33-35, 37].

Based on the above-mentioned study with respect to Pawlak’s rough set theory, two approximation
operations belong to approximation spaces based on equivalence relations. The popular extensions of
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this, such as arbitrary binary relations-based approximation spaces, fuzzy binary relations-based approx-
imation spaces, soft binary relations-based approximation spaces, and fuzzy soft binary relations-based
approximation spaces, are well-known references to deal with roughness problems. Definitions and re-
sults can be found in (see, e.g., [11, 21, 29, 30, 43, 44, 52]).

In extended roughness works, the concept of fuzzy binary relations (or fuzzy relations) is taken in
almost all the literature to date. This concept was introduced by Zadeh [54] in 1971. It is defined as the
generalization of a crisp set. Several researchers pointed out that different extensions of fuzzy relations
have been carried out according to three different situations:

(i) In the type of asymmetric bipolarity, Zhang [57] introduced the notion of bipolar fuzzy sets in 1994.
There are well-known references to deal with bipolar information (see, e.g., [18, 36, 59]). A bipolar
fuzzy set is a pair of mappings, namely, a positive membership function and negative membership
function. The positive membership degree of an element is in +1 := [0, 1], the negative membership
degree of an element is in —I := [—1,0]. In 2019, the notion of bipolar fuzzy relations was proposed
by Lee and Hur [23] in terms of bipolar fuzzy sets, which is an extended concept of fuzzy relations
under fuzzy logic.

(ii) Molodtsov’s soft set theory successfully applied the soft theory in several directions. In 2001, Maji
et al. [25] proposed the notion of fuzzy soft sets by embedding the ideas of fuzzy sets in terms of
soft sets. Sometimes, the fuzzy soft set is referred to as a generalization of fuzzy sets. In recent
years, Mattam and Gopalan [29] presented the concept of fuzzy soft binary relations (or fuzzy soft
relations) in terms of fuzzy soft sets, which is used for approximations in the sense of rough set
theory. The importance of the fuzzy soft relation and fuzzy soft set can be addressed into many
tasks where a higher order of uncertainty is relevant, such as those in image processing [30].

(iii) As an extension of fuzzy set theory, in 2010, Torra [48] proposed the notion of hesitant fuzzy sets
in which the membership degree of a given element is defined as a set of possible values in +I. In
2014, Deepak and John [14] introduced the concept of hesitant fuzzy relations in terms of hesitant
fuzzy sets. This is a form of an extended concept of fuzzy relations under the context of set-valued
functions.

In 2019, the notion of hesitant bipolar-valued fuzzy sets was presented as the combination of bipolar-
valued fuzzy sets and hesitant fuzzy sets, which is used in multi-attribute group decision-making. This
special case was introduced by Mandal and Ranadive [27]. In recent years, Wang et al. [49] introduced the
notion of hesitant bipolar-valued fuzzy soft sets. This theory is the development of hesitant bipolar-valued
fuzzy sets, which further improve the accuracy of decision-making.

In growth, rough set theory can solve uncertainty problems in information and algebraic systems.
Definitions and results can be found in, see, e.g., [4-7, 21, 22, 24, 38, 4044, 50, 51, 55, 56, 58]. In particular,
the notion of quasi-ideal of semigroups, introduced by Steinfeld [47] in 1956, was considered under rough
set theory depending on preorder and compatible relations. In other words, the upper and lower rough
approximations of quasi-ideals of semigroups were verified in crisp approximation spaces. This result
was studied by Prasertpong and Buada [42]. Besides, in a fuzzy context, the quasi-ideal of semigroups
is advantageous to develop characterizations in terms of fuzzy subsets of semigroups. This concept
was proposed by Julatha and Siripitukdet [20] in 2017. In this study, we observe that many results in
semigroups can be used to algebraic automata theory for applications related to machine learning.

In this paper, we focus on the notion of rough hypersoft sets and the concept of rough fuzzy sets in
extended approximation spaces. First, we extend the concept of fuzzy relations, injecting the concept of
hesitant bipolar-valued fuzzy soft sets and hypersoft sets. That is, we proposed hesitant bipolar-valued
fuzzy hypersoft relations. We present in full detail how this relation can be further used for building
extended approximation spaces, upper (resp., lower) approximations, and we also demonstrate that the
proposed models exist rough hypersoft sets and rough fuzzy sets. To find the optimal multi-parameter
of a hypersoft set such that the best choice exists, the notion of the set-valued measurement issues and
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decision-making algorithm for such objective is developed in the context of rough set theory. Second, we
further study upper (resp., lower) approximations of hypersoft quasi-ideals over semigroups (resp., fuzzy
quasi-ideals of semigroups) in approximation spaces under semigroups.

The remainder of this paper is organized as follows. In Section 2, we shall recapitulate some of the
earlier definitions and results for the background of the current work. In Section 3, the contributions of
the section are as follows.

(i) We introduce the concept of hesitant bipolar-valued fuzzy hypersoft relations in terms of hesitant
bipolar-valued fuzzy soft sets and hypersoft sets. We extend an approximation space by the sense
of hesitant bipolar-valued fuzzy hypersoft relations.

(ii) We propose the concept of upper (resp., lower) approximations of hypersoft sets and fuzzy sets
in approximation spaces based on hesitant bipolar-valued fuzzy hypersoft relations. We introduce
the notions of rough hypersoft sets and rough fuzzy sets induced by hesitant bipolar-valued fuzzy
hypersoft relations, and corresponding examples are presented.

(iii) We establish associations between hypersoft sets (resp., fuzzy sets) and upper and lower approxi-
mations of hypersoft sets (resp., fuzzy sets) by hesitant bipolar-valued fuzzy hypersoft relations.

In Section 4, the contributions of the section are as follows.

(i) We establish associations between hypersoft quasi-ideals over semigroups (resp., fuzzy quasi-ideals
of semigroups) and upper and lower approximations of hypersoft quasi-ideals over semigroups
(resp., fuzzy quasi-ideals of semigroups).

(ii) We establish connections between two upper and lower approximations of hypersoft quasi-ideals
over semigroups (resp., fuzzy quasi-ideals of semigroups) in the viewpoint of hypersoft semigroup
homomorphism problems.

In Section 5, we contain some concluding remarks pointing to set-valued measurement issues and decision-
making algorithms for decision-making problems. Besides, the work is summarized.
2. Basic notions and earlier works

In this section, we first recall some properties and definitions which will be used in subsequent sec-
tions.

Throughout this paper, K, V, and W denote non-empty sets, and P(V) denotes a collection of all
subsets of V.

2.1. Some essential attributes in semigroups

Definition 2.1 ([13]). Let = be a given binary operation on V. A semigroup is denoted by an algebraic
system (V,*), where x is associative. We usually write simply V instead of (V, ). In the following, if
(V, x) is a semigroup, then ¥ x v is denoted by ¥V for all v,V € V. Given two non-empty subsets X and Y of
a semigroup V, the product X Y (simply XY) is defined by

XY={w:veXand vV € Y}.
Definition 2.2 ([19]). Let V be a semigroup, and let X be a non-empty subset of V.
(i) X is said to be a subsemigroup of V if XX C X.
(ii) X is said to be a left ideal of V if VX C X.
(iif) X is said to be a right ideal of V if XV C X.
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(iv) X 1is said to be an ideal of V if it is a left ideal and a right ideal of V.

Definition 2.3 ([47]). Let V be a semigroup, and let X be a non-empty subset of V. X is said to be a
quasi-ideal of V if XV N VX C X.

Definition 2.4 ([19]). Let V be a semigroup. For an element v € V, v is said to be a regular element if
there exists v € V such that v =vvv. V is said to be a regular semigroup if all elements of V are regular.

Proposition 2.5 ([19]). Let V be a regular semigroup. Then XY = XN Y for every right ideal X and every left ideal
Yof V.

2.2. Some properties of fuzzy sets

Definition 2.6 ([53]). f is said to be a fuzzy subset of V if it is a function from V to the closed unit interval
+1. Specifically, 1y is denoted as a fuzzy subset of V defined by 1y/(v) =1 forall v € V, and 0Oy is denoted
as a fuzzy subset of V defined by Oy (v) =0 forallv € V.

Definition 2.7 ([53]). Let f and g be fuzzy subsets of V.
(i) f C gis denoted by meaning f(v) < g(v) forallv € V.

(ii) A fuzzy set intersection of f and g is denoted by f N g, where (f N g)(v) is a minimum value of f(v)
and g(v) (simply f(v) A g(v)) for allv € V.

(iii) A fuzzy set union of f and g is denoted by fU g, where (f U g)(v) is a maximum value of f(v) and
g(v) (simply f(v) V g(v)) forallv e V.

(iv) A fuzzy set complement of f is denoted by f’, where " is a function from V to +I defined by
f'(v)=1—1(v) forallve V.

Definition 2.8 ([24]). Let f be a fuzzy subset of V and t € +I. The set
vitv2) =y e vifv) > d
is said to be an t-level set of f.

Definition 2.9 ([32]). Let f and g be fuzzy subsets of a semigroup V. The product f o g is defined by

O\ i f vV 7 V 7 .f - VV f ,I V V/
(fog)v) = sup,,_,,imin{f(v), g(V)}}, ifv v?) or some Vv,V €
0, otherwise.

Definition 2.10 ([32]). Let f be a fuzzy subset of a semigroup V.
(i) fis said to be a fuzzy ideal of V if it satisfies
(V) = max{f(v), f(v)}
forallv,v e V.
(ii) fis said to be a fuzzy quasi-ideal of V if it satisfies

folvﬂlvofgf.

Proposition 2.11 ([51]). Let f be a fuzzy subset of a semigroup V. Then f is a fuzzy ideal of V if and only if for all
L€ 41, if VIFY2) is non-empty, then V4>) is an ideal of V.
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Proposition 2.12 ([20]). Let f be a fuzzy subset of a semigroup V. Then f is a fuzzy quasi-ideal of V if and only if
forall v € +1, if VIFY2) is non-empty, then V%> is a quasi-ideal of V..

Definition 2.13 ([54]). Based on Definition 2.6, an element in a collection of all fuzzy subsets of V x W
is said to be a fuzzy relation from V to W. Given a fuzzy relation R from V to W and elements v € V,
w € W, the value R(v,w) in +I is a membership grade of the relation between v and w based on R.

Definition 2.14 ([10]). Let R be a fuzzy relation from V to V. R is said to be a classical fuzzy perfect
antisymmetric relation if for all v,v € V,R(¥,V) > 0 and R(V,V) > 0 imply v = V.

Definition 2.15 ([32]). Let V be a given semigroup, and let R be a fuzzy relation from V to V. R is said to
be a classical fuzzy compatible relation if for all v,v,v € V, R(Yv,vv) > R(V,V) and R(v¥,vv) > R(V, V).

Definition 2.16 ([57]). f := (f—,f") is said to be a bipolar-valued fuzzy set on V if f~ is a function from
V to —I and f* is a function from V to +I. Here, the bipolar fuzzy set f on V is obtained the following
interpretation.

(i) A positive membership degree f*(v) denotes a satisfaction degree of the element v to the property
corresponding to the bipolar fuzzy set f for allv e V.

(ii) A negative membership degree f~(v) denotes a satisfaction degree of the element v to some implicit
counter-property corresponding to the bipolar fuzzy set f for allv € V.

Definition 2.17 ([57]). Let f := (f—,f") and g := (¢g—, g™ ) be bipolar fuzzy sets on V. f is a subset of g if it
satisfies
f~(v) > g~ (v)and f"(v) < g*(v)

forallv e V.

Definition 2.18 ([23]). Based on Definition 2.16, an element in a collection of all bipolar fuzzy sets on
V x W is said to be a bipolar fuzzy relation from V to W.

Definition 2.19 ([23]). Let R := (R, R") be a bipolar fuzzy relation from V to V.
(i) Ris said to be a bipolar fuzzy reflexive relation if it satisfies
R (v,v) =—land R"(v,v) =1

forallve V.

(ii) Ris said to be a bipolar fuzzy symmetric relation if it satisfies

R (v,¥) =R~ (V,9) and R" (¥,v) = RT(3,V)

forallv,v e V.

(iii) R is said to be a bipolar fuzzy transitive relation if it satisfies

R (¥,v) > sup{min{R" (v,v),R" (v,¥)}} and R (¥,V) < in\f/{max{R_ (v,v),R™ (v, V)}}
vev ve

forallv,v € V.

(iv) Ris said to be a bipolar fuzzy equivalence relation if it is a bipolar fuzzy reflexive relation, a bipolar
fuzzy symmetric relation and a bipolar fuzzy transitive relation.

Definition 2.20 ([27]). f := (f—,f™) is said to be a hesitant bipolar-valued fuzzy set on V if f~ is a function
from V to P(—I) and {7 is a function from V to P(+I). For v € V,f~(v) and f*(v) satisfy items (i) and (ii)
in Definition 2.16.
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2.3. Some essential definitions of soft sets and hypersoft sets

Definition 2.21 ([31]). Let A be a non-empty subset of K. If F is a mapping from A to P(V), then (F, A)
is said to be a soft set over V with respect to A. As the understanding of the soft set, V is said to be a
universe of all alternative objects of (F,A), and K is said to be a set of all parameters of (F, A), where
parameters are attributes, characteristics or statements of alternative objects in V. For any element a € A,
F(a) is considered as a set of a-approximate elements (or a-alternative objects) of (F, A).

Definition 2.22 ([26]). Let A be a non-empty subset of K. A relative whole soft set over V with respect to
A is denoted by v, := (Va,A), where V, is a set valued-mapping given by Va(a) =V forall a € A.

Definition 2.23 ([26]). Let § := (F,A) and & := (G, B) be two soft sets over a common alternative universe
with respect to non-empty subsets A and B of K, respectively. § is a soft subset of &, denoted by § € &,
if ACBand F(a) C G(a) forall a € A.

Definition 2.24 ([2]). Let § := (F,A) and & := (G, B) be two soft sets over a common alternative universe
with respect to non-empty subsets A and B of K, respectively. A restricted intersection of § and &, denoted
by § m &, is defined as a soft set (H, C), where C = ANB and H(c) = F(c)NG(c) forall c € C.

Definition 2.25 ([3]). Let § := (F,A) and & := (G, B) be two soft sets over a semigroup V with respect
to non-empty subsets A and B of K, respectively. A restricted product of § and &, denoted by § © &, is
defined as a soft set (H, C), where C = AN B and H(c) = (F(c))(G(c)) for all c € C.

Definition 2.26 ([3]). Let § := (F, A) be a soft set over a semigroup V with respect to a non-empty subset
A of K.

(i) § is said to be a soft left ideal if v, © § € §.

)
(ii) § is said to be a soft right ideal if § © 2y, € §.
(iii) § is said to be a soft ideal if it is a soft left ideal and a soft right ideal.
(iv) § is said to be a soft quasi-ideal if (§ @ v, ) M (Wy, @ F) € §.

Proposition 2.27 ([3]). Let § := (F, A) be a soft set over a semigroup V with respect to a non-empty subset A of
K. § is a soft left ideal (resp., a soft right ideal, a soft ideal and a soft quasi-ideal) if and only if F(a) is either empty
or a left ideal (resp., a right ideal, an ideal and a quasi-ideal) of V for all a € A.

Definition 2.28 ([16]). Let § := (F, A) be a soft set over a semigroup V with respect to a non-empty subset
A of K. § is said to be a soft semigroup if F(a) is, if it is non-empty, a subsemigroup of V for all a € A.

Definition 2.29 ([16]). Let § := (F,A) be a soft semigroup over a semigroup V with respect to a non-
empty subset A of K, and let & := (G,B) be a soft semigroup over a semigroup W with respect to a
non-empty subset B of K. If ' : V. — W is an epimorphism and A : A — B is a surjective function such
that I'(F(a)) = G(A(a)) for all a € A, then (I, A)y, is said to be a soft homomorphism from § to &.

For eachn € N, let [ [;cn Ki := K x Kz X K3 x - - - X K;, denote the n-fold Cartesian product of distinct
non-empty universal sets Kq, Ky, K3,..., Ky, ie,

[ Xi={k:= (ki ko, ks, ..., kn) : kj € Kj forj =1,2,3,...,n}.
ieIN

Definition 2.30 ([46]). Let [ [;cp Ai be a non-empty subset of [ [; -p Ki. If F is a mapping from [ [; .y A to
P(V), then (F, [ [;cn At) is said to be a hypersoft set over V with respect to | [ Ai. As the understanding
of the hypersoft set, the meaning of V and [ [;cn Ki is defined as Definition 2.21.

Definition 2.31 ([1]). Let ] [,y At be a non-empty subset of [ [ Ki-
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(i) A relative null hypersoft set over V with respect to [ [ Ai is denoted by
mwnieﬂ\l A = (mnieN Ay H A,
ielN
where 01, A, is a set valued-mapping given by 0y, _ A, (a) =0 forall a € J[;cn A
(i) A relative whole hypersoft set over V with respect to | [; A is denoted by
mVHiE]N Aq = (VHiE]N Ais H At),
ielN
where V1, _ A, is a set valued-mapping given by V[ a,(a) = Vforall a € [[;cn A

(iii) If § := (F, ] [;en At) is a given hypersoft set over V, then a relative complement of § is denoted by
C(3F) == (F¢, I [ien Ai), which is a hypersoft set defined by F¢(a) =V —F(a) for all a € [ [;cn Ai-

Definition 2.32 ([1]). Let § := (F, [ [;en At) and & == (G, ] [;c Bi) be two hypersoft sets over a common
alternative universe with respect to non-empty subsets [ [;cpn Ai and [ [;cn Bi of [ [ien Ki, respectively.

(i) § is a hypersoft subset of &, denoted by FES, if [[;cn At € [[ien Bi and F(a) € G(a) for all
ac HiGN Ai.
(ii) § is equal to ® if FEB and BET.

Definition 2.33 ([1]). Let § := (F, [ [;en At) and & == (G, [ [;c Bi) be two hypersoft sets over a common
alternative universe with respect to non-empty subsets [ [; . Ai and [ [;cpn Bi of [ [;cp Ki, respectively.

(i) A restricted intersection of § and &, denoted by FM®, is defined as a hypersoft set (H, ] [;cn Ci),

(ii) A restricted union of § and &, denoted by FU®, is defined as a hypersoft set (H, [ [;cp Ci), where

(iii) An extended intersection of § and &, denoted by &, is defined as a hypersoft set (H, [Lien Ci),

F(c), if c € [[ien At — [ lien Bu
H(c) = ¢ G(c), if c € [[ien Bi — [ Lien At/
F(C) N G(C), ifce HiG]N Ai N HieN Bi/

forall c € [[ien Ci

(iv) An extended union of § and &, denoted by FU®, is defined as a hypersoft set (H, [ T;cp Ci), where
[Lien Ci = Lien At UT [ien Bi, and
F(c), if ¢ € [Tien Ai — I Lien Bis
H(c) = ¢ G(c), ifc € [[ien Bi —[lien At
F(c)UG(c), ifce[lienAiNIlienBis
forall c € [[icpn Ci
(v) A restricted difference of § and &, denoted by FO®, is defined as a hypersoft set (H, [ [;en Ci),

Definition 2.34 ([49]). Let A be a non-empty subset of K. If F is a mapping from A to a collection of all
hesitant bipolar-valued fuzzy sets of V, then (F, A) is said to be a hesitant bipolar-valued fuzzy soft set over
V with respect to A. In this way, V and K are considered as Definition 2.21.



R. Prasertpong, A. Ilampan, ]J. Math. Computer Sci., 28 (2023), 85-122 93

2.4. Variations of rough sets

Definition 2.35 ([15]). Let (V, E) be a Pawlak’s approximation space, and let f be a fuzzy subset of V. An
upper rough approximation of f within (V, E) is defined by the fuzzy subset "¢ of V, where

e (V) = sup{f(V) : v € [V]e}

for all v € V. A lower rough approximation of f within (V, E) is defined by the fuzzy subset .f_¢ of V,
where

Lfog(V) = inf{f(V) : v € V]g}
for all v € V. f is said to be a definable fuzzy set within (V,E) if "f "¢ = Lf_g; otherwise f is said to be a

rough fuzzy set within (V, E).

Definition 2.36 ([45]). Let (V,E) be a Pawlak’s approximation space, and let § := (F,[[;cn Ai) be a
given hypersoft set over V. An upper rough approximation of § within (V,E) is denoted by F|¢ :=
(Fle, [ [ien At), where

Fle(a) = [Fla)]e

forall a € [[;cn Ai- A lower rough approximation of § within (V, E) is denoted by § ¢ := (FJg, [ [ien At),
where
Fle(a) = [Fla)]e

for all a € [;cpnAi- § is said to be a definable hypersoft set within (V,E) if §]¢ = §|¢; otherwise § is
said to be a rough hypersoft set within (V, E).

Definition 2.37 ([43]). Let R be a fuzzy relation from V to W and ¢ € +I. For an element v € V,
VIR, ={w € W:R(v,w) > o}

is said to be a successor class of v with respect to ¢-level based on R.

Definition 2.38 ([43]). Let R be a fuzzy relation from V to W and ¢ € +I. For an element v € V,
Mige =V eV:iNRe=0WRke

is said to be a core of the successor class of v with respect to ¢-level based on R. [VI®,, is denoted as a
collection of [V]5®, forallv e V.

Definition 2.39 ([43]). If ¢ € +1and R is a fuzzy relation from V to W related to [V]§®

A o cs
is said to be an approximation space based on [VI}S,,.

then (V, W, [VI§

R S0

Definition 2.40 ([43]). Let (V, W, [VIg® ) be an approximation space based on [VIg® o and let X be a non-

empty subset of V. An upper approx1mat1on of X within (V, W, [VIg® ) is denoted by [X]|g%,, where
= J{MR, : MRS, N X # 0}
vev

A lower approximation of X within (V, W, [VI}®)) is denoted by |X|%*,, where

= J{] o S X}

veVv
A boundary region of X within (V, W, [V} ) is defined by [X1RSe — [XIRS- We say that ([X]%5,, [X]R5,)
is a rough set of X within (V, W, [VI¢® 1f [X} = [X]RSp Isa non—empty set. X is said to be a definable

set within (V, W, [VIRS) if [X]g5, {XJ is an empty set.
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3. Rough hypersoft sets and rough fuzzy sets via hesitant bipolar-valued fuzzy hypersoft relations

We shall now develop rough approximation models of rough hypersoft sets and rough fuzzy sets
based on hesitant bipolar-valued fuzzy hypersoft relations. After defining a novel approximation space
based on hesitant bipolar-valued fuzzy hypersoft relations, we provide some propositions associated with
upper and lower rough approximations of hypersoft sets and fuzzy sets.

Throughout the entire remainder, [ [;cn At and [ [;cn Bi are two non-empty subsets of [ [; on Ki such
that [ [;cn At N ] [ien Bi is non-empty.

To adapt for the notion of hypersoft sets on Definition 2.30 and hesitant bipolar-valued fuzzy soft sets
on Definition 2.34 via Definition 2.17, an inclusion relation of two hesitant bipolar-valued fuzzy hypersoft
sets (F, ] [;en At) and (G, [ [y Bi) over V is denoted by (F, [ [;cn At) Cir (G, [ [ien Bi), where

() TTiemw At € [ lien Bus
(i) (F(a))~(v) 2 (G(a))~(v) and (F(a))*(v) C (G(a))*(v) forall a € [[;enAi,vE V.

In addition, given two elements (¢, x), (P, w) € P(—I) x P(+I), we define set-valued relations on
P(—1) x P(+1) of (@, %) and (P, w) as follows:

() (¢, x) =, w)if ¢ =P and x = w;
(i) (@, x) Csr (b, w)if @ DPand x C w.

To approximation methodology in this section, the concept of hesitant bipolar-valued fuzzy hyper-
soft relations based on Definitions 2.30 and 2.34 is defined as the statement that if R is a mapping from
[ Iien At to a collection of all hesitant bipolar-valued fuzzy sets of V x W, then (R, [ [;cn At) is called a
hesitant bipolar-valued fuzzy hypersoft relation over V x W. On the consideration of the single V in Def-
initions 2.14 and 2.19, to adapt for a hesitant bipolar-valued fuzzy hypersoft relation R := (R, [ [;cpn At)
over V x V, we define the characters of R as follows.

(i) R is called a hesitant bipolar-valued fuzzy hypersoft reflexive relation if it satisfies

* (R{a))"(v,v) =+Iforalla e [[icnAi,vEV;
a))”(v,v)=0foralla e [[;cnAi,veV.

[ ]
=

(ii) M is called a hesitant bipolar-valued fuzzy hypersoft symmetric relation if it satisfies

* (R(a))"(v,v) = (R(a))*(V,¥) forall a € [[;cn ALV, VEV;
e (R(a)~(%,%) = (R(a))~(¥,7) for all a € [T;ep Ai, 9V € V.

(iii) 2R is called a hesitant bipolar-valued fuzzy hypersoft transitive relation if it satisfies
* Uvev((R(a))"(¥,v)N(R(a))"(v,¥)) € (R(a))"(¥,V) forall a € [[;en ALV, VEV;
* Mvev(R(@)™(¥,v)U(R(a))™(v,¥)) 2 (R(a))™ (v, V) forall a € [y Ai, ¥,V € V.

(iv) R is called a hesitant bipolar-valued fuzzy hypersoft antisymmetric relation if it satisfies the prop-
erty that forall a € [[;cn ALY,V EYV,

e (R(a))T(¥,v) D Pand (R(a))*(v,9) D 0 imply v =;
* (R(a))~(¥,¥) C —Tand (R(a))~(¥,%) C —T imply ¥ = V.

(v) R is called a hesitant bipolar-valued fuzzy hypersoft equivalence relation if it is a hesitant bipolar-
valued fuzzy hypersoft reflexive relation, a hesitant bipolar-valued fuzzy hypersoft symmetric rela-
tion and a hesitant bipolar-valued fuzzy hypersoft transitive relation.
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For the example of these properties, we use Definition 2.20 in a common consideration. We define two
hesitant bipolar-valued fuzzy sets f := (f~,f") and g := (¢~,g") in a collection of all hesitant bipolar-
valued fuzzy sets of V x V by square matrix representations fy,, fx;, gy, and g3, as follows:

= [V = v vy)], g3 = [V = 97 (vi, vj)] € Mn(P(+1))
and
fK/l = [VU = f_(\)i,\)j)] ,QKA = [V1] = 9_(\)1/")')] € Mn(?(_l))/

where

: +I, ifi=j, 0, ifi=j, . 0, ifi=j, .. —1, ifi=j,
Vij = . L Vi = .. Vi = . . Vi = e
0, ifi#j, +1I, ifi#j, —I, ifi#j, 0, ifi#j.
If R is a set-valued function from A to the collection of all hesitant bipolar-valued fuzzy sets of V x V

defined by
R(a)="*

for all a € [[;cn Ai, then we see that (R, [ [;cp At) is a hesitant bipolar-valued fuzzy hypersoft reflexive
relation, a hesitant bipolar-valued fuzzy hypersoft symmetric relation, a hesitant bipolar-valued fuzzy
hypersoft transitive relation, and a hesitant bipolar-valued fuzzy hypersoft antisymmetric relation. For
all sets of parameters-based alternative objects of the hypersoft set (R, ] [;cn Ai), we observe that during
the evaluating process of each relationship between two elements of V in this corresponding example,
however, these possible memberships maybe not only crisp values in —I and +I, but also interval values.

Definition 3.1. Let % := (R, ] [;c Ai) be a hesitant bipolar-valued fuzzy hypersoft relation over V x W
and (@,x) € P(—I) x P(+1). For an element v € V, we call

MESK(@,XJ ={weW: (R(a)) (v,w) C ¢ and (R(a))"(v,w) Dx foralla e H Al
ielN

a successor class of v with respect to (¢, x)-inclusion based on 9. Here, [V]5; (o) Tepresents a collection
of [vI§, (@) forallveV.

Proposition 3.2. If R := (R, [ [;cn At) is a hesitant bipolar-valued fuzzy hypersoft reflexive relation over V x V
and the pair (@,x) € P(—1) x P(+1), then v € V] (o) forallveV.

Proof. Suppose that R is a hesitant bipolar-valued fuzzy hypersoft reflexive relation over V x V and the
pair (@,x) € P(=I) x P(+I). Let a € [[;cn At and v € V. Then, we observe that

(R(a))” (v,v) =0 C @ and (R(a)) " (v,v) = +I 2 x.

Thus v € [V]5, ( O

A@x)"

Definition 3.3. Let R := (R, [ [;cn At) be a hesitant bipolar-valued fuzzy hypersoft relation over V x W
and (@,x) € P(—I) x P(+]). For an element v € V, we call

[v]g‘ﬁs,(@,x) ={veV: [V}ESR,(@,X) - [v]isﬁ,(tp,x)}

a core of the successor class of v with respect to (¢,x)-inclusion based on R. We generally denote by
(VIS () @ collection of [VIGF  forallve V.

Due to Definition 3.3, the following two statements hold.

Proposition 3.4. If R := (R,[[;cn Ai) is a hesitant bipolar-valued fuzzy hypersoft relation over V x W and
(p,x) € P(—1) x P(+1), then v € [v]gﬁfl(@,x)for allveV.
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Proposition 3.5. If R := (R,[[;cn At) is a hesitant bipolar-valued fuzzy hypersoft relation over V- x W and
(@,x) € P(—1) x P(+]1), then the following two arguments are equivalent.

(i) ve [‘\)]gis,(@,x)for allv,v € V.

(ii) [‘/)]5%5,(@«) = [\\/]gg((plx)for all v,v e V.

Remark 3.6. By Propositions 3.4 and 3.5, it is easy to show that if % := (R, ] [;cpy At) is a hesitant bipolar-
valued fuzzy hypersoft relation over V x W and (¢, x) € P(—I) x P(+I), then [V]g{( ©x) is the partition of
V.

Proposition 3.7. If R := (R, ] [;c At) is a hesitant bipolar-valued fuzzy hypersoft reflexive relation over V x V

and the pair (@,x) € P(—1) x P(+1), then [v]g;,((plx) - [V]Sq,((p,x)fo” allveV.

Proof. Suppose R is a hesitant bipolar-valued fuzzy hypersoft reflexive relation over V x V and (¢, x) €
P(—I) x P(+1I). Let v; € V, and suppose v, € [vl]gé(@,x). Then [vl]isﬁ,(q),x) = [vz]§,($,x). Thus, by Proposi-

tion 3.2, we see that v, € [v1]§; (o) Therefore [\)1]5%5((p ) C il (o) O

Proposition 3.8. If R := (R, [ [;cn Ai) is a hesitant bipolar-valued fuzzy hypersoft symmetric relation and a hes-
itant bipolar-valued fuzzy hypersoft transitive relation over V- x V and (@,x) € P(—1) x P(+1), then [v];{,((plx) C
VIS (o) forallv e V.

Proof. Suppose that ? is a hesitant bipolar-valued fuzzy hypersoft symmetric relation and a hesitant
bipolar-valued fuzzy hypersoft transitive relation over V x V and (¢,x) € P(—I) x P(+I). Let vi € V be
given, and let v, € [vﬂgf{,((plx). Then (R(a))™ (v1,v2) € @ and (R(a))*(vi,v2) 2 x for all a € [];cnAd-
Since R is a hesitant bipolar-valued fuzzy hypersoft symmetric relation, we have (R(a))™ (vz,v1) € ¢ and
(R(a))*(v2,v1) 2 x for all a € J[;cp Ai. We shall prove that [vﬂg&((plx) = [VZ}SR,(cp,x)' Let vz € [vl]g‘i,(np,x)'
Then (R(a))~ (v1,v3) € @ and (R(a))™ (v1,v3) D x forall a € [ ;o Ai- Since R is a hesitant bipolar-valued
fuzzy hypersoft transitive relation, we have

(R(a)) ™ (va,v3) € (1) ((R(@))™ (v2,v) U (R(@)) ™ (v,v3)) € (R(@))™ (v2,v1) U (R(@)) " (v1,v3) S @U@ = @
veVv

and

(R(a)) " (v2,v3) 2 |J ((R(@))* (v2,v) N (R(a)) " (v,3)) 2 (R(@))* (v, v1) N (R(@)) " (v1,v3) D2 x Nx =X

vev
for all a € []icpnAi- Whence v3 € [vz]gﬁ ox) which yields [vl]g%/( ©x) - [vz];,( o)’ Conversely, we
can prove that [vﬂ;%,(@,x) C [Vl]Sa,(@,x)- Hence [Vl]is)‘i,(@,x] = [VZ]S%,(@,X)' Thus v, € [vl]g;((p,x). Therefore
S CS
V1S (ox0) € UGS (000" -

Proposition 3.9. If R := (R, [ [;cn At) is a hesitant bipolar-valued fuzzy hypersoft equivalence relation over V x 'V

and (@,x) € P(—1) x P(+1), then Mg‘i,(qn,x) = [V]gﬁs,(@,x)for all v € V. Moreover, [V]isﬁ,(q),x) is the partition of V.
Proof. By Remark 3.6 and Propositions 3.7 and 3.8, this proposition immediately yields. O

Proposition 3.10. If R = (R,[[icn Ai) is a hesitant bipolar-valued fuzzy hypersoft reflexive relation and a
hesitant bipolar-valued fuzzy hypersoft antisymmetric relation over V- x V and (@, x) € P(—I)\{—1I} x P(+1)\{0},
then the following statements are equivalent.

(i) V="V forallv,v € V.

(i) DS (o) = V&R (o) forallv,veV.
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(iii) ¥ € BIG () forallv,v e V.

Proof. 1t is clear that(i) implies (ii). Due to Proposition 3.5, we obtain that (ii) implies (iii). In order to
prove that (iii) implies (i), we let vi,v2 € V be such that v; € [vz]g;, (o))" Then, we have [vl]g%/( ox) =
. Since R is a hesitant bipolar-valued fuzzy hypersoft reflexive relation, by Proposition 3.2, we

and v, € [VZJSSR,( ox)" Then v, € [VQ]?R,( ©x) ) Thus, we observe that

[v2] %, ( ©.X)

have vi € [vil3; and vy € vl |

®,X) @,

(R(a))™(v2,v1) € @ € =L (R(a)) " (vp,v1) 2x D0

and
(R(a))~(vi,v2) € @ € =L (R(a)) " (v,v2) 2x D 0

for all a € J[;en Ai. Since 2R is a hesitant bipolar-valued fuzzy hypersoft antisymmetric relation, we
obtain that v; = v,. O

In the presence of research now, the notion of upper and lower rough approximations of hypersoft
sets and fuzzy sets are studied under hesitant bipolar-valued fuzzy hypersoft relations.

Definition 3.11. If (¢, x) € P(—I) x P(+1I) and R := (R, ] [;cp Ki) is a hesitant bipolar-valued fuzzy hyper-
soft relation over V x W related to [VI5§ ., then the triple (V W, IVIE (4.x)) is called an approximation

space based on [VIGF | ). In this way, we say that (V, W, [VIG{ 1)) 18 an approximation space type I.

Based on the context of set-valued functions and fuzzy logic of hesitant bipolar-valued fuzzy hypersoft
relations, we observe that such space can be considered as an extended approximation space of the
approximation space in Definition 2.39.

Definition 3.12. Let (V,W, [VI§{_ T Ko, (@ +)) be a given approximation space type I, and let § :=
ic
(F,][ien At) be a hypersoft set over V. An upper rough approximation of § within (V, W, [VIg¢ ) is
denoted by §155 (, ) = (FI5 (o) [ lien A1), where
s = (J VIS (o) MIES () NF(@) # 0 (3.1)
vev
for all a € J];cn Ai- A lower rough approximation of § within (V, W, [VI5? ) is denoted by §|5 .
= (FJ§ (ox)7 [ Tienw A1), where
P, U{ 15, (px) MR (.00 € Flal} (3.2)

vev

for all a € J[;c Ai- Here, a boundary region of the hypersoft set § within (V, W, [V]g{ ( @’X)) is denoted
by 8"]3{((plx) = (F]SRS,((P,X)’ HiE]N Ai), where

F]gf%s,(cp,x)' H Ai) = mg%s,(@,x)ém;é(@,x)'
ieN

As introduced above, such sets are obtained the following interpretation.

() FI5% (o5 (@) is a set of all elements, which can be possibly classified as F(a) using R (are possibly

R,(0x)
F(a) in view of R) for all a € J[;cn Ai. In this way, a complement of F|g¢ is said to be a

negative region of F(a) within (V, W, [VI§# ) forall a € [[;cn A

(px)(a)

(ii) FJ;{S( 0 X)(a) is a set of all elements, which can be certain classified as F(a) using R (are certainly

F(a) in view of R) for all a € [[;c Ai- In this way, such the set is said to be a positive region of
F(a) within (V, W, [V]gf,(Q,X)) forall a € [[icn Ai-
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(iii) F]ggs((p <) (a) is a set of all elements, which can be classified neither as F(a) nor as non F(a) using R

forall a € [[ien Ai-

In what follows, for all a € [ [; e A, if FIGS

(@, )(a), F|S8 )(a)) is called a rough

)(a) 7 0, then (Hg“?,(cp,x R, (,x
(or an inexact) set of F(a) within (V, W, [V]SCRS,(@,X))’ and we call F(a) a rough set. For all a € []; Ay, if
F]gé (o) (a) = 0, then F(a) is called a definable (or an exact) set within (V, W, [V]g{ ( @,x))' The hypersoft
set § is called a definable hypersoft set within (V, W, [V]g;, (@,x)) if 3]5{ (o) = Ny, ; otherwise § is called

a rough hypersoft set within (V, W, [VI§} /).

We are now ready for the presentation of a corresponding example.

Example 3.13. Let (V, W, [VI§{_ Tin Ki), (1,07, 05 1)) be an approximation space type I, where V =
=R lien Ky V)9,

{vn :=m : nisanatural number}, W = {w, :=n : nis an integer}, and R is a hesitant bipolar-valued
fuzzy hypersoft relation over V x W defined by

(0.2,1,] if 3lv—w,

A
(R(K)) ("'W)_{[o.05,0.1), if3fv—w,

and
(—0.9,—-0.8], if3lv—w,

(R(K))~ (v, w) = {[_0,7, 0], if3tv—w,

forall k € [ [;op Ki, (v, w) € V x W. We observe that if n is a natural number, then

[v3n—2]§q,([,1,,0.7),[0_5,1” = {ws3i_5 : 1is an integer},

Van—11% (_1,-07),105,1)) = (W3i—1: 11is an integer},

and
Vanls ((-1,-07),051)) = {Wai : 1is an integer},
which yields
[V3n_2]g{ ([=1,—07),[051]) = {v3i_p : 1is a natural number},
[V3n,1]g€([71,70.7)/[0.5/1]) ={vzi_1 : 1 1is a natural number},
and

Vanl® ((-1,-07),05,7) = {vsi : 1is a natural number}.
If §:= (F, ] [ien At) is a hypersoft set over V defined by
F(a) = {vs; : 1is a natural number} U {v3;_» : i is a natural number with 1 > 200}
for all a € [ [;cn Ai, then we observe that

ﬂgf\? ([-1,-07),[05.1]) (a) = {v3; : 1 is a natural number}U {v3;_» : iis a natural number},
Fjgfis,([—l,—o.7),[0.5,1]) (a) ={vs; : 1is a natural number},
and

F]S%S,([—l,—OJ),[O.S,l]) (a) ={vsi_» : iis a natural number}

for all a € [ ;¢ Ai- This shows that § is a rough hypersoft set within (V, W, VIS | 1 (7 051)))-

Remark 3.14. Let (V, W, [V] g{S::(RrHiGIN Ki)/((P/X)) be an approximation space typel, and let § := (F, [ [;cp At)

be a hypersoft set over V. Then sjg;((plx)égémg;mx).
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Observe that Equations (3.1) and (3.2) in Definition 3.12 can also be presented by means of the follow-
ing proposition.

Proposition 3.15. Let (V,W, [v]g;::(RineN Ki)(pn)) be a given approximation space type I, and let

§ = (F,][ien At) be a hypersoft set over V. Based on Equations (3.1) and (3.2) in Definition 3.12, we have
the following statements:

(1) FI5 (o (@) =fveV: # 0} forall @ € [ien At
() FISS (o (@) = )} for all @ € [Tien At

Directly from Definition 3.12, we can obtain the following three propositions below.

[V]ECRS,(@ X) NF(a)

vev: H ((pr

Proposition 3.16. Let (V,W,[VI§ _ (R Tien K L(@x)) be a given approximation space type I, and let
S = (F, ] [ien At) be a hypersoft set over V. Then, we have the following statements.

i) If§ = Qﬂvn , then § is equal to 3]g§,((px) and SJ;%S,(@X)
hypersoft set wzthm (V, W, [VIg¢

(i) If § = m@H , then § is equal to S}g{(@ )
hypersoft set wzthzn (V, W, [VIg¢

(mg{(@ x))
(Mg{(@ X))

. Moreover, the hypersoft set § is a definable

(px))

and F|53 ;- Moreover, the hypersoft set § is a definable

@x))

(iii)

(mg{(@ X))
(vii) C(3)

CSs
R, (@,x)

— C(S}CS

R, (@,x) )-

Cs

(viii) C(F]
(%) (318
() C(C(F)
(xi) C(C(F]

Proposition 3.

Cs

Cs

(F, ] Tien At) and & = (G, HIGN
@) SIS (o)

(ii) (FN®)]5s

(i) (5615 40

(iv) (FN&)]ss

) 315 (.0
V) 15 (o0
(Vi) §15 (0

R, (@,

(o,

R,

R, (@,x)

CS
R(ox)

CS
R, (@,x)
CS

) :miﬁ,(cp,xr
) =3IR (0.
17. Let (V,W, VIS

CS
R, (@,x)

(T]
C(3]s

) ).

)l

(@,x)

@3155(@ X)@Qﬂg%s,(cp X)
(o) = S5 0,0 MBS ()7

EF15 (0.0 1B (050
(o) = S5 1001015 (0 )7
UBTE (o) = BUS)IE (o117
US55 )é(s@(‘ﬂ %, (0.x)
US55 (o) = BUBIIE (4 )

— (R Tren Ko) o)) be a given approximation space type I, and let

be hypersoft sets over V. Then, we have the following statements:
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(Vi) TS5 (o) IS ) E (BTG

Proposition 3.18. Let (V,W, [V]gf::(R/HieN Ki)(pn)) be a given approximation space type I, and let

§ = (FTlienAi) and & = (G, [];cn Bi) e hypersoft sets over V. If FEB, then the following statements
hold:

@) 1% (o) €O (o)

s cs = cs
(i) SJ ‘J‘i,(tp,x)@q5J R, (9,x)

R,(@,x)"

Proposition 3.19. Let (V, V, [VI§{ _ ¢ Toen Ko, (@ ) and (V,V, [V] %S::(S,HEN Ko, (w,w)) D€ approximation spaces
type I with the property that the zncluszon relation of the hesitant bipolar-valued fuzzy hypersoft reflexive relation
R and the hesitant bipolar-valued fuzzy hypersoft transitive relation & is R Cir 6, and (P, w) Cer (@,X). If
§ = (F, T Tienw Ai) is a hypersoft set over V, then §157 ., - 1EF1§% 1 w) T4 TS5y, 0) CSJ (0x)"
o) (@)- Then vilse

and vz € F(a). Hence, we get that [vl]m/(

Proof. Assume that § is a hypersoft set over V and a € [ ;¢ Ai- Let vy € FIGE N

F(a) # (). Thus, there exists v, € V such that v, € [vl]cs(

@®,x) ox)

ValSs () Since R is a hesitant bipolar-valued fuzzy hypersoft reflexive relation, by Proposition 3.2, we
obtain v; € [\11];,(%() and v, € [VZ]S‘%,(@,X)' Hence v; € [VZ]S‘%,(@,X) and v, € [vﬂ;’t,(m,x)' Thus, we observe
that

(S(k))™(v2,v1) € (R(K))™ (v, v1) € @ S,

(S(k) T (v2,v1) 2 (R(K)) T (v, v1) 2x 2 w,

(S(k))™ (v, v2) € (R(K))™ (v, v2) € @ S,

(S(k)) " (v1,v2) 2 (R(K)) " (v, v2) 2 X 2 w
for all k € J];cn Ki. We shall prove that [vilg () = M2I§ (), o) We let va € Vo5 (). Then

(S(K)) ™ (v2,v3) S and (S(k)) " (v2,v3) 2 w

for all k € J[;cn Ki. By the fact that & is a hesitant bipolar-valued fuzzy hypersoft transitive relation, it
is true that

(S(k))~(v1,v3) € () ((S(K))™ (v, v) U (S(K)) ™ (v,v3)) € (S(k)) ™ (v1,v2) U(S(K)) ™ (v2,v3) Ch U =1
vev

and

(SN (vi,v3) 2 [ ((S(K) T (vi,v) N (S(K))F (v, v3)) 2 (S(K)) T (va,v2) N (S(K)) T (va,v3) 2w Nw = w

vev
for all k € J[icn Ki. Hence, we get that vz € [v1]¢ S, (W)’ which yields [vo]¢ S(pw) S v1lg S, () Con-
versely, we can verify that [v1]§ $(bw) S [vz] Thus 1l S (hw) = = Wl S, () . Whence v, € [v1]¢S lb,w)‘
Thus v; € [v]¢* S ww) ﬂF( ). Hence [v1]§* N) w) ( ) # 0, then vy € Hg,s(q) (a). Therefore F[§$ a) C
F] gf(lp,w)(a). It follows that S}m,(@,x)cm S p,w)- Next, we letvy € F| gs )( a). Then, we have [\)4}S ‘ww) S
F(a). Observe that it suffices to prove that [\@]5{ (@) C [w;]%fw w) . Suppose vs5 € ["4]m . Then

Vil (o) = [V5l5 () Since R is a hesitant bipolar-valued fuzzy hypersoft reflexive relat10n and
by Proposition 3.2, we get v4 € [valg () and vs € [vsl , . )- Thus, we have v4 € [vsl5; () and
Vs € [l (o) Since (@,x) 2 (b, w) and R is a subset of S, we observe that

P®,X

(S(k))™(vs,v4) € (R(K))™(v5,v4) € @ S,
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(S(K) " (vs,v4) 2 (R(K)) " (v5,v4) 2 X 2 w,
(S(k))™ (va,vs5) € (R(K))™ (vg,v5) € @ T,
(S()) " (va,vs) 2 (R(K)) " (v4,v5) 2 X 2 w
for all k € [ [; v Ki- We shall show that (valg S(hw) = ["5];(11),(»)' We assume vg € [v5]§,(¢’w). Observe that
(S(k)) ™ (vs,v6) € P and (S(k)) ™ (vs,v6) 2 w

for all k € [ [;cp Ki. Since & is a hesitant bipolar-valued fuzzy hypersoft transitive relation, we observe
that

(S(k)) ™ (va,v6) € () ((S(K)) ™ (va, ) U (S(K)) ™ (v,v6)) € (S(K)) ™ (va, v5) U (S(k)) ™ (vs,v6) S h U =1
veVv

and

(SN (va,v6) 2 [ ((S(K)) T (va,v) N (S(K))F (v, v6)) 2 (S(K)) T (va, v5) M (S(K)) T (v5,V6) 2 wNw = w

vev
for all k € [[;cn Ki- We get that vg € [vy]$ $,(hw) . Hence [vs] S(pw) S C [vyld S, () Conversely, we can find
that [vy]} S(bw) S [vs]g $,(b,w) . Therefore [v4]¢ S (hw) = [vs]$ S (b . Wherefore vs € [vg]§® S w)- We see that
[V4]m((px) C [\~)4]§,S(¢,w) C F(a). Then vy € FJCS,( ( ). Whence FJCS( )( a) C FJCS((pX (a). We deduce
that §| Cf (b,w) EF] g{((p )" The proof is complete. O
Proposition 3.20. Let (V,V, VIS _ ¢ Toen Ko, (@ +)) be an approximation space type I with the property that R

is a hesitant bipolar-valued fuzzy hypersoft reﬂexzve relation and a hesitant bipolar-valued fuzzy hypersoft antisym-
metric relation over V. x V, and (@,x) € P(=D\{-=I} x P(+D\{0}. If § := (F, [ [;en At) is a hypersoft set over V,

then § is a definable hypersoft set wzthzn (V) V,IVIG (o))

Proof. Assume that § is a hypersoft set over V. Then, by Remark 3.14, we get SJ;; ( (plx)éﬂgffl (ox)" Let
a be an element in [];cAi, and let v; € F|§¢ @X)(a). Then [vl]gé((prx) NF(a) # 0. Thus, there exists
vy € V such that v, € [vl]"s( o) and v, € F(a). By Proposition 3.10, we have v; = v,. We must prove that
[vl]m (0x) C F(a). Let vz € [Vl]gf((p ) . Then, by Proposition 3.10, we have v; = v3. Hence v3 € F(a), which
implies that [vl]%,(cp,xJ C F(a). Thus v; € FJ;{( ( ). Whence F]CS (PX)( a) C FJCS (PX)( a).

get 8]35 (o 6SJS§ (o) Thus §] g{ (o) is equal to S (o) . As a consequence, § is a definable hypersoft
set within ( p O

Therefore, we

cpx))

As mentioned above, we shall present Example 3.21 below.

Example 3.21. Let (V,V, [VI5¢_ r 1. KO0, 1)) be a given approximation space type I, where V = {v;, :=

n3 +1:nis a natural number} and A is a hesitant bipolar-valued fuzzy hypersoft reflexive relation and a
hesitant bipolar-valued fuzzy hypersoft antisymmetric relation over V x V defined by

for all k € [[icn Ki, v,V € V. We observe that if n is a natural number, then [v,]§¢ R(0,41) = {vn}. It is true
that if § := (F,[[;cn Ai) is @ hypersoft set over V, then it is easy to see that SJCS (0,4+1) ,§ and 315{(@“)
are identical. This implies that § is a definable hypersoft set within (V,V, [VI§ 4 +I))



R. Prasertpong, A. Ilampan, ]J. Math. Computer Sci., 28 (2023), 85-122 102

Definition 3.22. Let (V, W, [V] g“S::(R/H-gN Ki),(@x)) D€ a given approximation space type I. Let f be a fuzzy
subset of V. An upper rough approximation of f within the triple (V, W, [VI$? ) is defined by the fuzzy
subset rf—'gf( ) of V, where

@

"% (x) (V) =sup{f(V) : Vv € BIG ()}
for all v € V. A lower rough approximation of f within (V, W, [VI§¢ ) is defined by the fuzzy subset
L5 () Of V. where ‘

for all v € V. The fuzzy subset f is called a definable fuzzy set within (V, W, [V]CSI ) if TfES is

R, (@,x)
equal to Lf 5

' (o.x); Otherwise f is called a rough fuzzy set within (V, W, [VI5$

Now, we consider the following example.

Example 3.23. Based on (V, W, [V]gﬁf::(R’HiEN ar [71’70.7),[0_5,1])) in Example 3.13, let f be a fuzzy subset of
V defined by
flv)=1— 1
v

for all v € V. Observe that if n is a natural number, then rf—lg%s, ([-1,-0.7),[051]) (vn) =1 and

if v € Van—2158 (1 _07),051))

~

Cs

‘—f—‘g%s,([—l,—OJ),[O.S,l])(V“) = ifvn € ["Sn—l]m,([71,70.7),[0.5,1})'

~

W NIk O
<

if v € Vanl§s (11,07, 1051
Therefore, it is easy to see that f is a rough fuzzy set within (V, W, [VI§¢ ([1,-07),[051]) ).

Remark 3.24. Let (V, W, [VI§{_ Mo Ko (@x ) be a given approximation space type L. If f is a fuzzy subset
= A lie ils ’
f

CSs Cf£71CS
of V, then we observe that uﬁm, (@) - f

- mr( (er) ’
From the model of Definition 3.22, we have some basic properties as the following three propositions.

Proposition 3.25. Let (V, W, [V] S;::(anie]l\} Ko), () e a given approximation space type L If f is a fuzzy subset
of V, then we have the following statements.

(i) If f =1v, then f is equal to 1752y and Lfo58 . Moreover, the fuzzy subset f is a definable fuzzy set

within (V, W, [V]g{((p,x) ).

(ii) If f = Ov, then f is equal to "f75F  yand .58 ). Moreover, the fuzzy subset f is a definable fuzzy set

within (V, W, [V]g;((p x))'
(i) I—(Ff—lg’ts,(@,x))—lg%s,(@,x) < I—f—lgf*s,(@,x)‘

(iv) '—stcRs,(@,X) = '-("fJg%s,((p,x))JfC){(@,x)'

(v) fC "(Ff—lgf*s,((p,x))";*s,(tp,x)'

(vi) I—('-fJg%S,(cP/X))—lg%S,(cp,x) cf
(ViD) LFo58 ) = (T8 (o))

(vii) rfﬁgfis,(tp,x) - (LfJg‘is,(tp,x))/‘
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Proposition 3.26. Let (V, W, [VIGi_ Toen Ko, (@ ) be a given approximation space type I, and let  and g be
fuzzy subsets of V. Then, we have the followmg statements:

() Ffmg—ICS (p g I—f—lg%s( m g—ICS (p

x) X);

(i) LFN G5 () = LT85 (o) NI (o))
r acs — FfCs acs

(111) ng R,(o,x) fi)%( )U g R, (@,x)’

(iv) fU gJSC)‘%S,(cp,x) D) LfJgf,((p,X) U Lng{((p,X)-

Proposition 3.27. Let (V, W, [WS%S::(R,HieN Ki),(@.x)) bean approximation space type I, and let f and g be fuzzy
subsets of V. If f C g, then we have the following statements:

: S
(i) rf—lcs(tp x) = gjg‘% (@,x)’
(i) a5 (o) S LIIR (x)°

Proposition 3.28. Let (V,V, [VIG_ e (o)

imation spaces type I with the property that D% and & are hesitant bzpolar—valued fuzzy hypersoft equivalence
relations, R Cir G and (P, w) Csr | ). If fis a fuzzy subset of V, then rf""’s - '—fjgfw,w) and

cs (o,x) =
S o o

) and (V,V,VIg_(s i Kol (W, a0) }) be two given approx-

I_f_ls “(bw)

Proof. Suppose f is a fuzzy subset of V. Let v € V. Then, by Proposition 3.9, we have

TF5 (o) (V) = sup{f(¥) : ¥ € WIS (1))
= sup{f(v) : (R(k))~(¥,%) C ¢ and (R(k))"(¥,V) 2 x}

vev

< sup{f(¥) : (S(k))~ (¥,¥) C P and (S(k))" (v,V) 2 w}
vev

= sup{f(V) : v € Bl y,,w)}

_ I—f—ICS(lb w)(/)

Thus "758 ) € TSy, w)- Now
L5 () (9) = Inf{F(V) 1V € Bl )}
= Vlgf/{f( V) (R(K)) ™ (¥,9) € @ and (R(k))" (¥, V) 2 x}
> inf{f(v) : (S(k))"(¥,¥) S and (S(K)T(9,9) 2 w}

=inf{f(V): v € [\’)}giwlw)}

- Lf_,g,s(ll),w) (\,)).

Therefore Lg%, ) S L5 (o x ) O
Based on Proposition 3.10, it is obvious that the following proposition can be gotten.
Proposition 3.29. Let (V,V, [VIGE_ ¢ Toen Ko, (@ +)) be an approximation space type I with the property that R

is a hesitant bipolar-valued fuzzy hypersoft reﬂexzve relation and a hesitant bipolar-valued fuzzy hypersoft antisym-
metric relation over V x V, and (@,x) € P(—D\{—1} x P(+D)\{0}. If f is a fuzzy subset of V, then f is a definable
fuzzy set within (V,V, [Wg{(@,x)).
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Definition 3.30. Let f be a fuzzy subset of V and € +1. A (f, 1, >)-relative whole hypersoft set over V

with respect to A is denoted by (Vl({:ii\i, [Licn At), where VI—EL >)

L=
Vi[“Z ) (@) = VU] forall a € [ As.

Proposition 3.31. Let (V,V, [\/] —(RT.. (0x)
subset of V and v € +1. Then, we have the followmg statements:

_is a set valued-mapping given by

)) be a given approximation space type I, and let f be a fuzzy

: (f/ /2) (’—f—lcs ot >) .
@ (VH-L;N A TRen ADIS (on) = Min T Tlien A

.. (f,1,>) (L5 () W)
(11) (VH;NA HleN A )J R, (@,x) (VHLE]I\?/E\(? ! ’HiGN Ai)'
Proof.
(i) Let a € [[;cpn Ai- Then, we consider the following.
(f/Lr>) C C )
V1€ V]‘[iE]N AJR?(@,X)(G) = [Vl]R?(tp, N A (a) # 0
& Mg >) 49
& f(vp) > Lfor some v, € [vl]R (o)
& sup{f(v2) 1 va € Rt 2 L
& TR @X)(Vl) 2L
S v € V Rlex) 1)
I’ acs 12
& vy € an ;X"X) g )(a).
2 (,_f—ICS >)
Hence Vl(-I )A 1%5(@ X)(a) = HIENXPX) (a). Therefore
f L=) (- fj%((o,x)’tg) A
M2 TT A R o0 = Vo™ TT A
ielN ielN
(i) Let a € [ [;cn Ai- Then, we consider the following.
(fu>2) cs (f1,2>)
Vi € VI L adR 00 (@) & MR 6 x) € VT LA (@)

& WilES gy S VT2
& f(vz) > tforall va € lR% )
& inf{f(va) 1 v € R} (o)) =t

=4 I_fJES( )(\)1) >

>
& vy € VIR )
LfJR( =)
SV € VHLGN/\W) (a).
(f.u=) cs _ (LfJ;:a?[(p,X)rLr>)
Therefore vHie]N AiJR/((P/X)(a) =Vln At (a). Thus
f L>) (LfJﬁf((p/X),L,>)
ien A /HA (VHiE]NAi ’HAI)'
ielN ielN
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4. Rough approximations for hypersoft quasi-ideals and fuzzy quasi-ideals of semigroups

In this section, we apply the definitions given above to the more specific set of semigroups. We focus
to consider the upper and lower rough approximations of hypersoft quasi-ideals and fuzzy quasi-ideals
of semigroups. We provide some properties under hypersoft homomorphism problems.

For the remainder of this section, V and W stand for a semigroup. Applying Definitions 2.15 to
progress under the concept of set-valued functions, we shall propose the concept of hesitant bipolar-
valued fuzzy hypersoft compatible relations as follows.

Definition 4.1. Let % := (R, ] [;cn A1) be a hesitant bipolar-valued fuzzy hypersoft relation over V x V. R
is called a hesitant bipolar-valued fuzzy hypersoft compatible relation if it satisfies

((R(a))™(¥v, ) 2 ((R(a))" (¥, V), ((R(a))™ (w9, v) 2 ((R(a))" (¥, V),
((R(a))™ (W, vv) C ((R(a))™ (v, V), ((R(a))™ (vo,v) € ((R(a))™ (V,V)

forall a € [[ien A, v, 0,V EV.

Definition 4.2. Let (V,V, [VI§ (R Tun Ko +)) be an approximation space type L (V,V,[VIGS ) is

called an approximation space type Iif % is a hesitant bipolar-valued fuzzy hypersoft reflexive relatlon,
a hesitant bipolar-valued fuzzy hypersoft transitive relation, and a hesitant bipolar-valued fuzzy hypersoft
compatible relation.

Proposition 4.3. If (V,V, [V]SCRS,*(RH NK-)(cpx)) is a given approximation space type II, then
=R lie i)W

([\j]g‘ts,(@,x))([\]gts,(@,x)) is a subset of [\’)\‘z}gi((p,x)for allv,v e V.

Proof. Let vi,v; € V, and let v3 € ([vﬂm(wx))([\)ﬂfcks,((p,x)) Then, there exist v4 € [Vl]m(qax) and vs €
V2l () Such that vs = vyvs. Observe that vilg, () = val§ (1) and val5; () = sl5 () Suppose
Vg € [vlvz]g% Then

(R(K))™ (viva2,v6) C @ and (R(k)) " (viva,ve) 2 X

for all k € [[ien Ki. Since R is a hesitant bipolar-valued fuzzy hypersoft reflexive relation and using
Proposition 3.2, we obtain that vi € [v1]; and vy € [v2l§; ()" It follows that vi € [v4]5; (o and

,(@,x) X)
vy € [V5]ZSR,(¢),X). We see that

(R(k)~(va,v1) S, (RK)T(va,v1) 2%, (R(K) " (v5,v2) C @, (R(k)) " (vs,v2) 2 x

for all k € ] [;cn Ki. Since 9 is a hesitant bipolar-valued fuzzy hypersoft transitive relation and a hesitant
bipolar-valued fuzzy hypersoft compatible relation, we observe that

(R(k)) ™ (vavs,viva) € ] ((R(K)™ (vavs,v) U (R(K)) ™ (v, v1v2))

(R(k))™ (v4vs, vivs) U (R(Kk)) ™ (v1vs, viva)

C
C (R(k))™ (va,vi) U (R(K)) " (v5,v2) CoUp =@

and

(R(K)) ™ (vavs, viva) 2 | ((R(K)) T (vavs, v) N (R(K)F (v, v1v2))
vev

(R(k)) " (vavs, v1vs) N (R(K)) T (v1vs, viva)
(R(K)) ™ (va,v1) N (R(K))F(vs5,v2) D xNx =X

v U
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for all k € [];cp Ki. Since i is a hesitant bipolar-valued fuzzy hypersoft transitive relation, we observe
that

(R(K)) ™ (vavs,v6) € [ ((R(K))™ (vavs,v) U (R(K)) ™ (v, vs))
veVv

C (R(k))™ (vavs,viv2) U (R(K)) ™ (viva,ve) C @U@ = @

and

(R(K)) " (vavs,ve) 2 | ((R(K) (vavs, v) N (R(K))F (v, v6))
veV

D (R(K)) T (vavs, viva) N (R(K)) T (viva, ve) 2 X NX =X

for all k € J];cpn Ki. We obtain that ve € [V4V5]S%’((plx). It is true that [vivol; (o) S [\14\)5]3%1((9,)(). On
the other hand, we can show that [v4vs]5, (o) S [vlvz];{,w,x). Thus [vlvz]g{ (o) = [V4V5]§SR,((P/X). Hence
V3 = W5 € [vlvz]g‘( Thrs verifies that ([vi]§$ R, x))([vﬂg‘is,(@,x)) - [vlvz]m (o) O

According to Proposition 4.3, we indicate that it does not hold in general for an equality case. In what
follows, we shall consider the following example.

Let the triple (V,V, VIS _ Tien Kol (0, 1)) be a given approximation space type II, where V = {vy, :=
n : m isanatural number} is a semigroup under the usual addition +, and & is a hesitant bipolar-
valued fuzzy hypersoft reflexive relation, a hesitant bipolar-valued fuzzy hypersoft transitive relation and
a hesitant bipolar-valued fuzzy hypersoft compatible relation over V x V defined by

I, ifv=v, _ , ifv=v
RO 60 =4 T =Yg Ry, =
0, ifv#£v, —I, ifv ;é
for all k € [[icn Ki, v,V € V. Observe that if n is a natural number, then [v,]§} 5(0,4+1) = {n}. Thus, we get
that [V]§$ S(041) T Vg R0 1) = =[N —i—v]cs(@ D for all v,v € V. Indeed, assume m and n are natural numbers.

Then
[Vm}S{(@,H) + [Vn]Sr{S,(@,+I) ={m}+{n}={m+n}=[m+nlg R,(0,41) — = [vm +vnly 9R,(0,+1)"

Thus, we observe that the example can be considered as a specific case of Proposition 4.3, i.e., [v]f,fm L)
TR 9 41) = PV +VI5 (1) for all ¥, v € V. Therefore, this example leads to the following definition.

Cs

Definition 4.4. Let (V,V,[VIGZ_ e (¢x)) De a given approximation space type IL [VI5F . is
called a complete collection induced by SR 1f (v ]m (o) )( [v]§§( o x)) [V\‘J]ECRS for all v,v € V. In this way,
we say that i is a hesitant bipolar-valued fuzzy hypersoft complete relat1on Moreover V)V IVIR (o)) 18
called an approximation space type III if R is a hesitant bipolar-valued fuzzy hypersoft complete relation.

For hypersoft sets § := (F, [ [ien At) and & = (G, ] [;cn Bi) over V, a restricted product of § and &,
denoted by §©®, is defined as a hypersoft set (H, H en Ci), where [Ticn Ci = [[ien At N ] [ien Bi and
H(c) = (F(c))(G(c)) for all ¢ € [ [;en Ci.

Proposition 4.5. Let (V,V, [VIGZ_ Taen Ko, (@ +)) be an approximation space type IL If § := (F, [ [;en At) and
& = (G, [ [ien Bi) are hypersoft sets over V, then 3}5{(@»{)@(’515{ E(FeB)]5 (o)

Proof. Suppose § and & are hypersoft sets over V. Let $; = (Hl,HleN C1 = S1% (o @@}CS (ox)"

We let §, := (Hy, [Tien C2i) = §©6. Then [ ;o Co, = HieNA N HIGNB and Hs(c) = (F(c))(G(c))
for all ¢ € J;en Cz,- Next, we shall prove that £1€9215 , ) Obviously [ [ien C1; = [Tien Ca;- Let €
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be an element in | [;c C1;, and let vi € Hy(¢). Then vy € (F|§¢ N(GTS 5 (o.x) ( )). Thus, there exist

R, (@,x)
V2 € FIG (o) (€) and vz € GI5¢ - (€] such that v; = v;v3. Hence, we get that val§s ) NF(€) # 0 and
V3l (o ﬂ G( ) # 0. Thus, there exist v4,vs € V such that vy € Wal§¥ ) NF(¢) nd V5 € M3lSS (o) N

G(¢). By Propos1t10n 4.3, we obtain that

Va5 € (Val iR (o)) (V351 (o)) € V2V3ls (o 4 )-

Observe that v4vs € (F(¢))(G(¢)). Hence
WSS () O Ha(E) = MavsISS () 1 (FIE))(G(E) 0.

Thus v; € Hﬂ (’). Whence Hi(¢) C Ha|§ (’). Therefore ﬁléﬁzlg(@lx). It follows that

(o x)+7’ A{ex)

F158 (00 @B 18 (0. EFOB)ES (5 5) as desired. O
Proposition 4.6. Let (V,V, [VIGS_ T K0 +)) be an approximation space type IIL If § := (F, [ ;e At) and
& = (G, [ [;en Bi) are hypersoft sets over V, then SJS{(@,X)@)@JS{( CE(Fe8)]5s (o)

Proof. Suppose § and & are hypersoft sets over V. Let ; = (Hl,HleN C1 = 8% (o @@jcs (ox)"

92 := (Ha, [ [ien C21) = 5©6. Then HIEN Co, = HIGNA ﬂ HleNB and Hz( ) = (F(c))(G( )) for all
¢ € [Tien Co,- We shall show that £;E$25S (o) Clearly TTien Cip = [ien Co,- Let € € er]N Cy,, and

let vi € Hy(¢é). Then, we have v, € ij’ @’X)(é))(GJg{(%X)( ¢)). Thus, there exist v, € F|§’ (px)(’) and

V3 € GJSRS,(@,X)(C’) such that vi = vyv3. Thus, we obtain that [vz]gfr(@, C F(¢) and [\)3]5%5’((0’ g G(¢é). Now
[vl]‘}i((px) [V2V3]9q((p x) = ([Vz]m((p X))(["S]m(@ X)) C (F(¢))(G(¢)) = Ha(¢).

Thus v; € HZJCS (’) Hence H;(¢) C HZJCS (o) ( ). It follows that ﬁlcﬁzj (px)(’). Therefore

SJS{(@,X)@(%JS{( (S@@)j (o) S required. O

Under the restricted product of two hypersoft sets as introduced above, if we put A = []; - Ay, then
(F, ] [ien At) in items (i)-(iv) of Definitions 2.26 and 2.28 is called a hypersoft left ideal (resp., a hypersoft
right ideal, a hypersoft ideal, a hypersoft quasi-ideal and a hypersoft semigroup) over V. Furthermore,
it is easy to see that § is a hypersoft left ideal (resp., a hypersoft right ideal, a hypersoft ideal, and a
hypersoft quasi-ideal) if and only if F(a) is either empty or a left ideal (resp., a right ideal, an ideal and a
quasi-ideal) of V for all a € [ [;c At due to Proposition 2.27.

We now come to the main results.

Theorem 4.7. Let (V,V,[VIgS
hypersoft left ideal (resp., a hypersoft right ideal and a hypersoft ideal) over V, then F|5 | is a hypersoft left ideal
(resp., a hypersoft right ideal and a hypersoft ideal) over V.

—(R I Tien Ki) (@ ) be an approximation space type I If § = (F, [ [ien Ai) s a

Proof. Suppose that § is a hypersoft left ideal over V. Then Wviy, Ay ©FE€T. Using Propositions 3.16 (i),
3.18, and 4.5, we have

mVHieNAi@SWSQS((P x) T mVHIGNA —|SR (¢.x) @S—| @X)G(mvniewf\i©g)—|§*s( CS}CS (@,x)

Hence 157, 1) is @ hypersoft left ideal over V. Similarly, we can prove that §15¢ , . | is a hypersoft right

(@,x)
ideal over V. It follows that S5 ' (@.x) 18 @ hypersoft ideal over V as desired. O
Proposition 4.8. Let (V,V, [VI§{_ ¢ Toen K (@) ) be a given approximation space type II, where V is regular.

If§ = (F][ienAi) isa hypersoft rzght zdeal and & = (G, [ [yen Bi) is a hypersoft left ideal over V, then the
following items are identical:
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. cs = cs .
@) mm,(np,x)@a%,((p,x)’
(ii) Mgc){((p,x)ﬁ@}g%s,(@,xﬁ

(iii) (FOS)1E o)

(iv) (BRSBTS ()"

Proof. Suppose § is a hypersoft right ideal and & is a hypersoft left ideal over V. Then, by Theorem 4.7,

it follows that §1g5¢ . is a hypersoft right ideal and &[g5f , , is a hypersoft left ideal over V. Thus

A P,X P®,X

FIS (o) (@) is either empty or a right ideal of V for all a € J];cnAi, and also have G}gi((plx)(b) is
either empty or a left ideal of V for all b € [[;cn Bi- Let $1 == (Hy, [ [ienw C1i) = F15 (00 MO 1% (o

Then [[ien C1i = [Lien At N Lien Bi and Hi(c) = FI§ ) (€)NGIG o (c) forall ¢ € [Tien Cay
Let 7 := (Hy, [[ien C2i) = 315%5,(@&)@@515{(@«)- Then [[ien C2i = [Tien At N[ Lien Bi and Ha(c) =
(F}g{(@’x)(c))((ﬂg{(%){)(c)) for all ¢ € J];cn Ca,- Note that [[;cn Ciy = [[ien Coi- Let ¢ € []ien Cis
be given. Obviously, H;(¢) = H(¢) if we consider several empty set cases. Suppose H%s( )(é) and

AP,X

G] S{ (0.x) (¢) are non-empty. Thus, by Proposition 2.5, we get that

H1(6) = FIE (0 () N G181 () = (FIS (0100 (€D(G1 (20)(€)) = Ha(€)

Therefore 1 = $». It follows that (i) and (ii) are identical. Using Proposition 2.5, once again, it is easy to
prove that (iii) and (iv) are identical. From Proposition 3.17 (i), we obtain that (iv) is a hypersoft subset of
(ii). By Proposition 4.5, we get that (i) is a hypersoft subset of (iii). It follows that the statement is true as
required. O

Theorem 4.9. Let (V,V, [\/]gff::(Rll—[_ N Ki), (o)) De an approximation space type IIL If § := (F, [ [;en Ai) is a
hypersoft left ideal (resp., a hypersoft right ideal and a hypersoft ideal) over V, then F|5 | is a hypersoft left ideal
(resp., a hypersoft right ideal and a hypersoft ideal) over V.

Proof. Suppose that § is a hypersoft left ideal over V. Then Wy, oa, ©F€F. Using Propositions 3.16 (i),
3.18, and 4.6, we have

=~ cs _ cs =~ cs = =~ cs = cs
QHVH@N A ©3F) R,(ex) — ?mVHieN A-lJ R,(@,x) @3 %, (¢,x) € (QUVH@N A ©3F)] R,(@,x) €S| R,(@,x)

Hence §|5 , . is a hypersoft left ideal over V. Similarly, we can verify that §J§7 , . | is a hypersoft right

ideal over V. This implies that §|57 , . | is a hypersoft ideal over V. O

Proposition 4.10. Let (V,V, [VIZ_ 1. KO0 +)) be an approximation space type III, where V is regular. If
=N lie i) Ly

§ = (F,[lien Ai) is a hypersoft right ideal and & := (G, ] [;cn Bi) is a hypersoft left ideal over V, then the
following statements are identical:

(1) TS (o) @858 (0x)7
(1) TGS (o) MBLS ()7

(i) (FOB) 55 o)’

(iv) (FAS)]S (-

Proof. According to Propositions 2.5, 3.17 (ii), 4.6, and Theorem 4.9, we can prove that the statement
holds. O
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Theorem 4.11. Let (V,V,[VI§S (R Tien Kol (0 ) be an approximation space type II, where V is regular. If
€N
§=F]lienAi)isa hypersoft quasi-ideal over V, then F15 (o, 1) is @ hypersoft quasi-ideal over V.

Proof. Suppose § is a hypersoft quasi-ideal over V. Then (S@QBVH.EJN N )ﬁ(QUVH,EN .. ©F)EF. Notice that
S@WVH.EN .. and Wiy, s ©F can be viewed as a hypersoft right ideal and a hypersoft left ideal over

V, respectively. By Theorem 4.7, we obtain that (S@QUVHEN Ai) {CRS (o) and (QBVH@N A @3)15{ (@) Area

hypersoft right ideal and a hypersoft left ideal over V, respectively. By Propositions 3.16 (i), 3.18, 4.5, and
4.8, we observe that

1% (o0 @mvniem A )ﬁ(wvﬂleu\] Aq OF 15
- (mg‘is,(@,x)émvniew\ﬂgg( i (mVH W (009815 (0x))
€ (SémVHiEN A 1% (0,x) n Wy, o, OF) 1% (o)
- (g@mvmenqmﬂgfis,(tp,x)@(mVHieNAi@g) %, (@)
E((FOWvyy A )OWvyy A OIS (o)
= (OWvyy_, AN Wy OFNTER (o)

émg{(m,x)'

This implies that §|5 ) is a hypersoft quasi-ideal over V. O

Theorem 4.12. Let (V,V, [VI§
hypersoft quasi-ideal over V, then SJ 5 (px) 154 hypersoft quasi-ideal over V.

—(RTTien K)o (@ +)) be an approximation space type Il If § := (F, [Ty Ad) is a

Proof. Assume § is a hypersoft quasi-ideal over V. Then (3@&11%% A, )ﬁ(wvnie]l\l A ©F)EF. Using Propo-
sitions 3.16 (i), 3.17 (ii), 3.18, and 4.6, we see that
(B15% (000 @iy _ A AWy OF]K (o0
= Sl e @QﬂVHE]NA %0 P (anl‘[ A, @x@m (@)
(3@Qﬁvn IR (e MWy x OB (o)
(($©9ﬂvn ) (wvn N A @S)US{(@,X)
EF]%R (o)

It follows that §|5F , | | is a hypersoft quasi-ideal, and the proof is complete. O

We next provide the characterization of fuzzy quasi-ideals of semigroups in terms of hypersoft sets.

Proposition 4.13. Let f be a fuzzy subset of V. Then, we have the following statements:

) fis a fuzzy ideal of V if and only if (V Vi >JA s Tien At) is a hypersoft ideal over V for all v € +1;

(ii) f is a fuzzy quasi-ideal of V if and only if (V, 3\ I lien Ai) is a hypersoft quasi-ideal over V for all
L€ +L

Proof.
(i) Assume f is a fuzzy ideal of V. Let t € +1. We shall prove that vie>) (a) is either empty or an ideal
y p TTien A pty
)

of Vforall a € [[icpn Ai- Now, let a € [[;cn At and assume VI{ ) A, (a) # 0. Then, by Proposition 2.11,

we get that Vl—][c ") Ai(a) is an ideal of V. Therefore (Vg;;i\i, HieN Aj) is a hypersoft ideal over V. On
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the other hand, suppose ( 1(—? L’ji\ [ [ien At) is a hypersoft ideal over V for all 1 € +1. We see that for all
i€

ac€ J[iewAiL € +Lif Vl—f L; (a) # 0, then VH:_’L’I?;\. (a) is an ideal of V. From Proposition 2.11, once
A ie i

again, it follows that f is a fuzzy ideal of V.

(ii) Suppose f is a fuzzy quasi-ideal of V. Let 1 € +I be given. We shall prove that Vl_}: b2) A (a) is ei-

i

ther empty or a quasi-ideal of V for all a € [];cnAi. Now, we let a € [[ien At be given. Assume

that Vrf L) A la) # (). Then, by Proposition 2.12, we get that VHf L) A, (@) is a quasi-ideal of V. Therefore
(f,,2)

(VI(Tf L; Ay HIGN Ai) is a hypersoft quasi-ideal over V. On the other hand, assume that (V, (V! Mo A N Lien At)

is a hypersoft quasi-ideal over V for all v € +1. We see that for all a € [ [;cp A, L € +1, if Vrf L) A la) #0,

then VI—PLH;A, (a) is a quasi-ideal of V. Using Proposition 2.12, once again, we obtain that f is a fuzzy
i€ 1

quasi-ideal of V. O

Theorem 4.14. Let (V,V,[VI§ _ (R Tin Ko ox)) be an approximation space type IL If £ is a fuzzy ideal of V,

then "f758 , \) is a fuzzy ideal of V.

Proof. Suppose f is a fuzzy ideal of V. Then, by Proposition 4.13 (i), we have (Vl{ ;>l\ T Tien At) is a hy-

persoft ideal over V for all « € +I. As showed in the proof of Theorem 4.7, it holds that
(VS‘L;AJHEN A5 (o) 18 @ hypersoft ideal over V for all v € +I. By Proposition 3.31 (i), we get
i€ 1 7 7

TT75 (o) U2 . . . .
that (Vl(—heﬁﬁ\“z”d L ), [ Iien At) is a hypersoft ideal over V for all « € +1. From Proposition 4.13 (i), once
again, we obtain that "3 | is a fuzzy ideal of V. O

Theorem 4.15. Let (V,V, [V] —(R T (X
then Lf.5 ) is a fuzzy ideal ofV

) be an approximation space type I If f is a fuzzy ideal of V,

Proof. We can verify that the statement is true by using Propositions 3.31 (ii), 4.13 (i), and Theorem 4.9. O

Theorem 4.16. Let (V,V, [VIGF_ Tien Ko (0 ) be an approximation space type I, where V' is regular. If f is a
uzzy quasi-ideal of V, then rf—'“‘ zs a fuzzy quasi-ideal of V.
y4q R, (@,X ]/ q

Proof. Assume f is a fuzzy quasi-ideal of V. Then, by Proposition 4.13 (ii), we have (VH L) Al lienAdisa

hypersoft quasi-ideal over V for all « € +I. Thus, by Theorem 4.11, it follows that

(f1>)
(VH-ILNAW'.,HIGNA -lf)‘{ (o,
L=

rfacs
obtain that (VI(T H\? WX TTiew Ad) is a hypersoft quasi-ideal over V for all ¢ € +1. Using Proposition
i€ 1

;< is a hypersoft quasi-ideal over V for all « € +I. By Proposition 3.31 (i), we

4.13 (ii), once again, it follows that "f'5* ) is a fuzzy quasi-ideal of V. O
Theorem 4.17. Let (V,V, [VI§ _ T Kol (0 +)) be an approximation space type III. If f is a fuzzy quasi-ideal of

V, then L5 , ) is a fuzzy quasz ideal ofV

Proof. Based on Propositions 3.31 (ii), 4.13 (ii), and Theorem 4.12, we can show that the statement holds.
d

Based on Definition 2.29, if we put A = [[;cn At and B = [ [ Bi such that § := (F, [ [;cn Ai) and
& = (G, ] [;en Bi) are hypersoft semigroups over V and W, respectively, then we call (T, A)}, a hypersoft
homomorphism from § to &.
Given a hypersoft set § := (F,[[icn Ai) over V with respect to [ [;cn A, @ hypersupport of § is
denoted by Hsupp(F), where
Hsupp(§) :={a € [ Ai: F(a) # 0.

ielN
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As introduced above, these definitions lead to the following proposition under hypersoft homomor-
phism problems.

Proposition 4.18. Let (V,V, [V] Rem (R [ Tons K)o (@) ) @1 (W, W, (W] & (S, Tun Ki), (x)) b€ @pproximation spaces
type 1, and let (T', A)y, be a hypersoft homomorphism from a hypersoft semigroup § := (F, [ [;en A1) over V to a
hypersoft semigroup & = (G, ] [; o Bi) over W, where

(R{k))™ (9, ) = (S(K)) " (T(¥), T(¥)) (4.1)
and
(R(K) " (¥,¥) = (S(k)) " (F(¥), T(V)) (4.2)
forall k € [ [;cn Ki, Y,V € V. Then, we have following statements:
(i) forallv,veV,v e [\\)];{S,((P,X) and T'(V) € [F(\‘))]CGS,(QX) are equivalent;

(ii) r(ﬂgis,(w,x)(a)) = G]g((plx)(/\(a))for all a € [[ien Av

(i) T(FJSS (g3 (@) € GJE o (Ala)) for all a € [ien Ai

(iv) if T is injective, then F(Fjgﬁfl((plx)(a)) is equal to G | %S,((plx)(/\(a))for all a € TTien Av
(v) AHSupp(S15 (o 5))) = Hsupp(81& 1))

(vi) /\(HSUPP(SJ;{S,((‘),X))) c Hsupp(@Jésl((p,X]);

(vii) if T is injective, then /\(Hsupp(gjg{((plx))) is equal to Hsupp (& | %S’((plx));

(viii) R is a hesitant bipolar-valued fuzzy hypersoft reflexive relation, a hesitant bipolar-valued fuzzy hypersoft
symmetric relation, a hesitant bipolar-valued fuzzy hypersoft transitive relation, and a hesitant bipolar-valued
fuzzy hypersoft compatible relation if and only if & is a hesitant bipolar-valued fuzzy hypersoft reflexive re-
lation, a hesitant bipolar-valued fuzzy hypersoft symmetric relation, a hesitant bipolar-valued fuzzy hypersoft
transitive relation, and a hesitant bipolar-valued fuzzy hypersoft compatible relation, respectively.

(ix) if M is a bipolar fuzzy perfect antisymmetric relation and a bipolar fuzzy complete relation, then & is a hesitant
bipolar-valued fuzzy hypersoft antisymmetric relation and a bipolar fuzzy complete relation, respectively.

(x) if T is injective, then R is a hesitant bipolar-valued fuzzy hypersoft antisymmetric relation and a bipolar fuzzy
complete relation if and only if & is a hesitant bipolar-valued fuzzy hypersoft antisymmetric relation and a
bipolar fuzzy complete relation, respectively.

Proof. In this proposition, we shall check (i)-(v). The proofs of remaining items (vi)-(x) are straightforward,
SO we omit it.

(i) In order to prove the argument, we let v; and v, be given in V. Suppose that vi € Vol |- Then
[vl]gq/(@/x) = [VZ]S%,(@,X)' Note that I'(vq),'(v2) € W. Now, we let wy € [r(vl)]%,(cp,x)' Since T is surjective,
there exists vz € V such that I'(v3) = wy. Observe that

(R(k))™(vi,v3) = (S(k))™(T(v1),T(v3)) € @

and
(R(K)) T (v1,v3) = (S(K)T(T(v1),T(v3)) 2 x

forall k € [ ;o Ki. Thus vs € [v1]§,(¢,x). It follows that v3 € [VZ]SSR,(@,x)' Now

(S(k))™(F(v2), T(v3)) = (R(k)) ™ (v2,v3) € @
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and
(S(K)T(M(v2), T(v3)) = (R(k))F(va,v3) D

forallk € J[;cn Ki. Whence I'(v3) € [F(VZ)]%,(@,x)' Thus, we get [r(vl)]%,(m,x) - [F(Vﬂ]%,((p,x)- Conversely,
we can prove that [I'(vo)]% C Twn)E = [I'(vy)] SG,(tp,x)‘ It follows that

6,(ex) = &,(ox)" /
Fvi) € W)l . On the other hand, suppose that I'(v1) € [F(v2)I&,, - Whence [I'(v1)]§ =

S, (¢,x) A@.x)

[F(VZ)]%/(CP,X Now, we let vy € [vl]gﬁi,(tp,x)‘ Then

(S(k))™(M(v1),T(va)) = (R(K)) " (v1,v4) C @
and

(SN (T(v1), T(va)) = (R(K)) T (vi,va) 2 x
forall k € JT;cpn Ki. Thus I'(vy) € [r(vl)]%,(tp,x)' Hence I'(v4) € [F(VZ)]SGS,(tp,x)‘ Now

(R(K)) ™ (v2,va) = (S(k)) " (T(v2),T(va)) C @
and

(R (v, v4) = (S(K))F(T(v2), T(v4)) 2
for all k € [ [;cp Ki- Thus, we get that v4 € [VZ]SSR,( o)’ It follows that [vl];{,( o) S [V2]SSR,( o)’ Conversely,
we can show that [vz‘]ﬁsﬁl( o) S M5 (o) Which yields (]G (o = 2l (.- Consequently vi €
V2l () - The proof is complete.
(ii) Let a € [[ien A, and let wy € T'(F|g¢ (o x)( a)). Then, there exists v; € F}gﬁfl(cplx)(a) such that I'(vy) =
wi. Observe that [vﬂcs( ﬂF( ) # 0. There exists vy € Vsuch thatv, € [Vl]g%s,(@,x) and v; € F(a). By item

(i), we have I'(v,) € [F(vl)]6 ( and I'(v2) € T'(F(a)). Since I'(F(a)) = G(A(a)), we have I'(vy) € G(A(a)).

Now

®,X)

W& (x) NG(A(Q)) = TVIIE (o 5) N G(A(a)) # 0.

Thus, we get wy € G}CS cpx)(/\( )) It follows that F(F}m,(@,x)(a)) - G}CS (px)(/\(a))' Conversely, we
let wy € G}CS (PX)(A( )) Then [wz]CS )N G(A(a)) # 0. Thus, there exists w3 € W such that w; €
[wz]6 (@) and w3 € G(A(a)). Since F( ( )) = G(A(a)), we have w; € I'(F(a)). There exists v3 € F(a)
such that I'(v3) = wj3. Since T is surjective, there exists v4 € V such that I'(v4) = w;. We see that I'(v3) €

[F(V4)]G (o) By item (i), we get v3 € [V4]§§((p,x). Hence [V4]g{((p’x) NF(a) # 0. Thus v4 € F}g{((prx)(a).
Whence, we obtain that wy, = F(V4) € F(H % (@x) ( }). It follows that G}CGS,(@’X)(/\(a)) C rm&?(@,x)(“))-
This implies that T(F|5  (a)) = GI& , . (Ala)) as required.

(iii) Let a € [[;cn Ay, and let wy € T( j 5 () x)( a)). Then, there exists v; € Fjgé(@,x](a) such that I'(vy) =
wi. We observe that [vl]m ( (px) C F(a). Now, we let wy, € [wl]6 (o) . Then, there exists v» € V such
that T'(v2) = wy. Thus I'(v2) € [I'(v1)Ig & (o))" By item (i), we get v» € [vﬂm((px) and so v, € F(a). Thus
I'(vp) € T(F(a)). Since I'(F(a )) G(A(a)), we have wy =T'(v») € G(A(a)). Whence [w1]& C G(A(a)),

S,(@,x)
which yields w; € GJCS Al(a)). Therefore, it follows that I'(F|5? )( a)) C GJCS @x)(A(a))'

(iv) Let a € [[ienAi and let wy € GJG,((‘),X](/\( a)). Then [Wl]e (o) S G(A(a)). Since T'(F(a)) =
G(A(a)), we have [Wl]%s,(tp,xJ C T'(F(a)). Since T is surjective, there exists vi € V such that I'(v{) = wj.
Thus, we get [F(vl)]CGS,((p,X) C I'(F(a)). Now, we shall prove that [vﬂm (o) S F(a). Suppose v, € [vl]m (o)
Then, by item (i), we obtain I'(v2) € [l“(vl)]6 (o) . Thus T'(v;) € T'(F(a)). There exists v3 € F(a) such that
I'(v2) = T'(v3). Since I" is injective, we have v, = v3. Observe that v, € F(a). It follows that [vl]cs( o) S F(a).
Therefore v; € FJCS((p,X)( a). Thus, we see that wy = TI'(vy) € T'(F|§ (@X)( a)). Thus GJCS ( (a)) C

I"(Fjg;((p,x)( a)). As item (iii), we get I'(F|§¢ (<|>X) a)) = GJC@S (o) /\(a)) as required.
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(v) Suppose that be /\( pp( }gas )) Then, there exists 4 € Hsupp(mgé((plx)) such that b = A(d).
Observe that F} (@) 7é @ There ex1sts v1 € V such that v; € F|§ (o, x)( d). By item (ii), observe that

F(v1) € T(FI5 (0 (4)) = G1& () (Ald)) = GWC@S,UP,X)(B)'

Thus G|g 6) # . Therefore b € Hsupp( 1S (o)) Hence A(Hsupp(F15 ., ,))) S
Hsupp(Qﬂ ) Conversely, let b ¢ Hsupp(QﬂC ) Then G} (b) # 0. Thus, there exists

weWwW such that w € G] CGSI((D’X)(B). Since A is surjectwe, there exists a 6 HleNA such that A(a) = b.
Using item (ii), we get that

W € G190 (D) = G1& (0 (A(@) = T(FI55 1 ().

Then, there exists v, € F}

Hsupp (153
/\(Hsuppm

Theorem 4.19. Let (V,V, [V] (R Toen Ko, (@ ) and (W, W, [W]
type I. Let (T, A)n be a given hypersoft homomorphzsm from a hypersoft semigroup S (F, [Licn Ai) over Vtoa
hypersoft semigroup & := (G, [ [ Bi) over W satisfying equations (4.1) and (4.2). Then §155 , . is a hypersoft
left ideal (resp., a hypersoft right ideal and a hypersoft ideal) over V if and only if 81, . | is a hypersoft left ideal
(resp., a hypersoft right ideal and a hypersoft ideal) over W.

@X)(d) such that I'(v,) = w. We observe that F]CS((pX (a) # 0. Then a €

It follows that b €  A(Hsupp( Sl ox)))- Hence Hsupp(&]&
)) This substantiates that A(Hsupp (3]s Hsupp (&

mx))‘ cpx)) <

(@,x) mx)) cpx))

(S TTien Ko (0 +)) be approximation spaces

Proof. We only prove the case of a hypersoft left ideal, the other arguments are similar.
Suppose that §15¢ , . ) is a hypersoft left ideal over V. Then F|® |(a) is either empty or a left ideal

of Vforalla e J];cn A . Note that KN B = B. Now, we let b € 1_[1 n Bi- Then, there exists d € [ [;on Ad
such that A(d) = 6. We consider the following two cases.

Case 1. Assume F|3F (a)is empty forall a € [ ;e At Then T(FIEE |
[lien Ai- Thus, by Proposition 4.18 (ii), we obtain G|g (X (6) is empty. Observe that
W )(G] (%S,((p,x) (b)) = (G}%ﬁ(@,x) (6)). Therefore mWﬂieN Bi©qﬂ Sl((p,x) = 0] CGS,((D,X)'

Case 2. Suppose F}gs(@,xJ(a) is a left ideal of V for all a € [];cn Ai- Then, we have V(F}g{((plx)(a)) -

FIS (ox) (@) for all a € [T;cn Ai. By Proposition 4.18 (i), we observe that

)(a)) is also empty for all a €

-

ieN Bi(

(Wnie]N BJB)MGW CGS,((p,x)(b GW CGSUO (A( d)
(

(6)) = G1E () (A(@) = GIE (1 (B).

Whence Wwy, Bi@(‘ﬂ CGS/(‘p/X)é(’ﬂg(@/X). This implies that 8| | | is a hypersoft left ideal.

Conversely, assume that &[G . is a hypersoft left ideal over W. Then G|g’, .| (b) is either empty
or a left ideal of W for all b € J[;cp Bi. Note that [[;cn Ki N[ Jien At = [Tienw Ai- Let @ € [ien Ade
Then, we consider the following two cases.

Case 1. Suppose G| CGS;((P;X) (b) is empty for all b € [ [;p Bi- Then, by Proposition 4.18 (ii), we get that

FFIS (000 (@) = G (5 (A@) = 0.

If FI§ ) # 0, then there exists v € V such that v € F|g
dlctlon Hence Fl§s B

(@,x
o) (@) = 0. It follows that (V. a,(a ))(ﬂg{{s[

Wy oa @815 (0 = S5 (o0

j(a). Thus T'(v) € (¢, a contra-
(@

) = (FI§ () (@). Hence
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Case 2. Suppose that G| ‘px)(b) is a left ideal of W for all b € ;¢ Bi- Then W(G[E (px)(b)) -

G]CGSI((D’X (b) forallb € HleN Bi. Now, assume thatv; € (VHie]N Ai(d))(ﬂzcﬁs,(@,x (a)). Thus, by Proposition

4.18 (ii), we see that

Mvi) € F((VH ENA ) (FI% (o0 (@)
= (r(V) Flm,(@,x)(a))) = W(G]E () (AQ)) € GTE () (A(@)) = T(FISE (1 (@)):
There is v, € F}CS )(‘) such that I'(vy) = I'(v2). Using Proposition 3.4, we have I'(vq) € [I'(»2)]& & (o
Thus, by Proposmon 4.18 (i), we obtain v; € [l . - From Proposition 3.5, we get [vﬂm (ox) =
[vz]m (ox)" Observe that [vz]“"((p’ F(a) # 0. Hence [vl]m( o NF(a) # 0, which yields v; € F|§¢ 5 (x )(d).
Thus (VHie]N Ai(d))(ﬂg{(@’x)(d)) - Hm,((p,x)( a). Therefore QBVHEN A @S}S{(@/X)éﬂg&@m. This shows
that §15 (@) 18 @ hypersoft left ideal over V. O

Theorem 4.20. Let (V,V, [VIS — (R Toen Ko, (@ ) and (W, W, W[
type I. Let (T, A)y, be a gwen hypersoft homomorphzsm from a hypersoft semigroup S = (F, HleN Ai) over V
to a hypersoft semigroup & := (G, [ [icn Bi) over W satisfying equations (4.1) and (4.2). If T is m]ectzve then
SIS (@) 18 @ hypersoft left zdeal (resp., a hypersoft right ideal and a hypersoft ideal) over V if and only if & | &
is a hypersoft left ideal (resp., a hypersoft right ideal and a hypersoft ideal) over W.

=(S T Tien Kili (@ +)) be approximation spaces

CSs
[(@,x)

Proof. Based on Proposition 4.18 (iv), we can show that the statement is true. O

Theorem 4.21. Let (V,V, [VIG_
type 1. Let (T, A)n be a given hypersoft homomorphzsm from a hypersoft semigroup S = (F, HleN Ai) over V
to a hypersoft semigroup & := (G, [ [;cn Bi) over W satisfying equations (4.1) and (4.2). If T is m]ectwe then
B15% (g,x) 18 @ hypersoft quasi- zdeal over V zf and only if 81 is a hypersoft quasi-ideal over W.

R Tien Kol (0x)) 14 (W, W, IWIG_ (s 1. e Kil(o ) be approximation spaces

[@,x)

Proof. In order to verify this statement, we shall assume that I' is an injective function. We observe that it is
easy to prove that T((FIS¢ , . (@)V N VIFISS (o 1 () = (T(FISS 1 (@) (TOVI) N MV (T(FIES (1 (@)
forall a € [Ticn Ai Suppose §155 , . is a hypersoft quasi-ideal over V. Then F|&®  (a) is either empty

or a quasi-ideal of V for all a € J];cpAi. Note that (JT;cn Bi N[ [ien Ki) N (I Tien Ki NI Tien Bi) =
[Tien Bi- Now, we let b € [T;cp Bi- Then, there exists d € [ [;cp Ai such that A(d) = b. We consider the
following two cases.

Case 1. Suppose F|5? , (a) is empty forall a € [ ;e At Then T(F|G | (a)) is also empty forall a €
[Lien At From Propos1t1on 4.18 (ii), we get G}CS x)(b) is empty. Thus (G}CGS( ,X)(b))(WHie]N g, (b)) N

(W N(G]E & (@) b)) is equal to (G|& ( b)). Therefore

ieN Bi S, (e

cs = = =~ cs _ cs
(®] 6,(<p,x)@?mwnieN B; m(wwniem B; 6] 6,(@,x)) = &] &,(@,x)

Case 2. Suppose that F] ((pX)(a) is a quasi-ideal of V for all a € [];cnAi- Then (F]gsl((plx)(a))Vﬂ
V(FIE (o0 (@) SFIE (a) for all a € [[icn Ai- Using Proposition 4.18 (ii), we observe that
(G1% () (6 ))( 5.(6) N (W[, 5.(6))(G]E () (6))
= (615, ( OIWAWIGIE . (A(G)
- (TUFIS (am( ( DTS (@)
= T((FI (0 (6)V A VIFISS () (6)))
C I(FISs ( ) = 612; o ALQ) = GTE 4 (B).
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Wherefore (Gﬁ}cgsl(@lx)@ﬂﬁwniw Bi)ﬁ(ﬂnwnieﬂ\] Bi@@}%f(qx))é@} CGS,(np,x)' It follows that & C6S,(<p,xJ is a hy-
persoft quasi-ideal. On the other hand, suppose &[& ., is a hypersoft quasi-ideal over W. Then
G[& () (b) is either empty or a quasi-ideal of W for all b € [ J;c Bi. Note that ([ [;en At N[ Tien Ki) N
(ITLien KiNTLien Ai) = [ Lien Ai- Let a € [ [ Ai- We consider the following two cases.

Case 1. Suppose G|g(,, ) (b) is empty for all b € [ ]y Bi. From Proposition 4.18 (ii), we get that
PIFIS: () (8)) = G150 (A(@)) = 0.

Assume by contradiction that F]CS )(c‘l) #+ (). Then, there exists v € V such that S F}CS(@X (a).

(@,x
Thus I'(v) € 0, a contradiction. Hence FW;{S,( tp,x)( a) = (. It holds that ( F} (@) (v, N A (@) N
(Vl—[ie]N Ai(c‘l))(ﬂg{(@,x) (a)) is equal to (F}gf,((pm (a)). This implies that

(BT (0.0 @DV, MWy a OF15 (0,x0)) = F15% (000

Case 2. Suppose G]G @x)(b is a quasi-ideal of W for all b € [];cpnBi- Then (G]CGS,((PIX)(b))Wﬂ
W(G}"Gﬁ((p,x)(b)) - G}Cg ) ) for all b € [];cn Bi. Assume that vi € (F|§ 5 ( (P,X](a))(vHiGNAi(d)) N

)
(b
Thus, by Proposition 4.18 (ii), we see that

(p,x
(Vi,on A @D (FISS () (0))-
) € T((FISS (g (@ ))(vn oA @) VT A (@) (FISS (g ()
= T((FISE g (@0V A VIFISS o ()))
= (M(FI$ )(am( (V) OV TV TFIE o (@)))
= (G1& () MANWNWI(G]S (4 5) (A(a)))
- GWéS,((p,X)(/\(d))

There exists v, € F}gff( 0 X)(d) such that I'(vi) = T'(v2). Using Proposition 3.4, we see that I'(v;) €

F(v2)l& () By Proposition 4.18 (i), we obtain that vi € g, ). From Proposition 3.5, we get
that [vl]cs((px) = [VZ]g‘is(wx Observe that [VZ]g?S((ox F(a) # (. Hence [vﬂg{((plx) NF(a) '7& (. Whence
Vi € FI5 (o) (@) Thus, we get (FIGF (@) (VA (@) N (V[ Al ))(F}gf((px)(d)) is a subset of
FIS (o (@ ( ). Hence (§1¢; @QIIVH A, ) (Wi _a, @MS@S OETISE (o) We conclude that §55
is a hypersoft quasi—ideal over V. O
Theorem 4.22. Let (V,V, VIS _ Tien Ko, (@ o) and (W, W, [WIG_ s Tien o), (0 +)) be approximation spaces

type I. Let (T, A)n, be a gwen hypersoft homomorphzsm from a hypersoft semigroup S = (F, HIGN Ai) over V
to a hypersoft semigroup & := (G, [[icn Bi) over W satisfying equations (4.1) and (4.2). If T is m]ectzve then
S5 (g,x) 18 @ hypersoft quasi- zdeal over V zf and only if 8], ) is a hypersoft quasi-ideal over W.

Proof. If we use Proposition 4.18 (iv), then we can verify that the statement holds. O

Theorem 4.23. Let (V,V, [V];f_f(R i Kol (@ ) and (W, W, [W] (ST Ten Kih (@ ) be approximation spaces
— ™l lie /s €

type 1. Let f and g be fuzzy subsets of V and W, respectzvely, and let v, x € +1. Let (T, /\)h be a hypersoft homomor-

phism from a hypersoft semigroup ( l{ N >;\ , [ Tien Ai) over V to a hypersoft semigroup ( 1(-?"(’23) , [ Tien Bi)
ieN

over W satisfying equations (4.1) and (4.2). Then "f758 . is a fuzzy ideal of V if and only if "9"'& is a

(@, (@,x)
fuzzy ideal of W.

Proof. From Propositions 3.31 (i), 4.13 (i), and Theorem 4.19, we observe that

(I’ ces

rFIss is a fuzzy ideal of V < (V. e
R,(,x) Y

M s H Aj) is a hypersoft ideal over V for all v € +1
i€

ielN
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5 H Ai) ) is a hypersoft ideal over V for all 1 € +1
ielN
g K,>) .
Mion B , H Bi) ) is a hypersoft ideal over W for all k € +1
ielN
Wl(_[iNGé“’ x02) H B;) is a hypersoft ideal over W for all k € +I

ieN
& 7978 (o) I8 a fuzzy ideal of W.

Thus 7SS

% (@x) 1s a fuzzy ideal of V if and only if "g 7“ ©x) is a fuzzy ideal of W. O

Theorem 4.24. Let (V,V, [VI§S — (R Teen Koo ) and (W, W, WIE — (ST Ko (@ ) be approximation spaces
type 1. Let f and g be fuzzy subsets of Vand W, respectzvely, and let , k € +1. Let (T, /\) be a given hypersoft homo-
morphism from a hypersoft semigroup (Vl(-}ci’:ii\i, [ [ien At) over V to a hypersoft semigroup ( 1_? KN>B) T Tien B1)
over W satisfying equations (4.1) and (4.2). If ' is injective, then .58 ) is a fuzzy ideal of V if and only if
LOIG () IS a fuzzy ideal of W.

Proof. Applying Propositions 3.31 (ii), 4.13 (i), and Theorem 4.20, this statement is easily provided. O

Theorem 4.25. Let (V,V, [V]Sas-—(R [oon Kol (@ ) and (W, W, [WIE (ST Tien Ki), (@ ) be approximation spaces
U™ L LeN ™My ielN
type 1. Let f and g be fuzzy subsets of V and W, respectzvely, and let 1, k € —I—I Let (T, /\) be a given hypersoft homo-

morphism from a hypersoft semigroup (Vl({;f i\i, [ Licn Ai) over V to a hypersoft semigroup (Wl(-i’:fB)i, [Lien Bi)

over W satisfying equations (4.1) and (4.2). If T" is injective, then "£75¢ o | is a fuzzy quasi-ideal of V if and only
if797S (o) 18 a fuzzy quasi-ideal of W.

Proof. Suppose T is injective. Then, by Propositions 3.31 (i), 4.13 (ii), and Theorem 4.21, we observe that

"% (o) 18 @ fuzzy quasi-ideal of V
rf cs /
& (Vl(—[ N }(\ "~z H Ai) is a hypersoft quasi-ideal over V for all 1 € +1
h ielN
= (Vl(—f L; Ay H A% () 18 @ hypersoft quasi-ideal over V for all t € +I
h ielN
= Wl-? KN>B , H B;) 1s a hypersoft quasi-ideal over W for all k € +I
i€
1E]N

IIIE
lEN

© 1978 () 18 a fuzzy quasi-ideal of W.

Therefore 52 ) is a fuzzy quasi-ideal of V if and only if "g'&’ | | is a fuzzy quasi-ideal of W. [

Theorem 4.26. Let (V,V, [VI§ _ e ) and (W, W, WIS _ s, KO (@ +)) be approximation spaces

type 1. Let f and g be fuzzy subsets of V and W respectzvely, and let 1,k <€ +1 Let (T, /\)}1 be a hypersoft homomor-

phism from a hypersoft semigroup ( (e, >i\ I Tien At) over V to a hypersoft semigroup (Wl(_(f-,KfB)-’ [Tien Bi)
i€ 1

over W satisfying equations (4.1) and (4 2). If T"is injective, then LT g8 . is a fuzzy quasi-ideal of V if and only

If L9 () 1S @ fuzzy quasi-ideal of W.

Proof. We can verify that the statement is true by using Propositions 3.31 (ii), 4.13 (ii), and Theorem
4.22. O]
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5. Observations and conclusions

In this research article, the concept related to the hesitant bipolar-valued fuzzy soft set theory and
hypersoft set theory was developed to hesitant bipolar-valued fuzzy hypersoft relations. We have adapted
the methodologies of [15, 39, 43, 45] to extended approximation spaces and novel rough approximation
models induced by hesitant bipolar-valued fuzzy hypersoft relations as the following.

¢ The basic element of the rough approximation of hypersoft sets constitutes upper and lower rough
approximations, boundary regions, definable hypersoft sets, and rough hypersoft sets.

¢ The basic element of the rough approximation of fuzzy sets constitutes upper and lower rough
approximations, definable fuzzy sets, and rough fuzzy sets.

Consequently, we obtained that a hesitant bipolar-valued fuzzy hypersoft reflexive relation and a hesitant
bipolar-valued fuzzy hypersoft antisymmetric relation on a single universe generate both the definable
hypersoft set and the definable fuzzy set.

As summarized above, we shall discuss to accuracy and roughness measures of hypersoft sets and
fuzzy sets in terms of Pawlak’s rough set theory [39]. In the study of accuracy and roughness measures, V
and W are denoted as finite. Pawlak suggests two numerical measures for characterizing the imprecision
in a Pawlak’s approximation space (V, E) as follows.

Let X be a subset of V. An accuracy measure of X, denoted by X|g, is defined by

_ Xl
Xl

where |[X]g| and || X]g| denote cardinalities of [X]g and |X]g, respectively. We observe that 0 < X[g< 1.
A roughness measure of X, denoted by X||g, is defined by

Xle

XHE =1 X|E.

In the following, accuracy and roughness measures of hypersoft sets are considered in approximation

spaces induced by hesitant bipolar-valued fuzzy hypersoft relations. We let (V, W, [V] g‘*S::(R,HeN K (@x))

be an approximation space type L. Let § := (F, [ [;cn At) be a hypersoft set over V. For a € [[;cn Ai, an
accuracy measure of F(a) based on [V]§$ denoted by F(G)Iﬁ{ (o)’ is defined by

,(,x)7
IFl§ (a)l
Fla)lgg (o) = ‘?s,((p/X) ’
T |F—|‘.R,(<p,x)(a)|
where IF]SQS/((D/X)(a)I and IFJSCS((p/X)(a)\ denote cardinalities of Fﬂgfl((plx)(a) and FJS{(@/X)(a), respectively.

Generally, observe that F(a)lg{((plx) € +I for all a € J[;cn At In what follows, for a € [[;cn At a

roughness measure of F(a) based on [V];{S, (o)’ denoted by F(a) ||£°RS (o)’ is defined by

Fla)lls (o0 =1 = Flallsg (o
In observation, the following arguments indeed hold.

* Let (V,W, [VIZ_ (R [T.n K0, (0x)) D€ @n approximation space type L If § := (F, [[;ci A1) is a hyper-

soft set over V, then we have § is a definable hypersoft set within (V,V, [V]g{ ( ) if and only if

©/x)
Fla)I5 (o) =1 0r Fla)[|gs (4 ) = 0 for all a € Hsupp ().
e Let (V,V, [V]g;::(R,HieN Ko, (ox)) and (V,V, [V]"GS::(S’H_IEN K:),(v,w)) D€ approximation spaces type I

with the property that the inclusion relation of the hesitant bipolar-valued fuzzy hypersoft reflex-
ive relation R and the hesitant bipolar-valued fuzzy hypersoft transitive relation & is R Ci; G,
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and (y,w) Csr (@,Xx). If § := (F, ] [ien At) is a hypersoft set over V, then we have F(a)Igﬁs(@/X) >
Fla )|CS for alla e Hsupp(&) In fact, we let a € Hsupp(%) be given Then by using Proposition

3.19, we see that IF] (a)] < |HCS (a)l and IFJCGS, a)l < |FJ (a)|. Now
F(a)‘cs — |FJCGS,(V,(U)((1)| |FJCS X)(a)| |FJCS <PX)(a)| —_ F(a”cs
T IRIE w (@) TFIE e (@) T IFIE 0 () e
e Let (V,V,[VI§ —(RITren Ki), (@ ) be a given approximation space type I with the property that R is

a hesitant blpolar-valued fuzzy hypersoft reflexive relation and a hesitant bipolar-valued fuzzy hy-
persoft antisymmetric relation over V x V, and (¢, x) € P(— )\{ I} X P(HD\0}). If § == (F, [ [1en At)
is a hypersoft set over V, then F(a)lgf , ., =1 and F(a)||5¢ = 0 for all a € Hsupp(F) due to
Proposition 3.20.

¢ We further study the fact under distance measurement concerning the classical concept of Mar-
czewski and Steinhaus [28]. Let X and Y be subsets of V. Marczewski and Steinhaus propose the
notion of distance measure of X and Y as follows.

A symmetric difference between X and Y, denoted by X8, is defined by
XBY:= (XUY)—(XNY).
A distance measure of X and Y, denoted by DM(X, Y), is defined by

xgy| .
DM(X,Y) = { [XUY]’ if XUY| >0,

0, if  XUY|=0,

where [X U Y| denotes the cardinality of XU Y, and [X B Y| denotes the cardinality of the symmetric
difference XBY. Based on (V, W, [VI5{_ Hlem (o)) type L if § :== (F, ] [;en At) is a hypersoft
set over V, then we obtain that DM(F} 5 (o) | Fjgf (o) (@) is equal to F(a)[[§f , . forall a €
Hsupp(F). In fact, let a € Hsupp(F). Then F(a) # (. By Remark 3.14, we get that Hga ( ) # 0.

We observe that \F}g{(@,x)(a)l > 0 and |F1§§/ o )( )UFJCS ( )| > 0. Now
|F}g§( (a EIFJ a)l
M (F]€s JF|CS — ,
( 1iﬁ,(((m()(a) J%,(q),x)(a)) |]:Lcns/ (a)U J (a)l
_ ‘HSCRS,( (a UFJ a)l |F1§f%s,(<p,x)(a)OFJ;‘S,(@,X)(Q”
P15 (o0 (@ UFJm,( (a” P18 (0 (@) UGS (00 (@)
Flse @X)(an
=1- IHCS cpx)(a” - 1_F(a)|gﬁs,(<p,x) = F(G)HS%%S,UP x)

In the fuzzy context, we further study to accuracy and roughness measures of fuzzy sets in approxi-
mation spaces induced by hesitant bipolar-valued fuzzy hypersoft relations as the following.
Let (V, W, [VI§ _ (R Toen K 0.x)) b€ an approximation space type I, f a fuzzy subset of V and 1 € +L

An t-level accuracy measure of f based on [VI , . |, denoted by (f, 1, >)[5;, ., is defined by
(F,4, 2[5, |V““MX>'“>)|
L/ = = r£7cs 7
R, (@.x) IV( % (o) >)|
where |V (o)) | and [V (F 5 (o)) | denote cardinalities of finite sets VU SRexv2) and

VI /) , respectively. Now, observe that f|g8/ | € +1. An t-level roughness measure of f based on
VIS () denoted by (f, 1, >)]|§3 ,is defined by

(fL,}HCSL )::1 (ft,/);f(t(px)
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Based on Proposition 3.31, if f is a fuzzy subset of V and v € +I such that (Vﬁ;ﬁi\i,ﬂieﬂ\} Ai) is a

(f, 1, >)-relative whole hypersoft set over V, then we observe that the following items are true.

( )‘cs L vl(_f ;;A ( )| ) forall a € Hie]N Aji.
S vft> a)gs forall a € [[icn Ai
eNA X) LEN T

This means that the concept of accuracy and roughness measures of fuzzy sets can be described in terms
of hypersoft sets.

In order to obtain the optimal multi-parameter of a hypersoft set in general, we present the decision-
making algorithm of associated rough hypersoft sets in approximation spaces induced by hesitant bipolar-
valued fuzzy hypersoft relations as follows.

Step 1. Construct an information (maybe algebraic) system containing the approximation space
VoW, VIR - R i ko000
Step 2. Input a hypersoft set § := (F, [ [;cp Ai) over V.

Step 3. Compute 81‘5{((9,)() and gJ‘S%S,(cp,x)'

DM(F]g i), Fl§ i), . . ..
Step 4. If the value min;¢i<n{m(F(ai)) := ( ]m'(c"’(’l"r)é((l]:)( aijﬁ'(“"’” (av) }is found, then the optimal decision

is F(a), where a is a multi-parameter generated the minimum value. Otherwise, the optimal decision does
not exist. In this step, we call the multi-parameter a an optimal multi-parameter of (F, ] [;cp At)-

We consider the corresponding example as follows. Based on Example 3.13, let [[icpnAi = {ai :
iis a natural number with 1 <1 < 4}and let (F, [ [;cn Ai) be a hypersoft set over V defined by

F(ai) = {v3; : i is a natural number}U{vs;_5 : i is a natural number with i = 1},
F(ap) = {v3; : i is a natural number}U{vs; 5 : i is a natural number with 1 <1 < 2},
F(az) = {v3; : 1is a natural number} U {v3i_; : 1 is a natural number with 1 <1i < 3},
F(ayg) = {v3; : iis a natural number}.

Using Definition 3.12, we obtain that

w

Fl& ([-1,-07),[05.1]) (a) ={v3; : 1is a natural number}U {v3;_» : i is a natural number},

T O

F|& ([-1,-07,[05.1]) (a) = {v3i : 1is a natural number}

for all a € {ay, ay, az}. Moreover, we get that

Hgas,([fl,foy),[o.s,m( as) =F|x R,([—1,—0.7), [05,1})(‘14)'

By Remark 3.14, we see that
m(F(ai)) > m(F(az)) > m(F(a3z)) > m(F(ay)) = 0.

Therefore a4 is the optimal multi-parameter of (F, [ [;cp Ai) such that F(ay) is the best choice. Observe
that F(ay) is definable. Then, the definable-based approximation approach induces the optimal multi-
parameter and the best alternative. Here, the notion of the set-valued distance measurement combined
with a decision-making algorithm based on rough set theory generates the optimal multi-parameter as
well as the best alternative of a hypersoft set. Furthermore, such an algorithm can be also applied to semi-
group (or other algebraic structures) and several information systems under decision-making problems.

In the approach of semigroup theory, we used the novel models to study upper and lower rough
approximations of hypersoft quasi-ideals over semigroups and fuzzy quasi-ideals of semigroups. Then,
we demonstrated arguments like the following.
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¢ In a regular semigroup, every upper rough approximation of a hypersoft quasi-ideal (resp., a fuzzy
quasi-ideal) is a hypersoft quasi-ideal (resp., a fuzzy quasi-ideal) based on a hesitant bipolar-valued
fuzzy hypersoft reflexive relation, a hesitant bipolar-valued fuzzy hypersoft transitive relation, and
a hesitant bipolar-valued fuzzy hypersoft compatible relation.

¢ Every lower rough approximation of a hypersoft quasi-ideal (resp., a fuzzy quasi-ideal) is a hyper-
soft quasi-ideal (resp., a fuzzy quasi-ideal) based on a bipolar fuzzy reflexive relation, a hesitant
bipolar-valued fuzzy hypersoft transitive relation, and a hesitant bipolar-valued fuzzy hypersoft
complete relation.

Moreover, we got that a hesitant bipolar-valued fuzzy hypersoft symmetric relation and a hesitant bipolar-
valued fuzzy hypersoft antisymmetric relation are not sufficient conditions for all results. In the end, we
used hypersoft homomorphisms to study upper and lower rough approximations of hypersoft quasi-
ideals over semigroups and fuzzy quasi-ideals of semigroups. Then, we obtained necessary and sufficient
conditions for upper and lower rough approximations of hypersoft quasi-ideals over semigroups and
fuzzy quasi-ideals of semigroups.

Combined with other types of hypersoft sets and fuzzy sets, we shall verify the results of rough
approximations for these and also consider other types of several algebraic structures in the future. Based
on the interesting applicative concept in [30], we also further study the approximation of fuzzy hypersoft
sets by hesitant bipolar-valued fuzzy hypersoft relation with image processing application in the next
step.
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