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Abstract
In the hybrid context of hesitant bipolar-valued fuzzy hypersoft relations, the modern notion of extended roughness is

constructed to rough approximations of hypersoft sets and fuzzy sets based on such context in this research. Then, corresponding
examples are proposed, and further verified in connections between the hesitant bipolar-valued fuzzy hypersoft relations and
the upper (resp., lower) rough approximations of hypersoft sets and fuzzy sets. Specifically, relationships are shown between the
non-rough hypersoft sets (resp., non-rough fuzzy sets) and hesitant bipolar-valued fuzzy hypersoft reflexive relations together
with hesitant bipolar-valued fuzzy hypersoft antisymmetric relations. To find the optimal multi-parameter of a hypersoft set such
that the best choice exists, the notion of the set-valued measurement issues and decision-making algorithm for such objective is
developed in the terms of rough set theory. Associated with the aforementioned accomplishments, the notion of novel models
has been used to semigroups. Subsequently, the argumentation within relationships concerning the upper (resp., lower) rough
approximations of hypersoft quasi-ideals and fuzzy quasi-ideals are proved under hypersoft homomorphism problems.

Keywords: Rough set, rough hypersoft set, rough fuzzy set, hypersoft quasi-ideal over semigroup, fuzzy quasi-ideal of
semigroup, hypersoft homomorphism, hesitant bipolar-valued fuzzy hypersoft relation, decision-making method.

2020 MSC: 03E72, 03G25, 08A72.

©2023 All rights reserved.

1. Introduction

A philosophical standpoint of vagueness is reflected in the notion of set theory as discussed in [9, 40]
by computer scientists and mathematicians. Then, discovered that the meaning of vagueness is considered
as the property of sets and general sense reasoning based on natural language. Furthermore, vagueness
may be camouflaged in a decision-making problem for computer science, machine learning, artificial
intelligence. In the study of vagueness in classical set theory, a detailed study on properties of rough set
theory can be found. The logical implication of rough set theory was originally introduced by Pawlak
[39] in 1982. The notion of rough (inexact) and definable (exact) sets was introduced in approximation
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spaces based on equivalence relations, where upper and lower approximations are two crisp (precise) sets
(or two basic operations in approximation spaces) depending on vague (imprecise) data. This theory can
be characterized as a mathematical model in the following.

Given a non-empty universe V and an equivalence relation E on V , (V ,E) is denoted as a Pawlak’s
approximation space, and [v]E is denoted as an equivalence class of v ∈ V induced by E. In the following,
let (V ,E) be a given Pawlak’s approximation space and let X be a subset of V . Upon a collection of all
equivalence classes generated by all elements in V , Pawlak suggests an approximation model as follows:

dXeE :=
⋃
v∈V

{[v]E : [v]E ∩X 6= ∅}

is said to be an upper approximation of X within (V ,E). The set

bXcE :=
⋃
v∈V

{[v]E : [v]E ⊆ X}

is said to be a lower approximation of X within (V ,E). A difference dXeE − bXcE is said to be a boundary
region of X within (V ,E). As introduced above, such sets are obtained the following interpretation.

(i) dXeE is a set of all elements, which can be possibly classified as X using E (are possibly X in view of
E). In this way, a complement of dXeE is said to be a negative region of X within (V ,E).

(ii) bXcE is a set of all elements, which can be certain classified as X using E (are certainly X in view of
E). In this way, such a set is said to be a positive region of X within (V ,E).

(iii) dXeE − bXcE is a set of all elements, which can be classified neither as X nor as non-X using E.

In what follows, a pair (dXeE, bXcE) is said to be a rough (or an inexact) set of Xwithin (V ,E) if dXeE− bXcE
is a non-empty set. In this way, X is said to be a rough set. X is said to be a definable (or an exact) set
within (V ,E) if dXeE − bXcE is an empty set.

As mentioned above, observe that if the boundary region of a set is empty it means that the set is
crisp. In the opposite case, the set is rough. Besides, if the boundary region of a set is non-empty it means
that our information (or knowledge) about the set is not satisfactory to define the set exactly.

In Pawlak’s approximation spaces, rough set theory is developed to expand notions, namely, rough
fuzzy sets and rough soft sets. In 1965, fuzzy set theory was introduced by Zadeh [53]. Because of its
wide applicability and also due to natural theoretical interest there had been many kinds of research on
fuzzy set theory. In a fuzzy context, the notion of the roughness of fuzzy sets was proposed by Dubois
and Prade [15] in 1990. A detailed study on upper and lower approximations of a fuzzy membership
function can be found. In 1999, soft set theory was introduced by Russian researcher Molodtsov [31].
This theory has been applied to many different fields with great success. Especially, it is used in decision-
making problems. Under the combination of rough set theory and soft set theory, the roughness of soft
sets was introduced by Feng et al. [17] in 2010. In this concept, upper and lower approximations of a
set of approximate elements (or alternative objects) of a soft set are studied. From the concept under
decision-making problems in sense of soft set theory, the optimal parameter has one element for the best
alternative. To find multi-parameter such that the best choice exists, the concept of hypersoft sets is one
of many powerful tools for this finding. Such a concept is referred to as a generalization of soft sets. This
generalized notion was proposed by Smarandache [46] in 2018. Moreover, many fundamental operations
on hypersoft sets are introduced by Abbas et al. [1] in 2020. In particular, the notion of roughness for
hypersoft sets with applications was proposed by Rahman et al. [45] in recent years. This approach is
based on Pawlak’s approximation spaces. Hypersoft sets are constantly researched and the results are
interesting as can be seen in [8, 12, 33–35, 37].

Based on the above-mentioned study with respect to Pawlak’s rough set theory, two approximation
operations belong to approximation spaces based on equivalence relations. The popular extensions of
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this, such as arbitrary binary relations-based approximation spaces, fuzzy binary relations-based approx-
imation spaces, soft binary relations-based approximation spaces, and fuzzy soft binary relations-based
approximation spaces, are well-known references to deal with roughness problems. Definitions and re-
sults can be found in (see, e.g., [11, 21, 29, 30, 43, 44, 52]).

In extended roughness works, the concept of fuzzy binary relations (or fuzzy relations) is taken in
almost all the literature to date. This concept was introduced by Zadeh [54] in 1971. It is defined as the
generalization of a crisp set. Several researchers pointed out that different extensions of fuzzy relations
have been carried out according to three different situations:

(i) In the type of asymmetric bipolarity, Zhang [57] introduced the notion of bipolar fuzzy sets in 1994.
There are well-known references to deal with bipolar information (see, e.g., [18, 36, 59]). A bipolar
fuzzy set is a pair of mappings, namely, a positive membership function and negative membership
function. The positive membership degree of an element is in +I := [0, 1], the negative membership
degree of an element is in −I := [−1, 0]. In 2019, the notion of bipolar fuzzy relations was proposed
by Lee and Hur [23] in terms of bipolar fuzzy sets, which is an extended concept of fuzzy relations
under fuzzy logic.

(ii) Molodtsov’s soft set theory successfully applied the soft theory in several directions. In 2001, Maji
et al. [25] proposed the notion of fuzzy soft sets by embedding the ideas of fuzzy sets in terms of
soft sets. Sometimes, the fuzzy soft set is referred to as a generalization of fuzzy sets. In recent
years, Mattam and Gopalan [29] presented the concept of fuzzy soft binary relations (or fuzzy soft
relations) in terms of fuzzy soft sets, which is used for approximations in the sense of rough set
theory. The importance of the fuzzy soft relation and fuzzy soft set can be addressed into many
tasks where a higher order of uncertainty is relevant, such as those in image processing [30].

(iii) As an extension of fuzzy set theory, in 2010, Torra [48] proposed the notion of hesitant fuzzy sets
in which the membership degree of a given element is defined as a set of possible values in +I. In
2014, Deepak and John [14] introduced the concept of hesitant fuzzy relations in terms of hesitant
fuzzy sets. This is a form of an extended concept of fuzzy relations under the context of set-valued
functions.

In 2019, the notion of hesitant bipolar-valued fuzzy sets was presented as the combination of bipolar-
valued fuzzy sets and hesitant fuzzy sets, which is used in multi-attribute group decision-making. This
special case was introduced by Mandal and Ranadive [27]. In recent years, Wang et al. [49] introduced the
notion of hesitant bipolar-valued fuzzy soft sets. This theory is the development of hesitant bipolar-valued
fuzzy sets, which further improve the accuracy of decision-making.

In growth, rough set theory can solve uncertainty problems in information and algebraic systems.
Definitions and results can be found in, see, e.g., [4–7, 21, 22, 24, 38, 40–44, 50, 51, 55, 56, 58]. In particular,
the notion of quasi-ideal of semigroups, introduced by Steinfeld [47] in 1956, was considered under rough
set theory depending on preorder and compatible relations. In other words, the upper and lower rough
approximations of quasi-ideals of semigroups were verified in crisp approximation spaces. This result
was studied by Prasertpong and Buada [42]. Besides, in a fuzzy context, the quasi-ideal of semigroups
is advantageous to develop characterizations in terms of fuzzy subsets of semigroups. This concept
was proposed by Julatha and Siripitukdet [20] in 2017. In this study, we observe that many results in
semigroups can be used to algebraic automata theory for applications related to machine learning.

In this paper, we focus on the notion of rough hypersoft sets and the concept of rough fuzzy sets in
extended approximation spaces. First, we extend the concept of fuzzy relations, injecting the concept of
hesitant bipolar-valued fuzzy soft sets and hypersoft sets. That is, we proposed hesitant bipolar-valued
fuzzy hypersoft relations. We present in full detail how this relation can be further used for building
extended approximation spaces, upper (resp., lower) approximations, and we also demonstrate that the
proposed models exist rough hypersoft sets and rough fuzzy sets. To find the optimal multi-parameter
of a hypersoft set such that the best choice exists, the notion of the set-valued measurement issues and
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decision-making algorithm for such objective is developed in the context of rough set theory. Second, we
further study upper (resp., lower) approximations of hypersoft quasi-ideals over semigroups (resp., fuzzy
quasi-ideals of semigroups) in approximation spaces under semigroups.

The remainder of this paper is organized as follows. In Section 2, we shall recapitulate some of the
earlier definitions and results for the background of the current work. In Section 3, the contributions of
the section are as follows.

(i) We introduce the concept of hesitant bipolar-valued fuzzy hypersoft relations in terms of hesitant
bipolar-valued fuzzy soft sets and hypersoft sets. We extend an approximation space by the sense
of hesitant bipolar-valued fuzzy hypersoft relations.

(ii) We propose the concept of upper (resp., lower) approximations of hypersoft sets and fuzzy sets
in approximation spaces based on hesitant bipolar-valued fuzzy hypersoft relations. We introduce
the notions of rough hypersoft sets and rough fuzzy sets induced by hesitant bipolar-valued fuzzy
hypersoft relations, and corresponding examples are presented.

(iii) We establish associations between hypersoft sets (resp., fuzzy sets) and upper and lower approxi-
mations of hypersoft sets (resp., fuzzy sets) by hesitant bipolar-valued fuzzy hypersoft relations.

In Section 4, the contributions of the section are as follows.

(i) We establish associations between hypersoft quasi-ideals over semigroups (resp., fuzzy quasi-ideals
of semigroups) and upper and lower approximations of hypersoft quasi-ideals over semigroups
(resp., fuzzy quasi-ideals of semigroups).

(ii) We establish connections between two upper and lower approximations of hypersoft quasi-ideals
over semigroups (resp., fuzzy quasi-ideals of semigroups) in the viewpoint of hypersoft semigroup
homomorphism problems.

In Section 5, we contain some concluding remarks pointing to set-valued measurement issues and decision-
making algorithms for decision-making problems. Besides, the work is summarized.

2. Basic notions and earlier works

In this section, we first recall some properties and definitions which will be used in subsequent sec-
tions.

Throughout this paper, K, V , and W denote non-empty sets, and P(V) denotes a collection of all
subsets of V .

2.1. Some essential attributes in semigroups
Definition 2.1 ([13]). Let ∗ be a given binary operation on V . A semigroup is denoted by an algebraic
system (V , ∗), where ∗ is associative. We usually write simply V instead of (V , ∗). In the following, if
(V , ∗) is a semigroup, then v́ ∗ v̀ is denoted by v́v̀ for all v́, v̀ ∈ V . Given two non-empty subsets X and Y of
a semigroup V , the product X ∗ Y (simply XY) is defined by

XY = {v́v̀ : v́ ∈ X and v̀ ∈ Y}.

Definition 2.2 ([19]). Let V be a semigroup, and let X be a non-empty subset of V .

(i) X is said to be a subsemigroup of V if XX ⊆ X.

(ii) X is said to be a left ideal of V if VX ⊆ X.

(iii) X is said to be a right ideal of V if XV ⊆ X.
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(iv) X is said to be an ideal of V if it is a left ideal and a right ideal of V .

Definition 2.3 ([47]). Let V be a semigroup, and let X be a non-empty subset of V . X is said to be a
quasi-ideal of V if XV ∩ VX ⊆ X.

Definition 2.4 ([19]). Let V be a semigroup. For an element v ∈ V , v is said to be a regular element if
there exists v̇ ∈ V such that v = vv̇v. V is said to be a regular semigroup if all elements of V are regular.

Proposition 2.5 ([19]). Let V be a regular semigroup. Then XY = X∩ Y for every right ideal X and every left ideal
Y of V .

2.2. Some properties of fuzzy sets

Definition 2.6 ([53]). f is said to be a fuzzy subset of V if it is a function from V to the closed unit interval
+I. Specifically, 1V is denoted as a fuzzy subset of V defined by 1V(v) = 1 for all v ∈ V , and 0V is denoted
as a fuzzy subset of V defined by 0V(v) = 0 for all v ∈ V .

Definition 2.7 ([53]). Let f and g be fuzzy subsets of V .

(i) f ⊆ g is denoted by meaning f(v) 6 g(v) for all v ∈ V .

(ii) A fuzzy set intersection of f and g is denoted by f∩ g, where (f∩ g)(v) is a minimum value of f(v)
and g(v) (simply f(v)∧ g(v)) for all v ∈ V .

(iii) A fuzzy set union of f and g is denoted by f ∪ g, where (f ∪ g)(v) is a maximum value of f(v) and
g(v) (simply f(v)∨ g(v)) for all v ∈ V .

(iv) A fuzzy set complement of f is denoted by f′, where f′ is a function from V to +I defined by
f′(v) = 1 − f(v) for all v ∈ V .

Definition 2.8 ([24]). Let f be a fuzzy subset of V and ι ∈ +I. The set

V(f,ι,>) := {v ∈ V : f(v) > ι}

is said to be an ι-level set of f.

Definition 2.9 ([32]). Let f and g be fuzzy subsets of a semigroup V . The product f ◦ g is defined by

(f ◦ g)(v) =

{
supv=v́v̀{min{f(v́),g(v̀)}}, if v = v́v̀ for some v́, v̀ ∈ V ,
0, otherwise.

Definition 2.10 ([32]). Let f be a fuzzy subset of a semigroup V .

(i) f is said to be a fuzzy ideal of V if it satisfies

f(v́v̀) > max{f(v́), f(v̀)}

for all v́, v̀ ∈ V .

(ii) f is said to be a fuzzy quasi-ideal of V if it satisfies

f ◦ 1V ∩ 1V ◦ f ⊆ f.

Proposition 2.11 ([51]). Let f be a fuzzy subset of a semigroup V . Then f is a fuzzy ideal of V if and only if for all
ι ∈ +I, if V(f,ι,>) is non-empty, then V(f,ι,>) is an ideal of V .
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Proposition 2.12 ([20]). Let f be a fuzzy subset of a semigroup V . Then f is a fuzzy quasi-ideal of V if and only if
for all ι ∈ +I, if V(f,ι,>) is non-empty, then V(f,ι,>) is a quasi-ideal of V .

Definition 2.13 ([54]). Based on Definition 2.6, an element in a collection of all fuzzy subsets of V ×W
is said to be a fuzzy relation from V to W. Given a fuzzy relation R from V to W and elements v ∈ V ,
w ∈W, the value R(v,w) in +I is a membership grade of the relation between v and w based on R.

Definition 2.14 ([10]). Let R be a fuzzy relation from V to V . R is said to be a classical fuzzy perfect
antisymmetric relation if for all v́, v̀ ∈ V ,R(v́, v̀) > 0 and R(v̀, v́) > 0 imply v́ = v̀.

Definition 2.15 ([32]). Let V be a given semigroup, and let R be a fuzzy relation from V to V . R is said to
be a classical fuzzy compatible relation if for all v, v́, v̀ ∈ V , R(v́v, v̀v) > R(v́, v̀) and R(vv́, vv̀) > R(v́, v̀).

Definition 2.16 ([57]). f := (f−, f+) is said to be a bipolar-valued fuzzy set on V if f− is a function from
V to −I and f+ is a function from V to +I. Here, the bipolar fuzzy set f on V is obtained the following
interpretation.

(i) A positive membership degree f+(v) denotes a satisfaction degree of the element v to the property
corresponding to the bipolar fuzzy set f for all v ∈ V .

(ii) A negative membership degree f−(v) denotes a satisfaction degree of the element v to some implicit
counter-property corresponding to the bipolar fuzzy set f for all v ∈ V .

Definition 2.17 ([57]). Let f := (f−, f+) and g := (g−,g+) be bipolar fuzzy sets on V . f is a subset of g if it
satisfies

f−(v) > g−(v) and f+(v) 6 g+(v)

for all v ∈ V .

Definition 2.18 ([23]). Based on Definition 2.16, an element in a collection of all bipolar fuzzy sets on
V ×W is said to be a bipolar fuzzy relation from V to W.

Definition 2.19 ([23]). Let R := (R−,R+) be a bipolar fuzzy relation from V to V .

(i) R is said to be a bipolar fuzzy reflexive relation if it satisfies

R−(v, v) = −1 and R+(v, v) = 1

for all v ∈ V .

(ii) R is said to be a bipolar fuzzy symmetric relation if it satisfies

R−(v́, v̀) = R−(v̀, v́) and R+(v́, v̀) = R+(v̀, v́)

for all v́, v̀ ∈ V .

(iii) R is said to be a bipolar fuzzy transitive relation if it satisfies

R+(v́, v̀) > sup
v∈V

{min{R+(v́, v),R+(v, v̀)}} and R−(v́, v̀) 6 inf
v∈V

{max{R−(v́, v),R−(v, v̀)}}

for all v́, v̀ ∈ V .

(iv) R is said to be a bipolar fuzzy equivalence relation if it is a bipolar fuzzy reflexive relation, a bipolar
fuzzy symmetric relation and a bipolar fuzzy transitive relation.

Definition 2.20 ([27]). f := (f−, f+) is said to be a hesitant bipolar-valued fuzzy set on V if f− is a function
from V to P(−I) and f+ is a function from V to P(+I). For v ∈ V , f−(v) and f+(v) satisfy items (i) and (ii)
in Definition 2.16.
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2.3. Some essential definitions of soft sets and hypersoft sets
Definition 2.21 ([31]). Let A be a non-empty subset of K. If F is a mapping from A to P(V), then (F,A)
is said to be a soft set over V with respect to A. As the understanding of the soft set, V is said to be a
universe of all alternative objects of (F,A), and K is said to be a set of all parameters of (F,A), where
parameters are attributes, characteristics or statements of alternative objects in V . For any element a ∈ A,
F(a) is considered as a set of a-approximate elements (or a-alternative objects) of (F,A).

Definition 2.22 ([26]). Let A be a non-empty subset of K. A relative whole soft set over V with respect to
A is denoted by WVA := (VA,A), where VA is a set valued-mapping given by VA(a) = V for all a ∈ A.

Definition 2.23 ([26]). Let F := (F,A) and G := (G,B) be two soft sets over a common alternative universe
with respect to non-empty subsets A and B of K, respectively. F is a soft subset of G, denoted by F b G,
if A ⊆ B and F(a) ⊆ G(a) for all a ∈ A.

Definition 2.24 ([2]). Let F := (F,A) and G := (G,B) be two soft sets over a common alternative universe
with respect to non-empty subsets A and B of K, respectively. A restricted intersection of F and G, denoted
by FeG, is defined as a soft set (H,C), where C = A∩B and H(c) = F(c)∩G(c) for all c ∈ C.

Definition 2.25 ([3]). Let F := (F,A) and G := (G,B) be two soft sets over a semigroup V with respect
to non-empty subsets A and B of K, respectively. A restricted product of F and G, denoted by F}G, is
defined as a soft set (H,C), where C = A∩B and H(c) = (F(c))(G(c)) for all c ∈ C.

Definition 2.26 ([3]). Let F := (F,A) be a soft set over a semigroup V with respect to a non-empty subset
A of K.

(i) F is said to be a soft left ideal if WVA } F b F.

(ii) F is said to be a soft right ideal if F}WVA b F.

(iii) F is said to be a soft ideal if it is a soft left ideal and a soft right ideal.

(iv) F is said to be a soft quasi-ideal if (F}WVA)e (WVA } F) b F.

Proposition 2.27 ([3]). Let F := (F,A) be a soft set over a semigroup V with respect to a non-empty subset A of
K. F is a soft left ideal (resp., a soft right ideal, a soft ideal and a soft quasi-ideal) if and only if F(a) is either empty
or a left ideal (resp., a right ideal, an ideal and a quasi-ideal) of V for all a ∈ A.

Definition 2.28 ([16]). Let F := (F,A) be a soft set over a semigroup V with respect to a non-empty subset
A of K. F is said to be a soft semigroup if F(a) is, if it is non-empty, a subsemigroup of V for all a ∈ A.

Definition 2.29 ([16]). Let F := (F,A) be a soft semigroup over a semigroup V with respect to a non-
empty subset A of K, and let G := (G,B) be a soft semigroup over a semigroup W with respect to a
non-empty subset B of K. If Γ : V → W is an epimorphism and Λ : A → B is a surjective function such
that Γ(F(a)) = G(Λ(a)) for all a ∈ A, then (Γ ,Λ)h is said to be a soft homomorphism from F to G.

For each n ∈N, let
∏
i∈N Ki := K1×K2×K3× · · ·×Kn denote the n-fold Cartesian product of distinct

non-empty universal sets K1,K2,K3, . . . ,Kn, i.e.,∏
i∈N

Ki := {k := (k1,k2,k3, . . . ,kn) : kj ∈ Kj for j = 1, 2, 3, . . . ,n}.

Definition 2.30 ([46]). Let
∏
i∈NAi be a non-empty subset of

∏
i∈N Ki. If F is a mapping from

∏
i∈NAi to

P(V), then (F,
∏
i∈NAi) is said to be a hypersoft set over V with respect to

∏
i∈NAi. As the understanding

of the hypersoft set, the meaning of V and
∏
i∈N Ki is defined as Definition 2.21.

Definition 2.31 ([1]). Let
∏
i∈NAi be a non-empty subset of

∏
i∈N Ki.
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(i) A relative null hypersoft set over V with respect to
∏
i∈NAi is denoted by

N∅∏
i∈NAi

:= (∅∏
i∈NAi

,
∏
i∈N

Ai),

where ∅∏
i∈NAi

is a set valued-mapping given by ∅∏
i∈NAi

(a) = ∅ for all a ∈
∏
i∈NAi.

(ii) A relative whole hypersoft set over V with respect to
∏
i∈NAi is denoted by

WV∏
i∈NAi

:= (V∏
i∈NAi

,
∏
i∈N

Ai),

where V∏
i∈NAi

is a set valued-mapping given by V∏
i∈NAi

(a) = V for all a ∈
∏
i∈NAi.

(iii) If F := (F,
∏
i∈NAi) is a given hypersoft set over V , then a relative complement of F is denoted by

C(F) := (Fc,
∏
i∈NAi), which is a hypersoft set defined by Fc(a) = V − F(a) for all a ∈

∏
i∈NAi.

Definition 2.32 ([1]). Let F := (F,
∏
i∈NAi) and G := (G,

∏
i∈N Bi) be two hypersoft sets over a common

alternative universe with respect to non-empty subsets
∏
i∈NAi and

∏
i∈N Bi of

∏
i∈N Ki, respectively.

(i) F is a hypersoft subset of G, denoted by Fb̃G, if
∏
i∈NAi ⊆

∏
i∈N Bi and F(a) ⊆ G(a) for all

a ∈
∏
i∈NAi.

(ii) F is equal to G if Fb̃G and Gb̃F.

Definition 2.33 ([1]). Let F := (F,
∏
i∈NAi) and G := (G,

∏
i∈N Bi) be two hypersoft sets over a common

alternative universe with respect to non-empty subsets
∏
i∈NAi and

∏
i∈N Bi of

∏
i∈N Ki, respectively.

(i) A restricted intersection of F and G, denoted by FẽG, is defined as a hypersoft set (H,
∏
i∈NCi),

where
∏
i∈NCi =

∏
i∈NAi ∩

∏
i∈N Bi and H(c) = F(c)∩G(c) for all c ∈

∏
i∈NCi.

(ii) A restricted union of F and G, denoted by Fd̃G, is defined as a hypersoft set (H,
∏
i∈NCi), where∏

i∈NCi =
∏
i∈NAi ∩

∏
i∈N Bi and H(c) = F(c)∪G(c) for all c ∈

∏
i∈NCi.

(iii) An extended intersection of F and G, denoted by FũG, is defined as a hypersoft set (H,
∏
i∈NCi),

where
∏
i∈NCi =

∏
i∈NAi ∪

∏
i∈N Bi, and

H(c) =


F(c), if c ∈

∏
i∈NAi −

∏
i∈N Bi,

G(c), if c ∈
∏
i∈N Bi −

∏
i∈NAi,

F(c)∩G(c), if c ∈
∏
i∈NAi ∩

∏
i∈N Bi,

for all c ∈
∏
i∈NCi.

(iv) An extended union of F and G, denoted by Ft̃G, is defined as a hypersoft set (H,
∏
i∈NCi), where∏

i∈NCi =
∏
i∈NAi ∪

∏
i∈N Bi, and

H(c) =


F(c), if c ∈

∏
i∈NAi −

∏
i∈N Bi,

G(c), if c ∈
∏
i∈N Bi −

∏
i∈NAi,

F(c)∪G(c), if c ∈
∏
i∈NAi ∩

∏
i∈N Bi,

for all c ∈
∏
i∈NCi.

(v) A restricted difference of F and G, denoted by F	̃G, is defined as a hypersoft set (H,
∏
i∈NCi),

where
∏
i∈NCi =

∏
i∈NAi ∩

∏
i∈N Bi and H(c) = F(c) −G(c) for all c ∈

∏
i∈NCi.

Definition 2.34 ([49]). Let A be a non-empty subset of K. If F is a mapping from A to a collection of all
hesitant bipolar-valued fuzzy sets of V , then (F,A) is said to be a hesitant bipolar-valued fuzzy soft set over
V with respect to A. In this way, V and K are considered as Definition 2.21.
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2.4. Variations of rough sets
Definition 2.35 ([15]). Let (V ,E) be a Pawlak’s approximation space, and let f be a fuzzy subset of V . An
upper rough approximation of f within (V ,E) is defined by the fuzzy subset pfqE of V , where

pfqE(v́) = sup{f(v̀) : v̀ ∈ [v́]E}

for all v́ ∈ V . A lower rough approximation of f within (V ,E) is defined by the fuzzy subset xfyE of V ,
where

xfyE(v́) = inf{f(v̀) : v̀ ∈ [v́]E}

for all v́ ∈ V . f is said to be a definable fuzzy set within (V ,E) if pfqE = xfyE; otherwise f is said to be a
rough fuzzy set within (V ,E).

Definition 2.36 ([45]). Let (V ,E) be a Pawlak’s approximation space, and let F := (F,
∏
i∈NAi) be a

given hypersoft set over V . An upper rough approximation of F within (V ,E) is denoted by FeE :=
(FeE,

∏
i∈NAi), where

FeE(a) = dF(a)eE
for all a ∈

∏
i∈NAi. A lower rough approximation of F within (V ,E) is denoted by FcE := (FcE,

∏
i∈NAi),

where
FcE(a) = bF(a)cE

for all a ∈
∏
i∈NAi. F is said to be a definable hypersoft set within (V ,E) if FeE = FcE; otherwise F is

said to be a rough hypersoft set within (V ,E).

Definition 2.37 ([43]). Let R be a fuzzy relation from V to W and ϕ ∈ +I. For an element v ∈ V ,

[v]sR,ϕ := {w ∈W : R(v,w) > ϕ}

is said to be a successor class of v with respect to ϕ-level based on R.

Definition 2.38 ([43]). Let R be a fuzzy relation from V to W and ϕ ∈ +I. For an element v ∈ V ,

[v]csR,ϕ := {v̇ ∈ V : [v]sR,ϕ = (v̇)sR,ϕ}

is said to be a core of the successor class of v with respect to ϕ-level based on R. [V]csR,ϕ is denoted as a
collection of [v]csR,ϕ for all v ∈ V .

Definition 2.39 ([43]). If ϕ ∈ +I and R is a fuzzy relation from V toW related to [V]csR,ϕ, then (V ,W, [V]csR,ϕ)
is said to be an approximation space based on [V]csR,ϕ.

Definition 2.40 ([43]). Let (V ,W, [V]csR,ϕ) be an approximation space based on [V]csR,ϕ, and let X be a non-
empty subset of V . An upper approximation of X within (V ,W, [V]csR,ϕ) is denoted by dXecsR,ϕ, where

dXecsR,ϕ :=
⋃
v∈V

{[v]csR,ϕ : [v]csR,ϕ ∩X 6= ∅}.

A lower approximation of X within (V ,W, [V]csR,ϕ) is denoted by bXccsR,ϕ, where

bXccsR,ϕ :=
⋃
v∈V

{[v]csR,ϕ : [v]csR,ϕ ⊆ X}.

A boundary region of X within (V ,W, [V]csR,ϕ) is defined by dXecsR,ϕ − bXccsR,ϕ. We say that (dXecsR,ϕ, bXccsR,ϕ)
is a rough set of X within (V ,W, [V]csR,ϕ) if dXecsR,ϕ − bXccsR,ϕ is a non-empty set. X is said to be a definable
set within (V ,W, [V]csR,ϕ) if dXecsR,ϕ − bXccsR,ϕ is an empty set.
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3. Rough hypersoft sets and rough fuzzy sets via hesitant bipolar-valued fuzzy hypersoft relations

We shall now develop rough approximation models of rough hypersoft sets and rough fuzzy sets
based on hesitant bipolar-valued fuzzy hypersoft relations. After defining a novel approximation space
based on hesitant bipolar-valued fuzzy hypersoft relations, we provide some propositions associated with
upper and lower rough approximations of hypersoft sets and fuzzy sets.

Throughout the entire remainder,
∏
i∈NAi and

∏
i∈N Bi are two non-empty subsets of

∏
i∈N Ki such

that
∏
i∈NAi ∩

∏
i∈N Bi is non-empty.

To adapt for the notion of hypersoft sets on Definition 2.30 and hesitant bipolar-valued fuzzy soft sets
on Definition 2.34 via Definition 2.17, an inclusion relation of two hesitant bipolar-valued fuzzy hypersoft
sets (F,

∏
i∈NAi) and (G,

∏
i∈N Bi) over V is denoted by (F,

∏
i∈NAi) ⊆ir (G,

∏
i∈N Bi), where

(i)
∏
i∈NAi ⊆

∏
i∈N Bi;

(ii) (F(a))−(v) ⊇ (G(a))−(v) and (F(a))+(v) ⊆ (G(a))+(v) for all a ∈
∏
i∈NAi, v ∈ V .

In addition, given two elements (ϕ,χ), (ψ,ω) ∈ P(−I) × P(+I), we define set-valued relations on
P(−I)×P(+I) of (ϕ,χ) and (ψ,ω) as follows:

(i) (ϕ,χ) = (ψ,ω) if ϕ = ψ and χ = ω;

(ii) (ϕ,χ) ⊆sr (ψ,ω) if ϕ ⊇ ψ and χ ⊆ ω.

To approximation methodology in this section, the concept of hesitant bipolar-valued fuzzy hyper-
soft relations based on Definitions 2.30 and 2.34 is defined as the statement that if R is a mapping from∏
i∈NAi to a collection of all hesitant bipolar-valued fuzzy sets of V ×W, then (R,

∏
i∈NAi) is called a

hesitant bipolar-valued fuzzy hypersoft relation over V ×W. On the consideration of the single V in Def-
initions 2.14 and 2.19, to adapt for a hesitant bipolar-valued fuzzy hypersoft relation R := (R,

∏
i∈NAi)

over V × V , we define the characters of R as follows.

(i) R is called a hesitant bipolar-valued fuzzy hypersoft reflexive relation if it satisfies

• (R(a))+(v, v) = +I for all a ∈
∏
i∈NAi, v ∈ V ;

• (R(a))−(v, v) = ∅ for all a ∈
∏
i∈NAi, v ∈ V .

(ii) R is called a hesitant bipolar-valued fuzzy hypersoft symmetric relation if it satisfies

• (R(a))+(v́, v̀) = (R(a))+(v̀, v́) for all a ∈
∏
i∈NAi, v́, v̀ ∈ V ;

• (R(a))−(v́, v̀) = (R(a))−(v̀, v́) for all a ∈
∏
i∈NAi, v́, v̀ ∈ V .

(iii) R is called a hesitant bipolar-valued fuzzy hypersoft transitive relation if it satisfies

•
⋃
v∈V((R(a))

+(v́, v)∩ (R(a))+(v, v̀)) ⊆ (R(a))+(v́, v̀) for all a ∈
∏
i∈NAi, v́, v̀ ∈ V ;

•
⋂
v∈V((R(a))

−(v́, v)∪ (R(a))−(v, v̀)) ⊇ (R(a))−(v́, v̀) for all a ∈
∏
i∈NAi, v́, v̀ ∈ V .

(iv) R is called a hesitant bipolar-valued fuzzy hypersoft antisymmetric relation if it satisfies the prop-
erty that for all a ∈

∏
i∈NAi, v́, v̀ ∈ V ,

• (R(a))+(v́, v̀) ⊃ ∅ and (R(a))+(v̀, v́) ⊃ ∅ imply v́ = v̀;

• (R(a))−(v́, v̀) ⊂ −I and (R(a))−(v̀, v́) ⊂ −I imply v́ = v̀.

(v) R is called a hesitant bipolar-valued fuzzy hypersoft equivalence relation if it is a hesitant bipolar-
valued fuzzy hypersoft reflexive relation, a hesitant bipolar-valued fuzzy hypersoft symmetric rela-
tion and a hesitant bipolar-valued fuzzy hypersoft transitive relation.
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For the example of these properties, we use Definition 2.20 in a common consideration. We define two
hesitant bipolar-valued fuzzy sets f := (f−, f+) and g := (g−,g+) in a collection of all hesitant bipolar-
valued fuzzy sets of V × V by square matrix representations f−M, f+M,g−M, and g+M as follows:

f+M :=
[
v̇ij := f

+(vi, vj)
]

,g+M :=
[
v̈ij := g

+(vi, vj)
]
∈Mn(P(+I))

and
f−M :=

[ ...
v ij := f

−(vi, vj)
]

,g−M :=
[ ....
v ij := g

−(vi, vj)
]
∈Mn(P(−I)),

where

v̇ij =

{
+I, if i = j,
∅, if i 6= j,

v̈ij =

{
∅, if i = j,
+I, if i 6= j,

...
v ij =

{
∅, if i = j,
−I, if i 6= j,

....
v ij =

{
−I, if i = j,
∅, if i 6= j.

If R is a set-valued function from A to the collection of all hesitant bipolar-valued fuzzy sets of V × V
defined by

R(a) = f

for all a ∈
∏
i∈NAi, then we see that (R,

∏
i∈NAi) is a hesitant bipolar-valued fuzzy hypersoft reflexive

relation, a hesitant bipolar-valued fuzzy hypersoft symmetric relation, a hesitant bipolar-valued fuzzy
hypersoft transitive relation, and a hesitant bipolar-valued fuzzy hypersoft antisymmetric relation. For
all sets of parameters-based alternative objects of the hypersoft set (R,

∏
i∈NAi), we observe that during

the evaluating process of each relationship between two elements of V in this corresponding example,
however, these possible memberships maybe not only crisp values in −I and +I, but also interval values.

Definition 3.1. Let R := (R,
∏
i∈NAi) be a hesitant bipolar-valued fuzzy hypersoft relation over V ×W

and (ϕ,χ) ∈ P(−I)×P(+I). For an element v ∈ V , we call

[v]sR,(ϕ,χ) := {w ∈W : (R(a))−(v,w) ⊆ ϕ and (R(a))+(v,w) ⊇ χ for all a ∈
∏
i∈N

Ai}

a successor class of v with respect to (ϕ,χ)-inclusion based on R. Here, [V]sR,(ϕ,χ) represents a collection
of [v]sR,(ϕ,χ) for all v ∈ V .

Proposition 3.2. If R := (R,
∏
i∈NAi) is a hesitant bipolar-valued fuzzy hypersoft reflexive relation over V × V

and the pair (ϕ,χ) ∈ P(−I)×P(+I), then v ∈ [v]sR,(ϕ,χ) for all v ∈ V .

Proof. Suppose that R is a hesitant bipolar-valued fuzzy hypersoft reflexive relation over V × V and the
pair (ϕ,χ) ∈ P(−I)×P(+I). Let a ∈

∏
i∈NAi and v ∈ V . Then, we observe that

(R(a))−(v, v) = ∅ ⊆ ϕ and (R(a))+(v, v) = +I ⊇ χ.

Thus v ∈ [v]sR,(ϕ,χ).

Definition 3.3. Let R := (R,
∏
i∈NAi) be a hesitant bipolar-valued fuzzy hypersoft relation over V ×W

and (ϕ,χ) ∈ P(−I)×P(+I). For an element v ∈ V , we call

[v]csR,(ϕ,χ) := {v̇ ∈ V : [v]sR,(ϕ,χ) = [v̇]sR,(ϕ,χ)}

a core of the successor class of v with respect to (ϕ,χ)-inclusion based on R. We generally denote by
[V]csR,(ϕ,χ) a collection of [v]csR,(ϕ,χ) for all v ∈ V .

Due to Definition 3.3, the following two statements hold.

Proposition 3.4. If R := (R,
∏
i∈NAi) is a hesitant bipolar-valued fuzzy hypersoft relation over V ×W and

(ϕ,χ) ∈ P(−I)×P(+I), then v ∈ [v]csR,(ϕ,χ) for all v ∈ V .
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Proposition 3.5. If R := (R,
∏
i∈NAi) is a hesitant bipolar-valued fuzzy hypersoft relation over V ×W and

(ϕ,χ) ∈ P(−I)×P(+I), then the following two arguments are equivalent.

(i) v́ ∈ [v̀]csR,(ϕ,χ) for all v́, v̀ ∈ V .

(ii) [v́]csR,(ϕ,χ) = [v̀]csR,(ϕ,χ) for all v́, v̀ ∈ V .

Remark 3.6. By Propositions 3.4 and 3.5, it is easy to show that if R := (R,
∏
i∈NAi) is a hesitant bipolar-

valued fuzzy hypersoft relation over V ×W and (ϕ,χ) ∈ P(−I)×P(+I), then [V]csR,(ϕ,χ) is the partition of
V .

Proposition 3.7. If R := (R,
∏
i∈NAi) is a hesitant bipolar-valued fuzzy hypersoft reflexive relation over V × V

and the pair (ϕ,χ) ∈ P(−I)×P(+I), then [v]csR,(ϕ,χ) ⊆ [v]sR,(ϕ,χ) for all v ∈ V .

Proof. Suppose R is a hesitant bipolar-valued fuzzy hypersoft reflexive relation over V × V and (ϕ,χ) ∈
P(−I)× P(+I). Let v1 ∈ V , and suppose v2 ∈ [v1]

cs
R,(ϕ,χ). Then [v1]

s
R,(ϕ,χ) = [v2]

s
R,(ϕ,χ). Thus, by Proposi-

tion 3.2, we see that v2 ∈ [v1]
s
R,(ϕ,χ). Therefore [v1]

cs
R,(ϕ,χ) ⊆ [v1]

s
R,(ϕ,χ).

Proposition 3.8. If R := (R,
∏
i∈NAi) is a hesitant bipolar-valued fuzzy hypersoft symmetric relation and a hes-

itant bipolar-valued fuzzy hypersoft transitive relation over V ×V and (ϕ,χ) ∈ P(−I)×P(+I), then [v]sR,(ϕ,χ) ⊆
[v]csR,(ϕ,χ) for all v ∈ V .

Proof. Suppose that R is a hesitant bipolar-valued fuzzy hypersoft symmetric relation and a hesitant
bipolar-valued fuzzy hypersoft transitive relation over V × V and (ϕ,χ) ∈ P(−I)× P(+I). Let v1 ∈ V be
given, and let v2 ∈ [v1]

s
R,(ϕ,χ). Then (R(a))−(v1, v2) ⊆ ϕ and (R(a))+(v1, v2) ⊇ χ for all a ∈

∏
i∈NAi.

Since R is a hesitant bipolar-valued fuzzy hypersoft symmetric relation, we have (R(a))−(v2, v1) ⊆ ϕ and
(R(a))+(v2, v1) ⊇ χ for all a ∈

∏
i∈NAi. We shall prove that [v1]

s
R,(ϕ,χ) = [v2]

s
R,(ϕ,χ). Let v3 ∈ [v1]

s
R,(ϕ,χ).

Then (R(a))−(v1, v3) ⊆ ϕ and (R(a))+(v1, v3) ⊇ χ for all a ∈
∏
i∈NAi. Since R is a hesitant bipolar-valued

fuzzy hypersoft transitive relation, we have

(R(a))−(v2, v3) ⊆
⋂
v∈V

((R(a))−(v2, v)∪ (R(a))−(v, v3)) ⊆ (R(a))−(v2, v1)∪ (R(a))−(v1, v3) ⊆ ϕ∪ϕ = ϕ

and

(R(a))+(v2, v3) ⊇
⋃
v∈V

((R(a))+(v2, v)∩ (R(a))+(v, v3)) ⊇ (R(a))+(v2, v1)∩ (R(a))+(v1, v3) ⊇ χ∩ χ = χ

for all a ∈
∏
i∈NAi. Whence v3 ∈ [v2]

s
R,(ϕ,χ), which yields [v1]

s
R,(ϕ,χ) ⊆ [v2]

s
R,(ϕ,χ). Conversely, we

can prove that [v2]
s
R,(ϕ,χ) ⊆ [v1]

s
R,(ϕ,χ). Hence [v1]

s
R,(ϕ,χ) = [v2]

s
R,(ϕ,χ). Thus v2 ∈ [v1]

cs
R,(ϕ,χ). Therefore

[v1]
s
R,(ϕ,χ) ⊆ [v1]

cs
R,(ϕ,χ).

Proposition 3.9. If R := (R,
∏
i∈NAi) is a hesitant bipolar-valued fuzzy hypersoft equivalence relation over V×V

and (ϕ,χ) ∈ P(−I)×P(+I), then [v]sR,(ϕ,χ) = [v]csR,(ϕ,χ) for all v ∈ V . Moreover, [V]sR,(ϕ,χ) is the partition of V .

Proof. By Remark 3.6 and Propositions 3.7 and 3.8, this proposition immediately yields.

Proposition 3.10. If R := (R,
∏
i∈NAi) is a hesitant bipolar-valued fuzzy hypersoft reflexive relation and a

hesitant bipolar-valued fuzzy hypersoft antisymmetric relation over V × V and (ϕ,χ) ∈ P(−I)\{−I}× P(+I)\{∅},
then the following statements are equivalent.

(i) v́ = v̀ for all v́, v̀ ∈ V .

(ii) [v́]csR,(ϕ,χ) = [v̀]csR,(ϕ,χ) for all v́, v̀ ∈ V .
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(iii) v́ ∈ [v̀]csR,(ϕ,χ) for all v́, v̀ ∈ V .

Proof. It is clear that(i) implies (ii). Due to Proposition 3.5, we obtain that (ii) implies (iii). In order to
prove that (iii) implies (i), we let v1, v2 ∈ V be such that v1 ∈ [v2]

cs
R,(ϕ,χ). Then, we have [v1]

s
R,(ϕ,χ) =

[v2]
s
R,(ϕ,χ). Since R is a hesitant bipolar-valued fuzzy hypersoft reflexive relation, by Proposition 3.2, we

have v1 ∈ [v1]
s
R,(ϕ,χ) and v2 ∈ [v2]

s
R,(ϕ,χ). Then v1 ∈ [v2]

s
R,(ϕ,χ) and v2 ∈ [v1]

s
R,(ϕ,χ). Thus, we observe that

(R(a))−(v2, v1) ⊆ ϕ ⊂ −I, (R(a))+(v2, v1) ⊇ χ ⊃ ∅

and
(R(a))−(v1, v2) ⊆ ϕ ⊂ −I, (R(a))+(v1, v2) ⊇ χ ⊃ ∅

for all a ∈
∏
i∈NAi. Since R is a hesitant bipolar-valued fuzzy hypersoft antisymmetric relation, we

obtain that v1 = v2.

In the presence of research now, the notion of upper and lower rough approximations of hypersoft
sets and fuzzy sets are studied under hesitant bipolar-valued fuzzy hypersoft relations.

Definition 3.11. If (ϕ,χ) ∈ P(−I)×P(+I) and R := (R,
∏
i∈N Ki) is a hesitant bipolar-valued fuzzy hyper-

soft relation over V ×W related to [V]csR,(ϕ,χ), then the triple (V ,W, [V]csR,(ϕ,χ)) is called an approximation
space based on [V]csR,(ϕ,χ). In this way, we say that (V ,W, [V]csR,(ϕ,χ)) is an approximation space type I.

Based on the context of set-valued functions and fuzzy logic of hesitant bipolar-valued fuzzy hypersoft
relations, we observe that such space can be considered as an extended approximation space of the
approximation space in Definition 2.39.

Definition 3.12. Let (V ,W, [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be a given approximation space type I, and let F :=

(F,
∏
i∈NAi) be a hypersoft set over V . An upper rough approximation of F within (V ,W, [V]csR,(ϕ,χ)) is

denoted by FecsR,(ϕ,χ) := (FecsR,(ϕ,χ),
∏
i∈NAi), where

FecsR,(ϕ,χ)(a) :=
⋃
v∈V

{[v]csR,(ϕ,χ) : [v]
cs
R,(ϕ,χ) ∩ F(a) 6= ∅} (3.1)

for all a ∈
∏
i∈NAi. A lower rough approximation of F within (V ,W, [V]csR,(ϕ,χ)) is denoted by FccsR,(ϕ,χ)

= (FccsR,(ϕ,χ),
∏
i∈NAi), where

FccsR,(ϕ,χ)(a) :=
⋃
v∈V

{[v]csR,(ϕ,χ) : [v]
cs
R,(ϕ,χ) ⊆ F(a)} (3.2)

for all a ∈
∏
i∈NAi. Here, a boundary region of the hypersoft set F within (V ,W, [V]csR,(ϕ,χ)) is denoted

by F]csR,(ϕ,χ) := (F]csR,(ϕ,χ),
∏
i∈NAi), where

(F]csR,(ϕ,χ),
∏
i∈N

Ai) = FecsR,(ϕ,χ)	̃Fc
cs
R,(ϕ,χ).

As introduced above, such sets are obtained the following interpretation.

(i) FecsR,(ϕ,χ)(a) is a set of all elements, which can be possibly classified as F(a) using R (are possibly
F(a) in view of R) for all a ∈

∏
i∈NAi. In this way, a complement of FecsR,(ϕ,χ)(a) is said to be a

negative region of F(a) within (V ,W, [V]csR,(ϕ,χ)) for all a ∈
∏
i∈NAi.

(ii) FccsR,(ϕ,χ)(a) is a set of all elements, which can be certain classified as F(a) using R (are certainly
F(a) in view of R) for all a ∈

∏
i∈NAi. In this way, such the set is said to be a positive region of

F(a) within (V ,W, [V]csR,(ϕ,χ)) for all a ∈
∏
i∈NAi.
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(iii) F]csR,(ϕ,χ)(a) is a set of all elements, which can be classified neither as F(a) nor as non F(a) using R

for all a ∈
∏
i∈NAi.

In what follows, for all a ∈
∏
i∈NAi, if F]csR,(ϕ,χ)(a) 6= ∅, then (FecsR,(ϕ,χ)(a), Fc

cs
R,(ϕ,χ)(a)) is called a rough

(or an inexact) set of F(a) within (V ,W, [V]csR,(ϕ,χ)), and we call F(a) a rough set. For all a ∈
∏
i∈NAi, if

F]csR,(ϕ,χ)(a) = ∅, then F(a) is called a definable (or an exact) set within (V ,W, [V]csR,(ϕ,χ)). The hypersoft
set F is called a definable hypersoft set within (V ,W, [V]csR,(ϕ,χ)) if F]csR,(ϕ,χ) = N∅A ; otherwise F is called
a rough hypersoft set within (V ,W, [V]csR,(ϕ,χ)).

We are now ready for the presentation of a corresponding example.

Example 3.13. Let (V ,W, [V]csR:=(R,
∏
i∈NKi),([−1,−0.7),[0.5,1])) be an approximation space type I, where V =

{vn := n : n is a natural number},W = {wn := n : n is an integer}, and R is a hesitant bipolar-valued
fuzzy hypersoft relation over V ×W defined by

(R(k))+(v,w) =

{
(0.2, 1, ] if 3|v−w,
[0.05, 0.1), if 3 - v−w,

and

(R(k))−(v,w) =

{
(−0.9,−0.8], if 3|v−w,
[−0.7,−0.1], if 3 - v−w,

for all k ∈
∏
i∈N Ki, (v,w) ∈ V ×W. We observe that if n is a natural number, then

[v3n−2]
s
R,([−1,−0.7),[0.5,1]) = {w3i−2 : i is an integer},

[v3n−1]
s
R,([−1,−0.7),[0.5,1]) = {w3i−1 : i is an integer},

and
[v3n]

s
R,([−1,−0.7),[0.5,1]) = {w3i : i is an integer},

which yields

[v3n−2]
cs
R,([−1,−0.7),[0.5,1]) = {v3i−2 : i is a natural number},

[v3n−1]
cs
R,([−1,−0.7),[0.5,1]) = {v3i−1 : i is a natural number},

and
[v3n]

cs
R,([−1,−0.7),[0.5,1]) = {v3i : i is a natural number}.

If F := (F,
∏
i∈NAi) is a hypersoft set over V defined by

F(a) = {v3i : i is a natural number}∪ {v3i−2 : i is a natural number with i > 200}

for all a ∈
∏
i∈NAi, then we observe that

FecsR,([−1,−0.7),[0.5,1])(a) = {v3i : i is a natural number}∪ {v3i−2 : i is a natural number},

FccsR,([−1,−0.7),[0.5,1])(a) = {v3i : i is a natural number},
and

F]csR,([−1,−0.7),[0.5,1])(a) = {v3i−2 : i is a natural number}

for all a ∈
∏
i∈NAi. This shows that F is a rough hypersoft set within (V ,W, [V]csR,([−1,−0.7),[0.5,1])).

Remark 3.14. Let (V ,W, [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be an approximation space type I, and let F := (F,

∏
i∈NAi)

be a hypersoft set over V . Then FccsR,(ϕ,χ)b̃Fb̃Fe
cs
R,(ϕ,χ).
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Observe that Equations (3.1) and (3.2) in Definition 3.12 can also be presented by means of the follow-
ing proposition.

Proposition 3.15. Let (V ,W, [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be a given approximation space type I, and let

F := (F,
∏
i∈NAi) be a hypersoft set over V . Based on Equations (3.1) and (3.2) in Definition 3.12, we have

the following statements:

(i) FecsR,(ϕ,χ)(a) = {v ∈ V : [v]csR,(ϕ,χ) ∩ F(a) 6= ∅} for all a ∈
∏
i∈NAi;

(ii) FccsR,(ϕ,χ)(a) = {v ∈ V : [v]csR,(ϕ,χ) ⊆ F(a)} for all a ∈
∏
i∈NAi.

Directly from Definition 3.12, we can obtain the following three propositions below.

Proposition 3.16. Let (V ,W, [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be a given approximation space type I, and let

F := (F,
∏
i∈NAi) be a hypersoft set over V . Then, we have the following statements.

(i) If F = WV∏
i∈NAi

, then F is equal to FecsR,(ϕ,χ) and FccsR,(ϕ,χ). Moreover, the hypersoft set F is a definable
hypersoft set within (V ,W, [V]csR,(ϕ,χ)).

(ii) If F = N∅∏
i∈NAi

, then F is equal to FecsR,(ϕ,χ) and FccsR,(ϕ,χ). Moreover, the hypersoft set F is a definable
hypersoft set within (V ,W, [V]csR,(ϕ,χ)).

(iii) (FecsR,(ϕ,χ))e
cs
R,(ϕ,χ) = FecsR,(ϕ,χ).

(iv) (FccsR,(ϕ,χ))c
cs
R,(ϕ,χ) = FccsR,(ϕ,χ).

(v) (FecsR,(ϕ,χ))c
cs
R,(ϕ,χ) = FecsR,(ϕ,χ).

(vi) (FccsR,(ϕ,χ))e
cs
R,(ϕ,χ) = FccsR,(ϕ,χ).

(vii) C(F)ccsR,(ϕ,χ) = C(Fe
cs
R,(ϕ,χ)).

(viii) C(FecsR,(ϕ,χ))e
cs
R,(ϕ,χ) = C(Fe

cs
R,(ϕ,χ)).

(ix) C(FccsR,(ϕ,χ))c
cs
R,(ϕ,χ) = C(Fc

cs
R,(ϕ,χ)).

(x) C(C(FccsR,(ϕ,χ))) = FecsR,(ϕ,χ).

(xi) C(C(FecsR,(ϕ,χ))) = FccsR,(ϕ,χ).

Proposition 3.17. Let (V ,W, [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be a given approximation space type I, and let

F := (F,
∏
i∈NAi) and G := (G,

∏
i∈N Bi) be hypersoft sets over V . Then, we have the following statements:

(i) (FẽG)ecsR,(ϕ,χ)b̃Fe
cs
R,(ϕ,χ)ẽGe

cs
R,(ϕ,χ);

(ii) (FẽG)ccsR,(ϕ,χ) = FccsR,(ϕ,χ)ẽGc
cs
R,(ϕ,χ);

(iii) (FũG)ecsR,(ϕ,χ)b̃Fe
cs
R,(ϕ,χ)ũGe

cs
R,(ϕ,χ);

(iv) (FũG)ccsR,(ϕ,χ) = FccsR,(ϕ,χ)ũGc
cs
R,(ϕ,χ);

(v) FecsR,(ϕ,χ)d̃Ge
cs
R,(ϕ,χ) = (Fd̃G)ecsR,(ϕ,χ);

(vi) FccsR,(ϕ,χ)d̃Gc
cs
R,(ϕ,χ)b̃(Fd̃G)ccsR,(ϕ,χ);

(vii) FecsR,(ϕ,χ)t̃Ge
cs
R,(ϕ,χ) = (Ft̃G)ecsR,(ϕ,χ);
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(viii) FccsR,(ϕ,χ)t̃Gc
cs
R,(ϕ,χ)b̃(Ft̃G)ccsR,(ϕ,χ).

Proposition 3.18. Let (V ,W, [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be a given approximation space type I, and let

F := (F,
∏
i∈NAi) and G := (G,

∏
i∈N Bi) be hypersoft sets over V . If Fb̃G, then the following statements

hold:

(i) FecsR,(ϕ,χ)b̃Ge
cs
R,(ϕ,χ);

(ii) FccsR,(ϕ,χ)b̃Gc
cs
R,(ϕ,χ).

Proposition 3.19. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) and (V ,V , [V]csS:=(S,

∏
i∈NKi),(ψ,ω)) be approximation spaces

type I with the property that the inclusion relation of the hesitant bipolar-valued fuzzy hypersoft reflexive relation
R and the hesitant bipolar-valued fuzzy hypersoft transitive relation S is R ⊆ir S, and (ψ,ω) ⊆sr (ϕ,χ). If
F := (F,

∏
i∈NAi) is a hypersoft set over V , then FecsR,(ϕ,χ)b̃Fe

cs
S,(ψ,ω) and FccsS,(ψ,ω)b̃Fc

cs
R,(ϕ,χ).

Proof. Assume that F is a hypersoft set over V and a ∈
∏
i∈NAi. Let v1 ∈ FecsR,(ϕ,χ)(a). Then [v1]

cs
R,(ϕ,χ) ∩

F(a) 6= ∅. Thus, there exists v2 ∈ V such that v2 ∈ [v1]
cs
R,(ϕ,χ) and v2 ∈ F(a). Hence, we get that [v1]

s
R,(ϕ,χ) =

[v2]
s
R,(ϕ,χ). Since R is a hesitant bipolar-valued fuzzy hypersoft reflexive relation, by Proposition 3.2, we

obtain v1 ∈ [v1]
s
R,(ϕ,χ) and v2 ∈ [v2]

s
R,(ϕ,χ). Hence v1 ∈ [v2]

s
R,(ϕ,χ) and v2 ∈ [v1]

s
R,(ϕ,χ). Thus, we observe

that
(S(k))−(v2, v1) ⊆ (R(k))−(v2, v1) ⊆ ϕ ⊆ ψ,

(S(k))+(v2, v1) ⊇ (R(k))+(v2, v1) ⊇ χ ⊇ ω,

(S(k))−(v1, v2) ⊆ (R(k))−(v1, v2) ⊆ ϕ ⊆ ψ,

(S(k))+(v1, v2) ⊇ (R(k))+(v1, v2) ⊇ χ ⊇ ω

for all k ∈
∏
i∈N Ki. We shall prove that [v1]

s
S,(ψ,ω) = [v2]

s
S,(ψ,ω). We let v3 ∈ [v2]

s
S,(ψ,ω). Then

(S(k))−(v2, v3) ⊆ ψ and (S(k))+(v2, v3) ⊇ ω

for all k ∈
∏
i∈N Ki. By the fact that S is a hesitant bipolar-valued fuzzy hypersoft transitive relation, it

is true that

(S(k))−(v1, v3) ⊆
⋂
v∈V

((S(k))−(v1, v)∪ (S(k))−(v, v3)) ⊆ (S(k))−(v1, v2)∪ (S(k))−(v2, v3) ⊆ ψ∪ψ = ψ

and

(S(k))+(v1, v3) ⊇
⋃
v∈V

((S(k))+(v1, v)∩ (S(k))+(v, v3)) ⊇ (S(k))+(v1, v2)∩ (S(k))+(v2, v3) ⊇ ω∩ω = ω

for all k ∈
∏
i∈N Ki. Hence, we get that v3 ∈ [v1]

s
S,(ψ,ω), which yields [v2]

s
S,(ψ,ω) ⊆ [v1]

s
S,(ψ,ω). Con-

versely, we can verify that [v1]
s
S,(ψ,ω) ⊆ [v2]

s
S,(ψ,ω). Thus [v1]

s
S,(ψ,ω) = [v2]

s
S,(ψ,ω). Whence v2 ∈ [v1]

cs
S,(ψ,ω).

Thus v2 ∈ [v1]
cs
S,(ψ,ω) ∩ F(a). Hence [v1]

cs
S,(ψ,ω) ∩ F(a) 6= ∅, then v1 ∈ FecsS,(ψ,ω)(a). Therefore FecsR,(ϕ,χ)(a) ⊆

FecsS,(ψ,ω)(a). It follows that FecsR,(ϕ,χ)b̃Fe
cs
S,(ψ,ω). Next, we let v4 ∈ FccsS,(ψ,ω)(a). Then, we have [v4]

cs
S,(ψ,ω) ⊆

F(a). Observe that it suffices to prove that [v4]
cs
R,(ϕ,χ) ⊆ [v4]

cs
S,(ψ,ω). Suppose v5 ∈ [v4]

cs
R,(ϕ,χ). Then

[v4]
s
R,(ϕ,χ) = [v5]

s
R,(ϕ,χ). Since R is a hesitant bipolar-valued fuzzy hypersoft reflexive relation and

by Proposition 3.2, we get v4 ∈ [v4]
s
R,(ϕ,χ) and v5 ∈ [v5]

s
R,(ϕ,χ). Thus, we have v4 ∈ [v5]

s
R,(ϕ,χ) and

v5 ∈ [v4]
s
R,(ϕ,χ). Since (ϕ,χ) ⊇ (ψ,ω) and R is a subset of S, we observe that

(S(k))−(v5, v4) ⊆ (R(k))−(v5, v4) ⊆ ϕ ⊆ ψ,
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(S(k))+(v5, v4) ⊇ (R(k))+(v5, v4) ⊇ χ ⊇ ω,

(S(k))−(v4, v5) ⊆ (R(k))−(v4, v5) ⊆ ϕ ⊆ ψ,

(S(k))+(v4, v5) ⊇ (R(k))+(v4, v5) ⊇ χ ⊇ ω

for all k ∈
∏
i∈N Ki. We shall show that [v4]

s
S,(ψ,ω) = [v5]

s
S,(ψ,ω). We assume v6 ∈ [v5]

s
S,(ψ,ω). Observe that

(S(k))−(v5, v6) ⊆ ψ and (S(k))+(v5, v6) ⊇ ω

for all k ∈
∏
i∈N Ki. Since S is a hesitant bipolar-valued fuzzy hypersoft transitive relation, we observe

that

(S(k))−(v4, v6) ⊆
⋂
v∈V

((S(k))−(v4, v)∪ (S(k))−(v, v6)) ⊆ (S(k))−(v4, v5)∪ (S(k))−(v5, v6) ⊆ ψ∪ψ = ψ

and

(S(k))+(v4, v6) ⊇
⋃
v∈V

((S(k))+(v4, v)∩ (S(k))+(v, v6)) ⊇ (S(k))+(v4, v5)∩ (S(k))+(v5, v6) ⊇ ω∩ω = ω

for all k ∈
∏
i∈N Ki. We get that v6 ∈ [v4]

s
S,(ψ,ω). Hence [v5]

s
S,(ψ,ω) ⊆ [v4]

s
S,(ψ,ω). Conversely, we can find

that [v4]
s
S,(ψ,ω) ⊆ [v5]

s
S,(ψ,ω). Therefore [v4]

s
S,(ψ,ω) = [v5]

s
S,(ψ,ω). Wherefore v5 ∈ [v4]

cs
S,(ψ,ω). We see that

[v4]
cs
R,(ϕ,χ) ⊆ [v4]

cs
S,(ψ,ω) ⊆ F(a). Then v4 ∈ FccsR,(ϕ,χ)(a). Whence FccsS,(ψ,ω)(a) ⊆ Fc

cs
R,(ϕ,χ)(a). We deduce

that FccsS,(ψ,ω)b̃Fc
cs
R,(ϕ,χ). The proof is complete.

Proposition 3.20. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be an approximation space type I with the property that R

is a hesitant bipolar-valued fuzzy hypersoft reflexive relation and a hesitant bipolar-valued fuzzy hypersoft antisym-
metric relation over V ×V , and (ϕ,χ) ∈ P(−I)\{−I}×P(+I)\{∅}. If F := (F,

∏
i∈NAi) is a hypersoft set over V ,

then F is a definable hypersoft set within (V ,V , [V]csR,(ϕ,χ)).

Proof. Assume that F is a hypersoft set over V . Then, by Remark 3.14, we get FccsR,(ϕ,χ)b̃Fe
cs
R,(ϕ,χ). Let

a be an element in
∏
i∈NAi, and let v1 ∈ FecsR,(ϕ,χ)(a). Then [v1]

cs
R,(ϕ,χ) ∩ F(a) 6= ∅. Thus, there exists

v2 ∈ V such that v2 ∈ [v1]
cs
R,(ϕ,χ) and v2 ∈ F(a). By Proposition 3.10, we have v1 = v2. We must prove that

[v1]
cs
R,(ϕ,χ) ⊆ F(a). Let v3 ∈ [v1]

cs
R,(ϕ,χ). Then, by Proposition 3.10, we have v1 = v3. Hence v3 ∈ F(a), which

implies that [v1]
cs
R,(ϕ,χ) ⊆ F(a). Thus v1 ∈ FccsR,(ϕ,χ)(a). Whence FecsR,(ϕ,χ)(a) ⊆ Fc

cs
R,(ϕ,χ)(a). Therefore, we

get FecsR,(ϕ,χ)b̃Fc
cs
R,(ϕ,χ). Thus FecsR,(ϕ,χ) is equal to FccsR,(ϕ,χ). As a consequence, F is a definable hypersoft

set within (V , [V]csR,(ϕ,χ)).

As mentioned above, we shall present Example 3.21 below.

Example 3.21. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(∅,+I)) be a given approximation space type I, where V = {vn :=

n3 + 1 : n is a natural number} and R is a hesitant bipolar-valued fuzzy hypersoft reflexive relation and a
hesitant bipolar-valued fuzzy hypersoft antisymmetric relation over V × V defined by

(R(k))+(v́, v̀) =

{
+I, if v́ 6 v̀,
∅, if v́ > v̀,

and (R(k))−(v́, v̀) =

{
∅, if v́ 6 v̀,
−I, if v́ > v̀,

for all k ∈
∏
i∈N Ki, v́, v̀ ∈ V . We observe that if n is a natural number, then [vn]

cs
R,(∅,+I) = {vn}. It is true

that if F := (F,
∏
i∈NAi) is a hypersoft set over V , then it is easy to see that FccsR,(∅,+I),F and FecsR,(∅,+I)

are identical. This implies that F is a definable hypersoft set within (V ,V , [V]csR,(∅,+I)).
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Definition 3.22. Let (V ,W, [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be a given approximation space type I. Let f be a fuzzy

subset of V . An upper rough approximation of fwithin the triple (V ,W, [V]csR,(ϕ,χ)) is defined by the fuzzy
subset pfqcsR,(ϕ,χ) of V , where

pfqcsR,(ϕ,χ)(v́) = sup{f(v̀) : v̀ ∈ [v́]csR,(ϕ,χ)}

for all v́ ∈ V . A lower rough approximation of f within (V ,W, [V]csR,(ϕ,χ)) is defined by the fuzzy subset
xfycsR,(ϕ,χ) of V , where

xfycsR,(ϕ,χ)(v́) = inf{f(v̀) : v̀ ∈ [v́]csR,(ϕ,χ)}

for all v́ ∈ V . The fuzzy subset f is called a definable fuzzy set within (V ,W, [V]csR,(ϕ,χ)) if pfqcsR,(ϕ,χ) is
equal to xfycsR,(ϕ,χ); otherwise f is called a rough fuzzy set within (V ,W, [V]csR,(ϕ,χ)).

Now, we consider the following example.

Example 3.23. Based on (V ,W, [V]csR:=(R,
∏
i∈NKi),([−1,−0.7),[0.5,1])) in Example 3.13, let f be a fuzzy subset of

V defined by

f(v) = 1 −
1
v

for all v ∈ V . Observe that if n is a natural number, then pfqcsR,([−1,−0.7),[0.5,1])(vn) = 1 and

xfycsR,([−1,−0.7),[0.5,1])(vn) =


0, if vn ∈ [v3n−2]

cs
R,([−1,−0.7),[0.5,1]),

1
2 , if vn ∈ [v3n−1]

cs
R,([−1,−0.7),[0.5,1]),

2
3 , if vn ∈ [v3n]

cs
R,([−1,−0.7),[0.5,1]).

Therefore, it is easy to see that f is a rough fuzzy set within (V ,W, [V]csR,([−1,−0.7),[0.5,1])).

Remark 3.24. Let (V ,W, [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be a given approximation space type I. If f is a fuzzy subset

of V , then we observe that xfycsR,(ϕ,χ) ⊆ f ⊆ pfq
cs
R,(ϕ,χ).

From the model of Definition 3.22, we have some basic properties as the following three propositions.

Proposition 3.25. Let (V ,W, [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be a given approximation space type I. If f is a fuzzy subset

of V , then we have the following statements.

(i) If f = 1V , then f is equal to pfqcsR,(ϕ,χ) and xfycsR,(ϕ,χ). Moreover, the fuzzy subset f is a definable fuzzy set
within (V ,W, [V]csR,(ϕ,χ)).

(ii) If f = 0V , then f is equal to pfqcsR,(ϕ,χ) and xfycsR,(ϕ,χ). Moreover, the fuzzy subset f is a definable fuzzy set
within (V ,W, [V]csR,(ϕ,χ)).

(iii) p(pfqcsR,(ϕ,χ))q
cs
R,(ϕ,χ) ⊆ pfq

cs
R,(ϕ,χ).

(iv) xfycsR,(ϕ,χ) ⊆ x(xfy
cs
R,(ϕ,χ))y

cs
R,(ϕ,χ).

(v) f ⊆ x(pfqcsR,(ϕ,χ))y
cs
R,(ϕ,χ).

(vi) p(xfycsR,(ϕ,χ))q
cs
R,(ϕ,χ) ⊆ f.

(vii) xf′ycsR,(ϕ,χ) = (pfqcsR,(ϕ,χ))
′.

(viii) pf′qcsR,(ϕ,χ) = (xfycsR,(ϕ,χ))
′.
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Proposition 3.26. Let (V ,W, [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be a given approximation space type I, and let f and g be

fuzzy subsets of V . Then, we have the following statements:

(i) pf∩ gqcsR,(ϕ,χ) ⊆ pfq
cs
R,(ϕ,χ) ∩ pgq

cs
R,(ϕ,χ);

(ii) xf∩ gycsR,(ϕ,χ) = xfy
cs
R,(ϕ,χ) ∩ xgy

cs
R,(ϕ,χ);

(iii) pf∪ gqcsR,(ϕ,χ) = pfq
cs
R,(ϕ,χ) ∪ pgq

cs
R,(ϕ,χ);

(iv) xf∪ gycsR,(ϕ,χ) ⊇ xfy
cs
R,(ϕ,χ) ∪ xgy

cs
R,(ϕ,χ).

Proposition 3.27. Let (V ,W, [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be an approximation space type I, and let f and g be fuzzy

subsets of V . If f ⊆ g, then we have the following statements:

(i) pfqcsR,(ϕ,χ) ⊆ pgq
cs
R,(ϕ,χ);

(ii) xfycsR,(ϕ,χ) ⊆ xgy
cs
R,(ϕ,χ).

Proposition 3.28. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) and (V ,V , [V]csS:=(S,

∏
i∈NKi),(ψ,ω)) be two given approx-

imation spaces type I with the property that R and S are hesitant bipolar-valued fuzzy hypersoft equivalence
relations, R ⊆ir S and (ψ,ω) ⊆sr (ϕ,χ). If f is a fuzzy subset of V , then pfqcsR,(ϕ,χ) ⊆ pfq

cs
S,(ψ,ω) and

xfycsS,(ψ,ω) ⊆ xfy
cs
R,(ϕ,χ).

Proof. Suppose f is a fuzzy subset of V . Let v́ ∈ V . Then, by Proposition 3.9, we have

pfqcsR,(ϕ,χ)(v́) = sup{f(v̀) : v̀ ∈ [v́]csR,(ϕ,χ)}

= sup
v̀∈V

{f(v̀) : (R(k))−(v́, v̀) ⊆ ϕ and (R(k))+(v́, v̀) ⊇ χ}

6 sup
v̀∈V

{f(v̀) : (S(k))−(v́, v̀) ⊆ ψ and (S(k))+(v́, v̀) ⊇ ω}

= sup{f(v̀) : v̀ ∈ [v́]csS,(ψ,ω)}

= pfqcsS,(ψ,ω)(v́).

Thus pfqcsR,(ϕ,χ) ⊆ pfq
cs
S,(ψ,ω). Now

xfycsR,(ϕ,χ)(v́) = inf{f(v̀) : v̀ ∈ [v́]csR,(ϕ,χ)}

= inf
v̀∈V

{f(v̀) : (R(k))−(v́, v̀) ⊆ ϕ and (R(k))+(v́, v̀) ⊇ χ}

> inf
v̀∈V

{f(v̀) : (S(k))−(v́, v̀) ⊆ ψ and (S(k))+(v́, v̀) ⊇ ω}

= inf{f(v̀) : v̀ ∈ [v́]csS,(ψ,ω)}

= xfycsS,(ψ,ω)(v́).

Therefore xfycsS,(ψ,ω) ⊆ xfy
cs
R,(ϕ,χ).

Based on Proposition 3.10, it is obvious that the following proposition can be gotten.

Proposition 3.29. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be an approximation space type I with the property that R

is a hesitant bipolar-valued fuzzy hypersoft reflexive relation and a hesitant bipolar-valued fuzzy hypersoft antisym-
metric relation over V × V , and (ϕ,χ) ∈ P(−I)\{−I}× P(+I)\{∅}. If f is a fuzzy subset of V , then f is a definable
fuzzy set within (V ,V , [V]csR,(ϕ,χ)).
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Definition 3.30. Let f be a fuzzy subset of V and ι ∈ +I. A (f, ι,>)-relative whole hypersoft set over V
with respect to A is denoted by (V

(f,ι,>)∏
i∈NAi

,
∏
i∈NAi), where V(f,ι,>)∏

i∈NAi
is a set valued-mapping given by

V
(f,ι,>)∏
i∈NAi

(a) = V(f,ι,>) for all a ∈
∏
i∈NAi.

Proposition 3.31. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be a given approximation space type I, and let f be a fuzzy

subset of V and ι ∈ +I. Then, we have the following statements:

(i) (V
(f,ι,>)∏
i∈NAi

,
∏
i∈NAi)ecsR,(ϕ,χ) = (V

(pfqcsR,(ϕ,χ),ι,>)∏
i∈NAi

,
∏
i∈NAi);

(ii) (V
(f,ι,>)∏
i∈NAi

,
∏
i∈NAi)ccsR,(ϕ,χ) = (V

(xfycsR,(ϕ,χ),ι,>)∏
i∈NAi

,
∏
i∈NAi).

Proof.

(i) Let a ∈
∏
i∈NAi. Then, we consider the following.

v1 ∈ V
(f,ι,>)∏
i∈NAi

ecsR,(ϕ,χ)(a)⇔ [v1]
cs
R,(ϕ,χ) ∩ V

(f,ι,>)∏
i∈NAi

(a) 6= ∅

⇔ [v1]
cs
R,(ϕ,χ) ∩ V

(f,ι,>) 6= ∅

⇔ f(v2) > ι for some v2 ∈ [v1]
cs
R,(ϕ,χ)

⇔ sup{f(v2) : v2 ∈ [v1]
cs
R,(ϕ,χ)} > ι

⇔ pfqcsR,(ϕ,χ)(v1) > ι

⇔ v1 ∈ V(pfqcsR,(ϕ,χ),ι,>)

⇔ v1 ∈ V
(pfqcsR,(ϕ,χ),ι,>)∏
i∈NAi

(a).

Hence V(f,ι,>)∏
i∈NAi

ecsR,(ϕ,χ)(a) = V
(pfqcsR,(ϕ,χ),ι,>)∏
i∈NAi

(a). Therefore

(V
(f,ι,>)∏
i∈NAi

,
∏
i∈N

Ai)ecsR,(ϕ,χ) = (V
(pfqcsR,(ϕ,χ),ι,>)∏
i∈NAi

,
∏
i∈N

Ai).

(ii) Let a ∈
∏
i∈NAi. Then, we consider the following.

v1 ∈ V
(f,ι,>)∏
i∈NAi

ccsR,(ϕ,χ)(a)⇔ [v1]
cs
R,(ϕ,χ) ⊆ V

(f,ι,>)∏
i∈NAi

(a)

⇔ [v1]
cs
R,(ϕ,χ) ⊆ V

(f,ι,>)

⇔ f(v2) > ι for all v2 ∈ [v1]
cs
R,(ϕ,χ)

⇔ inf{f(v2) : v2 ∈ [v1]
cs
R,(ϕ,χ)} > ι

⇔ xfycsR,(ϕ,χ)(v1) > ι

⇔ v1 ∈ V(xfycsR,(ϕ,χ),ι,>)

⇔ v1 ∈ V
(xfycsR,(ϕ,χ),ι,>)∏
i∈NAi

(a).

Therefore V(f,ι,>)∏
i∈NAi

ccsR,(ϕ,χ)(a) = V
(xfycsR,(ϕ,χ),ι,>)∏
i∈NAi

(a). Thus

(V
(f,ι,>)∏
i∈NAi

,
∏
i∈N

Ai)ccsR,(ϕ,χ) = (V
(xfycsR,(ϕ,χ),ι,>)∏
i∈NAi

,
∏
i∈N

Ai).
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4. Rough approximations for hypersoft quasi-ideals and fuzzy quasi-ideals of semigroups

In this section, we apply the definitions given above to the more specific set of semigroups. We focus
to consider the upper and lower rough approximations of hypersoft quasi-ideals and fuzzy quasi-ideals
of semigroups. We provide some properties under hypersoft homomorphism problems.

For the remainder of this section, V and W stand for a semigroup. Applying Definitions 2.15 to
progress under the concept of set-valued functions, we shall propose the concept of hesitant bipolar-
valued fuzzy hypersoft compatible relations as follows.

Definition 4.1. Let R := (R,
∏
i∈NAi) be a hesitant bipolar-valued fuzzy hypersoft relation over V ×V . R

is called a hesitant bipolar-valued fuzzy hypersoft compatible relation if it satisfies

((R(a))+(v́v, v̀v) ⊇ ((R(a))+(v́, v̀), ((R(a))+(vv́, vv̀) ⊇ ((R(a))+(v́, v̀),
((R(a))−(v́v, v̀v) ⊆ ((R(a))−(v́, v̀), ((R(a))−(vv́, vv̀) ⊆ ((R(a))−(v́, v̀)

for all a ∈
∏
i∈NAi, v, v́, v̀ ∈ V .

Definition 4.2. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be an approximation space type I. (V ,V , [V]csR,(ϕ,χ)) is

called an approximation space type II if R is a hesitant bipolar-valued fuzzy hypersoft reflexive relation,
a hesitant bipolar-valued fuzzy hypersoft transitive relation, and a hesitant bipolar-valued fuzzy hypersoft
compatible relation.

Proposition 4.3. If (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) is a given approximation space type II, then

([v́]csR,(ϕ,χ))([v̀]
cs
R,(ϕ,χ)) is a subset of [v́v̀]csR,(ϕ,χ) for all v́, v̀ ∈ V .

Proof. Let v1, v2 ∈ V , and let v3 ∈ ([v1]
cs
R,(ϕ,χ))([v2]

cs
R,(ϕ,χ)). Then, there exist v4 ∈ [v1]

cs
R,(ϕ,χ) and v5 ∈

[v2]
cs
R,(ϕ,χ) such that v3 = v4v5. Observe that [v1]

s
R,(ϕ,χ) = [v4]

s
R,(ϕ,χ) and [v2]

s
R,(ϕ,χ) = [v5]

s
R,(ϕ,χ). Suppose

v6 ∈ [v1v2]
s
R,(ϕ,χ). Then

(R(k))−(v1v2, v6) ⊆ ϕ and (R(k))+(v1v2, v6) ⊇ χ

for all k ∈
∏
i∈N Ki. Since R is a hesitant bipolar-valued fuzzy hypersoft reflexive relation and using

Proposition 3.2, we obtain that v1 ∈ [v1]
s
R,(ϕ,χ) and v2 ∈ [v2]

s
R,(ϕ,χ). It follows that v1 ∈ [v4]

s
R,(ϕ,χ) and

v2 ∈ [v5]
s
R,(ϕ,χ). We see that

(R(k))−(v4, v1) ⊆ ϕ, (R(k))+(v4, v1) ⊇ χ, (R(k))−(v5, v2) ⊆ ϕ, (R(k))+(v5, v2) ⊇ χ

for all k ∈
∏
i∈N Ki. Since R is a hesitant bipolar-valued fuzzy hypersoft transitive relation and a hesitant

bipolar-valued fuzzy hypersoft compatible relation, we observe that

(R(k))−(v4v5, v1v2) ⊆
⋂
v∈V

((R(k))−(v4v5, v)∪ (R(k))−(v, v1v2))

⊆ (R(k))−(v4v5, v1v5)∪ (R(k))−(v1v5, v1v2)

⊆ (R(k))−(v4, v1)∪ (R(k))−(v5, v2) ⊆ ϕ∪ϕ = ϕ

and

(R(k))+(v4v5, v1v2) ⊇
⋃
v∈V

((R(k))+(v4v5, v)∩ (R(k))+(v, v1v2))

⊇ (R(k))+(v4v5, v1v5)∩ (R(k))+(v1v5, v1v2)

⊇ (R(k))+(v4, v1)∩ (R(k))+(v5, v2) ⊇ χ∩ χ = χ
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for all k ∈
∏
i∈N Ki. Since R is a hesitant bipolar-valued fuzzy hypersoft transitive relation, we observe

that

(R(k))−(v4v5, v6) ⊆
⋂
v∈V

((R(k))−(v4v5, v)∪ (R(k))−(v, v6))

⊆ (R(k))−(v4v5, v1v2)∪ (R(k))−(v1v2, v6) ⊆ ϕ∪ϕ = ϕ

and

(R(k))+(v4v5, v6) ⊇
⋃
v∈V

((R(k))+(v4v5, v)∩ (R(k))+(v, v6))

⊇ (R(k))+(v4v5, v1v2)∩ (R(k))+(v1v2, v6) ⊇ χ∩ χ = χ

for all k ∈
∏
i∈N Ki. We obtain that v6 ∈ [v4v5]

s
R,(ϕ,χ). It is true that [v1v2]

s
R,(ϕ,χ) ⊆ [v4v5]

s
R,(ϕ,χ). On

the other hand, we can show that [v4v5]
s
R,(ϕ,χ) ⊆ [v1v2]

s
R,(ϕ,χ). Thus [v1v2]

s
R,(ϕ,χ) = [v4v5]

s
R,(ϕ,χ). Hence

v3 = v4v5 ∈ [v1v2]
cs
R,(ϕ,χ). This verifies that ([v1]

cs
R,(ϕ,χ))([v2]

cs
R,(ϕ,χ)) ⊆ [v1v2]

cs
R,(ϕ,χ).

According to Proposition 4.3, we indicate that it does not hold in general for an equality case. In what
follows, we shall consider the following example.

Let the triple (V ,V , [V]csR:=(R,
∏
i∈NKi),(∅,+I)) be a given approximation space type II, where V = {vn :=

n : n is a natural number} is a semigroup under the usual addition +, and R is a hesitant bipolar-
valued fuzzy hypersoft reflexive relation, a hesitant bipolar-valued fuzzy hypersoft transitive relation and
a hesitant bipolar-valued fuzzy hypersoft compatible relation over V × V defined by

(R(k))+(v́, v̀) =

{
+I, if v́ = v̀,
∅, if v́ 6= v̀,

and (R(k))−(v́, v̀) =

{
∅, if v́ = v̀,
−I, if v́ 6= v̀

for all k ∈
∏
i∈N Ki, v́, v̀ ∈ V . Observe that if n is a natural number, then [vn]

cs
R,(∅,+I) = {n}. Thus, we get

that [v́]csR,(∅,+I) + [v̀]csR,(∅,+I) = [v́+ v̀]csR,(∅,+I) for all v́, v̀ ∈ V . Indeed, assume m and n are natural numbers.
Then

[vm]csR,(∅,+I) + [vn]
cs
R,(∅,+I) = {m}+ {n} = {m+n} = [m+n]csR,(∅,+I) = [vm + vn]

cs
R,(∅,+I).

Thus, we observe that the example can be considered as a specific case of Proposition 4.3, i.e., [v́]csR,(∅,+I)
+[v̀]csR,(∅,+I) = [v́+ v̀]csR,(∅,+I) for all v́, v̀ ∈ V . Therefore, this example leads to the following definition.

Definition 4.4. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be a given approximation space type II. [V]csR,(ϕ,χ) is

called a complete collection induced by R if ([v́]csR,(ϕ,χ))([v̀]
cs
R,(ϕ,χ)) = [v́v̀]csR,(ϕ,χ) for all v́, v̀ ∈ V . In this way,

we say that R is a hesitant bipolar-valued fuzzy hypersoft complete relation. Moreover, (V ,V , [V]csR,(ϕ,χ)) is
called an approximation space type III if R is a hesitant bipolar-valued fuzzy hypersoft complete relation.

For hypersoft sets F := (F,
∏
i∈NAi) and G := (G,

∏
i∈N Bi) over V , a restricted product of F and G,

denoted by F}̃G, is defined as a hypersoft set (H,
∏
i∈NCi), where

∏
i∈NCi =

∏
i∈NAi ∩

∏
i∈N Bi and

H(c) = (F(c))(G(c)) for all c ∈
∏
i∈NCi.

Proposition 4.5. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be an approximation space type II. If F := (F,

∏
i∈NAi) and

G := (G,
∏
i∈N Bi) are hypersoft sets over V , then FecsR,(ϕ,χ)}̃Ge

cs
R,(ϕ,χ)b̃(F}̃G)ecsR,(ϕ,χ).

Proof. Suppose F and G are hypersoft sets over V . Let H1 := (H1,
∏
i∈NC1i) = FecsR,(ϕ,χ)}̃Ge

cs
R,(ϕ,χ).

Then
∏
i∈NC1i =

∏
i∈NAi ∩

∏
i∈N Bi and H1(c) = (FecsR,(ϕ,χ)(c))(Ge

cs
R,(ϕ,χ)(c)) for all c ∈

∏
i∈NC1i .

We let H2 := (H2,
∏
i∈NC2i) = F}̃G. Then

∏
i∈NC2i =

∏
i∈NAi ∩

∏
i∈N Bi and H2(c) = (F(c))(G(c))

for all c ∈
∏
i∈NC2i . Next, we shall prove that H1b̃H2ecsR,(ϕ,χ). Obviously

∏
i∈NC1i =

∏
i∈NC2i . Let ć
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be an element in
∏
i∈NC1i , and let v1 ∈ H1(ć). Then v1 ∈ (FecsR,(ϕ,χ)(ć))(Ge

cs
R,(ϕ,χ)(ć)). Thus, there exist

v2 ∈ FecsR,(ϕ,χ)(ć) and v3 ∈ GecsR,(ϕ,χ)(ć) such that v1 = v2v3. Hence, we get that [v2]
cs
R,(ϕ,χ) ∩ F(ć) 6= ∅ and

[v3]
cs
R,(ϕ,χ) ∩G(ć) 6= ∅. Thus, there exist v4, v5 ∈ V such that v4 ∈ [v2]

cs
R,(ϕ,χ) ∩ F(ć) and v5 ∈ [v3]

cs
R,(ϕ,χ) ∩

G(ć). By Proposition 4.3, we obtain that

v4v5 ∈ ([v2]
cs
R,(ϕ,χ))([v3]

cs
R,(ϕ,χ)) ⊆ [v2v3]

cs
R,(ϕ,χ).

Observe that v4v5 ∈ (F(ć))(G(ć)). Hence

[v1]
cs
R,(ϕ,χ) ∩H2(ć) = [v2v3]

cs
R,(ϕ,χ) ∩ (F(ć))(G(ć)) 6= ∅.

Thus v1 ∈ H2ecsR,(ϕ,χ)(ć). Whence H1(ć) ⊆ H2ecsR,(ϕ,χ)(ć). Therefore H1b̃H2ecsR,(ϕ,χ). It follows that
FecsR,(ϕ,χ)}̃Ge

cs
R,(ϕ,χ)b̃(F}̃G)ecsR,(ϕ,χ) as desired.

Proposition 4.6. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be an approximation space type III. If F := (F,

∏
i∈NAi) and

G := (G,
∏
i∈N Bi) are hypersoft sets over V , then FccsR,(ϕ,χ)}̃Gc

cs
R,(ϕ,χ)b̃(F}̃G)ccsR,(ϕ,χ).

Proof. Suppose F and G are hypersoft sets over V . Let H1 := (H1,
∏
i∈NC1i) = FccsR,(ϕ,χ)}̃Gc

cs
R,(ϕ,χ).

Then
∏
i∈NC1i =

∏
i∈NAi ∩

∏
i∈N Bi and H1(c) = (FccsR,(ϕ,χ)(c))(Gc

cs
R,(ϕ,χ)(c)) for all c ∈

∏
i∈NC1i . Let

H2 := (H2,
∏
i∈NC2i) = F}̃G. Then

∏
i∈NC2i =

∏
i∈NAi ∩

∏
i∈N Bi and H2(c) = (F(c))(G(c)) for all

c ∈
∏
i∈NC2i . We shall show that H1b̃H2ccsR,(ϕ,χ). Clearly

∏
i∈NC1i =

∏
i∈NC2i . Let ć ∈

∏
i∈NC1i , and

let v1 ∈ H1(ć). Then, we have v1 ∈ (FccsR,(ϕ,χ)(ć))(Gc
cs
R,(ϕ,χ)(ć)). Thus, there exist v2 ∈ FccsR,(ϕ,χ)(ć) and

v3 ∈ GccsR,(ϕ,χ)(ć) such that v1 = v2v3. Thus, we obtain that [v2]
cs
R,(ϕ,χ) ⊆ F(ć) and [v3]

cs
R,(ϕ,χ) ⊆ G(ć). Now

[v1]
cs
R,(ϕ,χ) = [v2v3]

cs
R,(ϕ,χ) = ([v2]

cs
R,(ϕ,χ))([v3]

cs
R,(ϕ,χ)) ⊆ (F(ć))(G(ć)) = H2(ć).

Thus v1 ∈ H2ccsR,(ϕ,χ)(ć). Hence H1(ć) ⊆ H2ccsR,(ϕ,χ)(ć). It follows that H1b̃H2ccsR,(ϕ,χ)(ć). Therefore
FccsR,(ϕ,χ)}̃Gc

cs
R,(ϕ,χ)b̃(F}̃G)ccsR,(ϕ,χ) as required.

Under the restricted product of two hypersoft sets as introduced above, if we put A =
∏
i∈NAi, then

(F,
∏
i∈NAi) in items (i)-(iv) of Definitions 2.26 and 2.28 is called a hypersoft left ideal (resp., a hypersoft

right ideal, a hypersoft ideal, a hypersoft quasi-ideal and a hypersoft semigroup) over V . Furthermore,
it is easy to see that F is a hypersoft left ideal (resp., a hypersoft right ideal, a hypersoft ideal, and a
hypersoft quasi-ideal) if and only if F(a) is either empty or a left ideal (resp., a right ideal, an ideal and a
quasi-ideal) of V for all a ∈

∏
i∈NAi due to Proposition 2.27.

We now come to the main results.

Theorem 4.7. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be an approximation space type II. If F := (F,

∏
i∈NAi) is a

hypersoft left ideal (resp., a hypersoft right ideal and a hypersoft ideal) over V , then FecsR,(ϕ,χ) is a hypersoft left ideal
(resp., a hypersoft right ideal and a hypersoft ideal) over V .

Proof. Suppose that F is a hypersoft left ideal over V . Then WV∏
i∈NAi

}̃Fb̃F. Using Propositions 3.16 (i),
3.18, and 4.5, we have

WV∏
i∈NAi

}̃FecsR,(ϕ,χ) = WV∏
i∈NAi

ecsR,(ϕ,χ)}̃Fe
cs
R,(ϕ,χ)b̃(WV∏

i∈NAi
}̃F)ecsR,(ϕ,χ)b̃Fe

cs
R,(ϕ,χ).

Hence FecsR,(ϕ,χ) is a hypersoft left ideal over V . Similarly, we can prove that FecsR,(ϕ,χ) is a hypersoft right
ideal over V . It follows that FecsR,(ϕ,χ) is a hypersoft ideal over V as desired.

Proposition 4.8. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be a given approximation space type II, where V is regular.

If F := (F,
∏
i∈NAi) is a hypersoft right ideal and G := (G,

∏
i∈N Bi) is a hypersoft left ideal over V , then the

following items are identical:
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(i) FecsR,(ϕ,χ)}̃Ge
cs
R,(ϕ,χ);

(ii) FecsR,(ϕ,χ)ẽGe
cs
R,(ϕ,χ);

(iii) (F}̃G)ecsR,(ϕ,χ);

(iv) (FẽG)ecsR,(ϕ,χ).

Proof. Suppose F is a hypersoft right ideal and G is a hypersoft left ideal over V . Then, by Theorem 4.7,
it follows that FecsR,(ϕ,χ) is a hypersoft right ideal and GecsR,(ϕ,χ) is a hypersoft left ideal over V . Thus
FecsR,(ϕ,χ)(a) is either empty or a right ideal of V for all a ∈

∏
i∈NAi, and also have GecsR,(ϕ,χ)(b) is

either empty or a left ideal of V for all b ∈
∏
i∈N Bi. Let H1 := (H1,

∏
i∈NC1i) = FecsR,(ϕ,χ)ẽGe

cs
R,(ϕ,χ).

Then
∏
i∈NC1i =

∏
i∈NAi ∩

∏
i∈N Bi and H1(c) = FecsR,(ϕ,χ)(c) ∩ Ge

cs
R,(ϕ,χ)(c) for all c ∈

∏
i∈NC1i .

Let H2 := (H2,
∏
i∈NC2i) = FecsR,(ϕ,χ)}̃Ge

cs
R,(ϕ,χ). Then

∏
i∈NC2i =

∏
i∈NAi ∩

∏
i∈N Bi and H2(c) =

(FecsR,(ϕ,χ)(c))(Ge
cs
R,(ϕ,χ)(c)) for all c ∈

∏
i∈NC2i . Note that

∏
i∈NC1i =

∏
i∈NC2i . Let ć ∈

∏
i∈NC1i

be given. Obviously, H1(ć) = H2(ć) if we consider several empty set cases. Suppose FecsR,(ϕ,χ)(ć) and
GecsR,(ϕ,χ)(ć) are non-empty. Thus, by Proposition 2.5, we get that

H1(ć) = FecsR,(ϕ,χ)(ć)∩Ge
cs
R,(ϕ,χ)(ć) = (FecsR,(ϕ,χ)(ć))(Ge

cs
R,(ϕ,χ)(ć)) = H2(ć).

Therefore H1 = H2. It follows that (i) and (ii) are identical. Using Proposition 2.5, once again, it is easy to
prove that (iii) and (iv) are identical. From Proposition 3.17 (i), we obtain that (iv) is a hypersoft subset of
(ii). By Proposition 4.5, we get that (i) is a hypersoft subset of (iii). It follows that the statement is true as
required.

Theorem 4.9. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be an approximation space type III. If F := (F,

∏
i∈NAi) is a

hypersoft left ideal (resp., a hypersoft right ideal and a hypersoft ideal) over V , then FccsR,(ϕ,χ) is a hypersoft left ideal
(resp., a hypersoft right ideal and a hypersoft ideal) over V .

Proof. Suppose that F is a hypersoft left ideal over V . Then WV∏
i∈NAi

}̃Fb̃F. Using Propositions 3.16 (i),
3.18, and 4.6, we have

WV∏
i∈NAi

}̃FccsR,(ϕ,χ) = WV∏
i∈NAi

ccsR,(ϕ,χ)}̃Fc
cs
R,(ϕ,χ)b̃(WV∏

i∈NAi
}̃F)ccsR,(ϕ,χ)b̃Fc

cs
R,(ϕ,χ).

Hence FccsR,(ϕ,χ) is a hypersoft left ideal over V . Similarly, we can verify that FccsR,(ϕ,χ) is a hypersoft right
ideal over V . This implies that FccsR,(ϕ,χ) is a hypersoft ideal over V .

Proposition 4.10. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be an approximation space type III, where V is regular. If

F := (F,
∏
i∈NAi) is a hypersoft right ideal and G := (G,

∏
i∈N Bi) is a hypersoft left ideal over V , then the

following statements are identical:

(i) FccsR,(ϕ,χ)}̃Gc
cs
R,(ϕ,χ);

(ii) FccsR,(ϕ,χ)ẽGc
cs
R,(ϕ,χ);

(iii) (F}̃G)ccsR,(ϕ,χ);

(iv) (FẽG)ccsR,(ϕ,χ).

Proof. According to Propositions 2.5, 3.17 (ii), 4.6, and Theorem 4.9, we can prove that the statement
holds.
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Theorem 4.11. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be an approximation space type II, where V is regular. If

F := (F,
∏
i∈NAi) is a hypersoft quasi-ideal over V , then FecsR,(ϕ,χ) is a hypersoft quasi-ideal over V .

Proof. Suppose F is a hypersoft quasi-ideal over V . Then (F}̃WV∏
i∈NAi

)ẽ(WV∏
i∈NAi

}̃F)b̃F. Notice that
F}̃WV∏

i∈NAi
and WV∏

i∈NAi
}̃F can be viewed as a hypersoft right ideal and a hypersoft left ideal over

V , respectively. By Theorem 4.7, we obtain that (F}̃WV∏
i∈NAi

)ecsR,(ϕ,χ) and (WV∏
i∈NAi

}̃F)ecsR,(ϕ,χ) are a
hypersoft right ideal and a hypersoft left ideal over V , respectively. By Propositions 3.16 (i), 3.18, 4.5, and
4.8, we observe that

(FecsR,(ϕ,χ)}̃WV∏
i∈NAi

)ẽ(WV∏
i∈NAi

}̃FecsR,(ϕ,χ))

= (FecsR,(ϕ,χ)}̃WV∏
i∈NAi

ecsR,(ϕ,χ))ẽ(WV∏
i∈NAi

ecsR,(ϕ,χ)}̃Fe
cs
R,(ϕ,χ))

b̃(F}̃WV∏
i∈NAi

)ecsR,(ϕ,χ)ẽ(WV∏
i∈NAi

}̃F)ecsR,(ϕ,χ)

= (F}̃WV∏
i∈NAi

)ecsR,(ϕ,χ)}̃(WV∏
i∈NAi

}̃F)ecsR,(ϕ,χ)

b̃((F}̃WV∏
i∈NAi

)}̃(WV∏
i∈NAi

}̃F))ecsR,(ϕ,χ)

= ((F}̃WV∏
i∈NAi

)ẽ(WV∏
i∈NAi

}̃F))ecsR,(ϕ,χ)

b̃FecsR,(ϕ,χ).

This implies that FecsR,(ϕ,χ) is a hypersoft quasi-ideal over V .

Theorem 4.12. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be an approximation space type III. If F := (F,

∏
i∈NAi) is a

hypersoft quasi-ideal over V , then FccsR,(ϕ,χ) is a hypersoft quasi-ideal over V .

Proof. Assume F is a hypersoft quasi-ideal over V . Then (F}̃WV∏
i∈NAi

)ẽ(WV∏
i∈NAi

}̃F)b̃F. Using Propo-
sitions 3.16 (i), 3.17 (ii), 3.18, and 4.6, we see that

(FccsR,(ϕ,χ)}̃WV∏
i∈NAi

)ẽ(WV∏
i∈NAi

}̃FccsR,(ϕ,χ))

= (FccsR,(ϕ,χ)}̃WV∏
i∈NAi

ccsR,(ϕ,χ))ẽ(WV∏
i∈NAi

ccsR,(ϕ,χ)}̃Fc
cs
R,(ϕ,χ))

b̃(F}̃WV∏
i∈NAi

)ccsR,(ϕ,χ)ẽ(WV∏
i∈NAi

}̃F)ccsR,(ϕ,χ)

= ((F}̃WV∏
i∈NAi

)ẽ(WV∏
i∈NAi

}̃F))ccsR,(ϕ,χ)

b̃FccsR,(ϕ,χ).

It follows that FccsR,(ϕ,χ) is a hypersoft quasi-ideal, and the proof is complete.

We next provide the characterization of fuzzy quasi-ideals of semigroups in terms of hypersoft sets.

Proposition 4.13. Let f be a fuzzy subset of V . Then, we have the following statements:

(i) f is a fuzzy ideal of V if and only if (V(f,ι,>)∏
i∈NAi

,
∏
i∈NAi) is a hypersoft ideal over V for all ι ∈ +I;

(ii) f is a fuzzy quasi-ideal of V if and only if (V(f,ι,>)∏
i∈NAi

,
∏
i∈NAi) is a hypersoft quasi-ideal over V for all

ι ∈ +I.

Proof.

(i) Assume f is a fuzzy ideal of V . Let ι ∈ +I. We shall prove that V(f,ι,>)∏
i∈NAi

(a) is either empty or an ideal

of V for all a ∈
∏
i∈NAi. Now, let a ∈

∏
i∈NAi, and assume V(f,ι,>)∏

i∈NAi
(a) 6= ∅. Then, by Proposition 2.11,

we get that V(f,ι,>)∏
i∈NAi

(a) is an ideal of V . Therefore (V
(f,ι,>)∏
i∈NAi

,
∏
i∈NAi) is a hypersoft ideal over V . On
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the other hand, suppose (V
(f,ι,>)∏
i∈NAi

,
∏
i∈NAi) is a hypersoft ideal over V for all ι ∈ +I. We see that for all

a ∈
∏
i∈NAi, ι ∈ +I, if V(f,ι,>)∏

i∈NAi
(a) 6= ∅, then V(f,ι,>)∏

i∈NAi
(a) is an ideal of V . From Proposition 2.11, once

again, it follows that f is a fuzzy ideal of V .

(ii) Suppose f is a fuzzy quasi-ideal of V . Let ι ∈ +I be given. We shall prove that V(f,ι,>)∏
i∈NAi

(a) is ei-
ther empty or a quasi-ideal of V for all a ∈

∏
i∈NAi. Now, we let a ∈

∏
i∈NAi be given. Assume

that V(f,ι,>)∏
i∈NAi

(a) 6= ∅. Then, by Proposition 2.12, we get that V(f,ι,>)∏
i∈NAi

(a) is a quasi-ideal of V . Therefore

(V
(f,ι,>)∏
i∈NAi

,
∏
i∈NAi) is a hypersoft quasi-ideal over V . On the other hand, assume that (V(f,ι,>)∏

i∈NAi
,
∏
i∈NAi)

is a hypersoft quasi-ideal over V for all ι ∈ +I. We see that for all a ∈
∏
i∈NAi, ι ∈ +I, if V(f,ι,>)∏

i∈NAi
(a) 6= ∅,

then V(f,ι,>)∏
i∈NAi

(a) is a quasi-ideal of V . Using Proposition 2.12, once again, we obtain that f is a fuzzy
quasi-ideal of V .

Theorem 4.14. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be an approximation space type II. If f is a fuzzy ideal of V ,

then pfqcsR,(ϕ,χ) is a fuzzy ideal of V .

Proof. Suppose f is a fuzzy ideal of V . Then, by Proposition 4.13 (i), we have (V
(f,ι,>)∏
i∈NAi

,
∏
i∈NAi) is a hy-

persoft ideal over V for all ι ∈ +I. As showed in the proof of Theorem 4.7, it holds that
(V

(f,ι,>)∏
i∈NAi

,
∏
i∈NAi)ecsR,(ϕ,χ) is a hypersoft ideal over V for all ι ∈ +I. By Proposition 3.31 (i), we get

that (V
(pfqcsR,(ϕ,χ),ι,>)∏
i∈NAi

,
∏
i∈NAi) is a hypersoft ideal over V for all ι ∈ +I. From Proposition 4.13 (i), once

again, we obtain that pfqcsR,(ϕ,χ) is a fuzzy ideal of V .

Theorem 4.15. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be an approximation space type III. If f is a fuzzy ideal of V ,

then xfycsR,(ϕ,χ) is a fuzzy ideal of V .

Proof. We can verify that the statement is true by using Propositions 3.31 (ii), 4.13 (i), and Theorem 4.9.

Theorem 4.16. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be an approximation space type II, where V is regular. If f is a

fuzzy quasi-ideal of V , then pfqcsR,(ϕ,χ) is a fuzzy quasi-ideal of V .

Proof. Assume f is a fuzzy quasi-ideal of V . Then, by Proposition 4.13 (ii), we have (V
(f,ι,>)∏
i∈NAi

,
∏
i∈NAi) is a

hypersoft quasi-ideal over V for all ι ∈ +I. Thus, by Theorem 4.11, it follows that
(V

(f,ι,>)∏
i∈NAi

,
∏
i∈NAi)ecsR,(ϕ,χ) is a hypersoft quasi-ideal over V for all ι ∈ +I. By Proposition 3.31 (i), we

obtain that (V
(pfqcsR,(ϕ,χ),ι,>)∏
i∈NAi

,
∏
i∈NAi) is a hypersoft quasi-ideal over V for all ι ∈ +I. Using Proposition

4.13 (ii), once again, it follows that pfqcsR,(ϕ,χ) is a fuzzy quasi-ideal of V .

Theorem 4.17. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be an approximation space type III. If f is a fuzzy quasi-ideal of

V , then xfycsR,(ϕ,χ) is a fuzzy quasi-ideal of V .

Proof. Based on Propositions 3.31 (ii), 4.13 (ii), and Theorem 4.12, we can show that the statement holds.

Based on Definition 2.29, if we put A =
∏
i∈NAi and B =

∏
i∈N Bi such that F := (F,

∏
i∈NAi) and

G := (G,
∏
i∈N Bi) are hypersoft semigroups over V and W, respectively, then we call (Γ ,Λ)h a hypersoft

homomorphism from F to G.
Given a hypersoft set F := (F,

∏
i∈NAi) over V with respect to

∏
i∈NAi, a hypersupport of F is

denoted by Hsupp(F), where
Hsupp(F) := {a ∈

∏
i∈N

Ai : F(a) 6= ∅}.
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As introduced above, these definitions lead to the following proposition under hypersoft homomor-
phism problems.

Proposition 4.18. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) and (W,W, [W]csS:=(S,

∏
i∈NKi),(ϕ,χ)) be approximation spaces

type I, and let (Γ ,Λ)h be a hypersoft homomorphism from a hypersoft semigroup F := (F,
∏
i∈NAi) over V to a

hypersoft semigroup G := (G,
∏
i∈N Bi) over W, where

(R(k))−(v́, v̀) = (S(k))−(Γ(v́), Γ(v̀)) (4.1)

and
(R(k))+(v́, v̀) = (S(k))+(Γ(v́), Γ(v̀)) (4.2)

for all k ∈
∏
i∈N Ki, v́, v̀ ∈ V . Then, we have following statements:

(i) for all v́, v̀ ∈ V , v́ ∈ [v̀]csR,(ϕ,χ) and Γ(v́) ∈ [Γ(v̀)]csS,(ϕ,χ) are equivalent;

(ii) Γ(FecsR,(ϕ,χ)(a)) = Ge
cs
S,(ϕ,χ)(Λ(a)) for all a ∈

∏
i∈NAi;

(iii) Γ(FccsR,(ϕ,χ)(a)) ⊆ Gc
cs
S,(ϕ,χ)(Λ(a)) for all a ∈

∏
i∈NAi;

(iv) if Γ is injective, then Γ(FccsR,(ϕ,χ)(a)) is equal to GccsS,(ϕ,χ)(Λ(a)) for all a ∈
∏
i∈NAi;

(v) Λ(Hsupp(FecsR,(ϕ,χ))) = Hsupp(Ge
cs
S,(ϕ,χ));

(vi) Λ(Hsupp(FccsR,(ϕ,χ))) ⊆ Hsupp(Gc
cs
S,(ϕ,χ));

(vii) if Γ is injective, then Λ(Hsupp(FccsR,(ϕ,χ))) is equal to Hsupp(GccsS,(ϕ,χ));

(viii) R is a hesitant bipolar-valued fuzzy hypersoft reflexive relation, a hesitant bipolar-valued fuzzy hypersoft
symmetric relation, a hesitant bipolar-valued fuzzy hypersoft transitive relation, and a hesitant bipolar-valued
fuzzy hypersoft compatible relation if and only if S is a hesitant bipolar-valued fuzzy hypersoft reflexive re-
lation, a hesitant bipolar-valued fuzzy hypersoft symmetric relation, a hesitant bipolar-valued fuzzy hypersoft
transitive relation, and a hesitant bipolar-valued fuzzy hypersoft compatible relation, respectively.

(ix) if R is a bipolar fuzzy perfect antisymmetric relation and a bipolar fuzzy complete relation, then S is a hesitant
bipolar-valued fuzzy hypersoft antisymmetric relation and a bipolar fuzzy complete relation, respectively.

(x) if Γ is injective, then R is a hesitant bipolar-valued fuzzy hypersoft antisymmetric relation and a bipolar fuzzy
complete relation if and only if S is a hesitant bipolar-valued fuzzy hypersoft antisymmetric relation and a
bipolar fuzzy complete relation, respectively.

Proof. In this proposition, we shall check (i)-(v). The proofs of remaining items (vi)-(x) are straightforward,
so we omit it.

(i) In order to prove the argument, we let v1 and v2 be given in V . Suppose that v1 ∈ [v2]
cs
R,(ϕ,χ). Then

[v1]
s
R,(ϕ,χ) = [v2]

s
R,(ϕ,χ). Note that Γ(v1), Γ(v2) ∈ W. Now, we let w1 ∈ [Γ(v1)]

s
S,(ϕ,χ). Since Γ is surjective,

there exists v3 ∈ V such that Γ(v3) = w1. Observe that

(R(k))−(v1, v3) = (S(k))−(Γ(v1), Γ(v3)) ⊆ ϕ

and
(R(k))+(v1, v3) = (S(k))+(Γ(v1), Γ(v3)) ⊇ χ

for all k ∈
∏
i∈N Ki. Thus v3 ∈ [v1]

s
R,(ϕ,χ). It follows that v3 ∈ [v2]

s
R,(ϕ,χ). Now

(S(k))−(Γ(v2), Γ(v3)) = (R(k))−(v2, v3) ⊆ ϕ
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and
(S(k))+(Γ(v2), Γ(v3)) = (R(k))+(v2, v3) ⊇ χ

for all k ∈
∏
i∈N Ki. Whence Γ(v3) ∈ [Γ(v2)]

s
S,(ϕ,χ). Thus, we get [Γ(v1)]

s
S,(ϕ,χ) ⊆ [Γ(v2)]

s
S,(ϕ,χ). Conversely,

we can prove that [Γ(v2)]
s
S,(ϕ,χ) ⊆ [Γ(v1)]

s
S,(ϕ,χ). Hence [Γ(v1)]

s
S,(ϕ,χ) = [Γ(v2)]

s
S,(ϕ,χ). It follows that

Γ(v1) ∈ [Γ(v2)]
cs
S,(ϕ,χ). On the other hand, suppose that Γ(v1) ∈ [Γ(v2)]

cs
S,(ϕ,χ). Whence [Γ(v1)]

s
S,(ϕ,χ) =

[Γ(v2)]
s
S,(ϕ,χ). Now, we let v4 ∈ [v1]

s
R,(ϕ,χ). Then

(S(k))−(Γ(v1), Γ(v4)) = (R(k))−(v1, v4) ⊆ ϕ

and
(S(k))+(Γ(v1), Γ(v4)) = (R(k))+(v1, v4) ⊇ χ

for all k ∈
∏
i∈N Ki. Thus Γ(v4) ∈ [Γ(v1)]

s
S,(ϕ,χ). Hence Γ(v4) ∈ [Γ(v2)]

s
S,(ϕ,χ). Now

(R(k))−(v2, v4) = (S(k))−(Γ(v2), Γ(v4)) ⊆ ϕ

and
(R(k))+(v2, v4) = (S(k))+(Γ(v2), Γ(v4)) ⊇ χ

for all k ∈
∏
i∈N Ki. Thus, we get that v4 ∈ [v2]

s
R,(ϕ,χ). It follows that [v1]

s
R,(ϕ,χ) ⊆ [v2]

s
R,(ϕ,χ). Conversely,

we can show that [v2]
s
R,(ϕ,χ) ⊆ [v1]

s
R,(ϕ,χ), which yields [v1]

s
R,(ϕ,χ) = [v2]

s
R,(ϕ,χ). Consequently v1 ∈

[v2]
cs
R,(ϕ,χ). The proof is complete.

(ii) Let a ∈
∏
i∈NAi, and let w1 ∈ Γ(FecsR,(ϕ,χ)(a)). Then, there exists v1 ∈ FecsR,(ϕ,χ)(a) such that Γ(v1) =

w1. Observe that [v1]
cs
R,(ϕ,χ) ∩ F(a) 6= ∅. There exists v2 ∈ V such that v2 ∈ [v1]

cs
R,(ϕ,χ) and v2 ∈ F(a). By item

(i), we have Γ(v2) ∈ [Γ(v1)]
cs
S,(ϕ,χ) and Γ(v2) ∈ Γ(F(a)). Since Γ(F(a)) = G(Λ(a)), we have Γ(v2) ∈ G(Λ(a)).

Now
[w1]

cs
S,(ϕ,χ) ∩G(Λ(a)) = [Γ(v1)]

cs
S,(ϕ,χ) ∩G(Λ(a)) 6= ∅.

Thus, we get w1 ∈ GecsS,(ϕ,χ)(Λ(a)). It follows that Γ(FecsR,(ϕ,χ)(a)) ⊆ GecsS,(ϕ,χ)(Λ(a)). Conversely, we
let w2 ∈ GecsS,(ϕ,χ)(Λ(a)). Then [w2]

cs
S,(ϕ,χ) ∩ G(Λ(a)) 6= ∅. Thus, there exists w3 ∈ W such that w3 ∈

[w2]
cs
S,(ϕ,χ) and w3 ∈ G(Λ(a)). Since Γ(F(a)) = G(Λ(a)), we have w3 ∈ Γ(F(a)). There exists v3 ∈ F(a)

such that Γ(v3) = w3. Since Γ is surjective, there exists v4 ∈ V such that Γ(v4) = w2. We see that Γ(v3) ∈
[Γ(v4)]

cs
S,(ϕ,χ). By item (i), we get v3 ∈ [v4]

cs
R,(ϕ,χ). Hence [v4]

cs
R,(ϕ,χ) ∩ F(a) 6= ∅. Thus v4 ∈ FecsR,(ϕ,χ)(a).

Whence, we obtain that w2 = Γ(v4) ∈ Γ(FecsR,(ϕ,χ)(a)). It follows that GecsS,(ϕ,χ)(Λ(a)) ⊆ Γ(Fe
cs
R,(ϕ,χ)(a)).

This implies that Γ(FecsR,(ϕ,χ)(a)) = Ge
cs
S,(ϕ,χ)(Λ(a)) as required.

(iii) Let a ∈
∏
i∈NAi, and let w1 ∈ Γ(FccsR,(ϕ,χ)(a)). Then, there exists v1 ∈ FccsR,(ϕ,χ)(a) such that Γ(v1) =

w1. We observe that [v1]
cs
R,(ϕ,χ) ⊆ F(a). Now, we let w2 ∈ [w1]

cs
S,(ϕ,χ). Then, there exists v2 ∈ V such

that Γ(v2) = w2. Thus Γ(v2) ∈ [Γ(v1)]
cs
S,(ϕ,χ). By item (i), we get v2 ∈ [v1]

cs
R,(ϕ,χ), and so v2 ∈ F(a). Thus

Γ(v2) ∈ Γ(F(a)). Since Γ(F(a)) = G(Λ(a)), we have w2 = Γ(v2) ∈ G(Λ(a)). Whence [w1]
cs
S,(ϕ,χ) ⊆ G(Λ(a)),

which yields w1 ∈ GccsS,(ϕ,χ)(Λ(a)). Therefore, it follows that Γ(FccsR,(ϕ,χ)(a)) ⊆ Gc
cs
S,(ϕ,χ)(Λ(a)).

(iv) Let a ∈
∏
i∈NAi, and let w1 ∈ GccsS,(ϕ,χ)(Λ(a)). Then [w1]

cs
S,(ϕ,χ) ⊆ G(Λ(a)). Since Γ(F(a)) =

G(Λ(a)), we have [w1]
cs
S,(ϕ,χ) ⊆ Γ(F(a)). Since Γ is surjective, there exists v1 ∈ V such that Γ(v1) = w1.

Thus, we get [Γ(v1)]
cs
S,(ϕ,χ) ⊆ Γ(F(a)). Now, we shall prove that [v1]

cs
R,(ϕ,χ) ⊆ F(a). Suppose v2 ∈ [v1]

cs
R,(ϕ,χ).

Then, by item (i), we obtain Γ(v2) ∈ [Γ(v1)]
cs
S,(ϕ,χ). Thus Γ(v2) ∈ Γ(F(a)). There exists v3 ∈ F(a) such that

Γ(v2) = Γ(v3). Since Γ is injective, we have v2 = v3. Observe that v2 ∈ F(a). It follows that [v1]
cs
R,(ϕ,χ) ⊆ F(a).

Therefore v1 ∈ FccsR,(ϕ,χ)(a). Thus, we see that w1 = Γ(v1) ∈ Γ(FccsR,(ϕ,χ)(a)). Thus GccsS,(ϕ,χ)(Λ(a)) ⊆
Γ(FccsR,(ϕ,χ)(a)). As item (iii), we get Γ(FccsR,(ϕ,χ)(a)) = Gc

cs
S,(ϕ,χ)(Λ(a)) as required.
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(v) Suppose that b́ ∈ Λ(Hsupp(FecsR,(ϕ,χ))). Then, there exists á ∈ Hsupp(FecsR,(ϕ,χ)) such that b́ = Λ(á).
Observe that FecsR,(ϕ,χ)(á) 6= ∅. There exists v1 ∈ V such that v1 ∈ FecsR,(ϕ,χ)(á). By item (ii), observe that

Γ(v1) ∈ Γ(FecsR,(ϕ,χ)(á)) = Ge
cs
S,(ϕ,χ)(Λ(á)) = Ge

cs
S,(ϕ,χ)(b́).

Thus GecsS,(ϕ,χ)(b́) 6= ∅. Therefore b́ ∈ Hsupp(GecsS,(ϕ,χ)). Hence Λ(Hsupp(FecsR,(ϕ,χ))) ⊆
Hsupp(GecsS,(ϕ,χ)). Conversely, let b̀ ∈ Hsupp(GecsS,(ϕ,χ)). Then GecsS,(ϕ,χ)(b̀) 6= ∅. Thus, there exists
w ∈ W such that w ∈ GecsS,(ϕ,χ)(b̀). Since Λ is surjective, there exists à ∈

∏
i∈NAi such that Λ(à) = b̀.

Using item (ii), we get that

w ∈ GecsS,(ϕ,χ)(b̀) = Ge
cs
S,(ϕ,χ)(Λ(à)) = Γ(Fe

cs
R,(ϕ,χ)(à)).

Then, there exists v2 ∈ FecsR,(ϕ,χ)(à) such that Γ(v2) = w. We observe that FecsR,(ϕ,χ)(à) 6= ∅. Then à ∈
Hsupp(FecsR,(ϕ,χ)). It follows that b̀ ∈ Λ(Hsupp(FecsR,(ϕ,χ))). Hence Hsupp(GecsS,(ϕ,χ)) ⊆
Λ(Hsupp(FecsR,(ϕ,χ))). This substantiates that Λ(Hsupp(FecsR,(ϕ,χ))) = Hsupp(Ge

cs
S,(ϕ,χ)).

Theorem 4.19. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) and (W,W, [W]csS:=(S,

∏
i∈NKi),(ϕ,χ)) be approximation spaces

type I. Let (Γ ,Λ)h be a given hypersoft homomorphism from a hypersoft semigroup F := (F,
∏
i∈NAi) over V to a

hypersoft semigroup G := (G,
∏
i∈N Bi) overW satisfying equations (4.1) and (4.2). Then FecsR,(ϕ,χ) is a hypersoft

left ideal (resp., a hypersoft right ideal and a hypersoft ideal) over V if and only if GecsS,(ϕ,χ) is a hypersoft left ideal
(resp., a hypersoft right ideal and a hypersoft ideal) over W.

Proof. We only prove the case of a hypersoft left ideal, the other arguments are similar.
Suppose that FecsR,(ϕ,χ) is a hypersoft left ideal over V . Then FecsR,(ϕ,χ)(a) is either empty or a left ideal

of V for all a ∈
∏
i∈NAi. Note that K∩B = B. Now, we let b́ ∈

∏
i∈N Bi. Then, there exists á ∈

∏
i∈NAi

such that Λ(á) = b́. We consider the following two cases.

Case 1. Assume FecsR,(ϕ,χ)(a) is empty for all a ∈
∏
i∈NAi. Then Γ(FecsR,(ϕ,χ)(a)) is also empty for all a ∈∏

i∈NAi. Thus, by Proposition 4.18 (ii), we obtain GecsS,(ϕ,χ)(b́) is empty. Observe that
(W∏

i∈NBi
(b́))(GecsS,(ϕ,χ)(b́)) = (GecsS,(ϕ,χ)(b́)). Therefore WW∏

i∈N Bi
}̃GecsS,(ϕ,χ) = GecsS,(ϕ,χ).

Case 2. Suppose FecsR,(ϕ,χ)(a) is a left ideal of V for all a ∈
∏
i∈NAi. Then, we have V(FecsR,(ϕ,χ)(a)) ⊆

FecsR,(ϕ,χ)(a) for all a ∈
∏
i∈NAi. By Proposition 4.18 (ii), we observe that

(W∏
i∈NBi

(b́))(GecsS,(ϕ,χ)(b́)) =W(GecsS,(ϕ,χ)(Λ(á)))

= (Γ(V))(Γ(FecsR,(ϕ,χ)(á)))

= Γ(V(FecsR,(ϕ,χ)(á))) ⊆ Γ(Fe
cs
R,(ϕ,χ)(á)) = Ge

cs
S,(ϕ,χ)(Λ(á)) = Ge

cs
S,(ϕ,χ)(b́).

Whence WW∏
i∈N Bi

}̃GecsS,(ϕ,χ)b̃Ge
cs
S,(ϕ,χ). This implies that GecsS,(ϕ,χ) is a hypersoft left ideal.

Conversely, assume that GecsS,(ϕ,χ) is a hypersoft left ideal over W. Then GecsS,(ϕ,χ)(b) is either empty
or a left ideal of W for all b ∈

∏
i∈N Bi. Note that

∏
i∈N Ki ∩

∏
i∈NAi =

∏
i∈NAi. Let à ∈

∏
i∈NAi.

Then, we consider the following two cases.

Case 1. Suppose GecsS,(ϕ,χ)(b) is empty for all b ∈
∏
i∈N Bi. Then, by Proposition 4.18 (ii), we get that

Γ(FecsR,(ϕ,χ)(à)) = Ge
cs
S,(ϕ,χ)(Λ(à)) = ∅.

If FecsR,(ϕ,χ)(à) 6= ∅, then there exists v ∈ V such that v ∈ FecsR,(ϕ,χ)(à). Thus Γ(v) ∈ ∅, a contra-
diction. Hence FecsR,(ϕ,χ)(à) = ∅. It follows that (V∏

i∈NAi
(à))(FecsR,(ϕ,χ)(à)) = (FecsR,(ϕ,χ)(à)). Hence

WV∏
i∈NAi

}̃FecsR,(ϕ,χ) = FecsR,(ϕ,χ).
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Case 2. Suppose that GecsS,(ϕ,χ)(b) is a left ideal of W for all b ∈
∏
i∈N Bi. Then W(GecsS,(ϕ,χ)(b)) ⊆

GecsS,(ϕ,χ)(b) for all b ∈
∏
i∈N Bi. Now, assume that v1 ∈ (V∏

i∈NAi
(à))(FecsR,(ϕ,χ)(à)). Thus, by Proposition

4.18 (ii), we see that

Γ(v1) ∈ Γ((V∏i∈NAi
(à))(FecsR,(ϕ,χ)(à)))

= Γ(V(FecsR,(ϕ,χ)(à)))

= (Γ(V))(Γ(FecsR,(ϕ,χ)(à))) =W(GecsS,(ϕ,χ)(Λ(à))) ⊆ Ge
cs
S,(ϕ,χ)(Λ(à)) = Γ(Fe

cs
R,(ϕ,χ)(à)).

There is v2 ∈ FecsR,(ϕ,χ)(à) such that Γ(v1) = Γ(v2). Using Proposition 3.4, we have Γ(v1) ∈ [Γ(v2)]
cs
S,(ϕ,χ).

Thus, by Proposition 4.18 (i), we obtain v1 ∈ [v2]
cs
R,(ϕ,χ). From Proposition 3.5, we get [v1]

cs
R,(ϕ,χ) =

[v2]
cs
R,(ϕ,χ). Observe that [v2]

cs
R,(ϕ,χ) ∩ F(à) 6= ∅. Hence [v1]

cs
R,(ϕ,χ) ∩ F(à) 6= ∅, which yields v1 ∈ FecsR,(ϕ,χ)(à).

Thus (V∏
i∈NAi

(à))(FecsR,(ϕ,χ)(à)) ⊆ FecsR,(ϕ,χ)(à). Therefore WV∏
i∈NAi

}̃FecsR,(ϕ,χ)b̃Fe
cs
R,(ϕ,χ). This shows

that FecsR,(ϕ,χ) is a hypersoft left ideal over V .

Theorem 4.20. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) and (W,W, [W]csS:=(S,

∏
i∈NKi),(ϕ,χ)) be approximation spaces

type I. Let (Γ ,Λ)h be a given hypersoft homomorphism from a hypersoft semigroup F := (F,
∏
i∈NAi) over V

to a hypersoft semigroup G := (G,
∏
i∈N Bi) over W satisfying equations (4.1) and (4.2). If Γ is injective, then

FccsR,(ϕ,χ) is a hypersoft left ideal (resp., a hypersoft right ideal and a hypersoft ideal) over V if and only if GccsS,(ϕ,χ)
is a hypersoft left ideal (resp., a hypersoft right ideal and a hypersoft ideal) over W.

Proof. Based on Proposition 4.18 (iv), we can show that the statement is true.

Theorem 4.21. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) and (W,W, [W]csS:=(S,

∏
i∈NKi),(ϕ,χ)) be approximation spaces

type I. Let (Γ ,Λ)h be a given hypersoft homomorphism from a hypersoft semigroup F := (F,
∏
i∈NAi) over V

to a hypersoft semigroup G := (G,
∏
i∈N Bi) over W satisfying equations (4.1) and (4.2). If Γ is injective, then

FecsR,(ϕ,χ) is a hypersoft quasi-ideal over V if and only if GecsS,(ϕ,χ) is a hypersoft quasi-ideal over W.

Proof. In order to verify this statement, we shall assume that Γ is an injective function. We observe that it is
easy to prove that Γ((FecsR,(ϕ,χ)(a))V ∩V(Fe

cs
R,(ϕ,χ)(a))) = (Γ(FecsR,(ϕ,χ)(a)))(Γ(V))∩ (Γ(V))(Γ(Fe

cs
R,(ϕ,χ)(a)))

for all a ∈
∏
i∈NAi. Suppose FecsR,(ϕ,χ) is a hypersoft quasi-ideal over V . Then FecsR,(ϕ,χ)(a) is either empty

or a quasi-ideal of V for all a ∈
∏
i∈NAi. Note that (

∏
i∈N Bi ∩

∏
i∈N Ki) ∩ (

∏
i∈N Ki ∩

∏
i∈N Bi) =∏

i∈N Bi. Now, we let b́ ∈
∏
i∈N Bi. Then, there exists á ∈

∏
i∈NAi such that Λ(á) = b́. We consider the

following two cases.

Case 1. Suppose FecsR,(ϕ,χ)(a) is empty for all a ∈
∏
i∈NAi. Then Γ(FecsR,(ϕ,χ)(a)) is also empty for all a ∈∏

i∈NAi. From Proposition 4.18 (ii), we get GecsS,(ϕ,χ)(b́) is empty. Thus (GecsS,(ϕ,χ)(b́))(W
∏
i∈NBi

(b́)) ∩
(W∏

i∈NBi
(b́))(GecsS,(ϕ,χ)(b́)) is equal to (GecsS,(ϕ,χ)(b́)). Therefore

(GecsS,(ϕ,χ)}̃WW∏
i∈N Bi

)ẽ(WW∏
i∈N Bi

}̃GecsS,(ϕ,χ)) = GecsS,(ϕ,χ).

Case 2. Suppose that FecsR,(ϕ,χ)(a) is a quasi-ideal of V for all a ∈
∏
i∈NAi. Then (FecsR,(ϕ,χ)(a))V ∩

V(FecsR,(ϕ,χ)(a)) ⊆ Fe
cs
R,(ϕ,χ)(a) for all a ∈

∏
i∈NAi. Using Proposition 4.18 (ii), we observe that

(GecsS,(ϕ,χ)(b́))(W
∏
i∈NBi

(b́))∩ (W∏
i∈NBi

(b́))(GecsS,(ϕ,χ)(b́))

= (GecsS,(ϕ,χ)(Λ(á)))W ∩W(GecsS,(ϕ,χ)(Λ(á)))

= (Γ(FecsR,(ϕ,χ)(á)))(Γ(V))∩ (Γ(V))(Γ(Fe
cs
R,(ϕ,χ)(á)))

= Γ((FecsR,(ϕ,χ)(á))V ∩ V(Fe
cs
R,(ϕ,χ)(á)))

⊆ Γ(FecsR,(ϕ,χ)(á)) = Ge
cs
S,(ϕ,χ)(Λ(á)) = Ge

cs
S,(ϕ,χ)(b́).
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Wherefore (GecsS,(ϕ,χ)}̃WW∏
i∈N Bi

)ẽ(WW∏
i∈N Bi

}̃GecsS,(ϕ,χ))b̃Ge
cs
S,(ϕ,χ). It follows that GecsS,(ϕ,χ) is a hy-

persoft quasi-ideal. On the other hand, suppose GecsS,(ϕ,χ) is a hypersoft quasi-ideal over W. Then
GecsS,(ϕ,χ)(b) is either empty or a quasi-ideal of W for all b ∈

∏
i∈N Bi. Note that (

∏
i∈NAi ∩

∏
i∈N Ki)∩

(
∏
i∈N Ki ∩

∏
i∈NAi) =

∏
i∈NAi. Let à ∈

∏
i∈NAi. We consider the following two cases.

Case 1. Suppose GecsS,(ϕ,χ)(b) is empty for all b ∈
∏
i∈N Bi. From Proposition 4.18 (ii), we get that

Γ(FecsR,(ϕ,χ)(à)) = Ge
cs
S,(ϕ,χ)(Λ(à)) = ∅.

Assume by contradiction that FecsR,(ϕ,χ)(à) 6= ∅. Then, there exists v ∈ V such that v ∈ FecsR,(ϕ,χ)(à).
Thus Γ(v) ∈ ∅, a contradiction. Hence FecsR,(ϕ,χ)(à) = ∅. It holds that (FecsR,(ϕ,χ)(à))(V

∏
i∈NAi

(à)) ∩
(V∏

i∈NAi
(à))(FecsR,(ϕ,χ)(à)) is equal to (FecsR,(ϕ,χ)(à)). This implies that

(FecsR,(ϕ,χ)}̃WV∏
i∈NAi

)ẽ(WV∏
i∈NAi

}̃FecsR,(ϕ,χ)) = FecsR,(ϕ,χ).

Case 2. Suppose GecsS,(ϕ,χ)(b) is a quasi-ideal of W for all b ∈
∏
i∈N Bi. Then (GecsS,(ϕ,χ)(b))W∩

W(GecsS,(ϕ,χ)(b)) ⊆ GecsS,(ϕ,χ)(b) for all b ∈
∏
i∈N Bi. Assume that v1 ∈ (FecsR,(ϕ,χ)(à))(V

∏
i∈NAi

(à)) ∩
(V∏

i∈NAi
(à))(FecsR,(ϕ,χ)(à)). Thus, by Proposition 4.18 (ii), we see that

Γ(v1) ∈ Γ((FecsR,(ϕ,χ)(à))(V
∏
i∈NAi

(à))∩ (V∏
i∈NAi

(à))(FecsR,(ϕ,χ)(à)))

= Γ((FecsR,(ϕ,χ)(à))V ∩ V(Fe
cs
R,(ϕ,χ)(à)))

= (Γ(FecsR,(ϕ,χ)(à)))(Γ(V))∩ (Γ(V))(Γ(Fe
cs
R,(ϕ,χ)(à)))

= (GecsS,(ϕ,χ)(Λ(à)))W ∩W(GecsS,(ϕ,χ)(Λ(à)))

⊆ GecsS,(ϕ,χ)(Λ(à))

= Γ(FecsR,(ϕ,χ)(à)).

There exists v2 ∈ FecsR,(ϕ,χ)(à) such that Γ(v1) = Γ(v2). Using Proposition 3.4, we see that Γ(v1) ∈
[Γ(v2)]

cs
S,(ϕ,χ). By Proposition 4.18 (i), we obtain that v1 ∈ [v2]

cs
R,(ϕ,χ). From Proposition 3.5, we get

that [v1]
cs
R,(ϕ,χ) = [v2]

cs
R,(ϕ,χ). Observe that [v2]

cs
R,(ϕ,χ) ∩ F(à) 6= ∅. Hence [v1]

cs
R,(ϕ,χ) ∩ F(à) 6= ∅. Whence

v1 ∈ FecsR,(ϕ,χ)(à). Thus, we get (FecsR,(ϕ,χ)(à))(V
∏
i∈NAi

(à)) ∩ (V∏
i∈NAi

(à))(FecsR,(ϕ,χ)(à)) is a subset of
FecsR,(ϕ,χ)(à). Hence (FecsR,(ϕ,χ)}̃WV∏

i∈NAi
)ẽ(WV∏

i∈NAi
}̃FecsR,(ϕ,χ))b̃Fe

cs
R,(ϕ,χ). We conclude that FecsR,(ϕ,χ)

is a hypersoft quasi-ideal over V .

Theorem 4.22. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) and (W,W, [W]csS:=(S,

∏
i∈NKi),(ϕ,χ)) be approximation spaces

type I. Let (Γ ,Λ)h be a given hypersoft homomorphism from a hypersoft semigroup F := (F,
∏
i∈NAi) over V

to a hypersoft semigroup G := (G,
∏
i∈N Bi) over W satisfying equations (4.1) and (4.2). If Γ is injective, then

FccsR,(ϕ,χ) is a hypersoft quasi-ideal over V if and only if GccsS,(ϕ,χ) is a hypersoft quasi-ideal over W.

Proof. If we use Proposition 4.18 (iv), then we can verify that the statement holds.

Theorem 4.23. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) and (W,W, [W]csS:=(S,

∏
i∈NKi),(ϕ,χ)) be approximation spaces

type I. Let f and g be fuzzy subsets of V and W, respectively, and let ι, κ ∈ +I. Let (Γ ,Λ)h be a hypersoft homomor-
phism from a hypersoft semigroup (V

(f,ι,>)∏
i∈NAi

,
∏
i∈NAi) over V to a hypersoft semigroup (W

(g,κ,>)∏
i∈NBi

,
∏
i∈N Bi)

over W satisfying equations (4.1) and (4.2). Then pfqcsR,(ϕ,χ) is a fuzzy ideal of V if and only if pgqcsS,(ϕ,χ) is a
fuzzy ideal of W.

Proof. From Propositions 3.31 (i), 4.13 (i), and Theorem 4.19, we observe that

pfqcsR,(ϕ,χ) is a fuzzy ideal of V ⇔ (V
(pfqcsR,(ϕ,χ),ι,>)∏
i∈NAi

,
∏
i∈N

Ai) is a hypersoft ideal over V for all ι ∈ +I
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⇔ (V
(f,ι,>)∏
i∈NAi

,
∏
i∈N

Ai)ecsR,(ϕ,χ) is a hypersoft ideal over V for all ι ∈ +I

⇔ (W
(g,κ,>)∏
i∈NBi

,
∏
i∈N

Bi)ecsS,(ϕ,χ) is a hypersoft ideal over W for all κ ∈ +I

⇔ (W
(pgqcsS,(ϕ,χ),κ,>)∏
i∈NBi

,
∏
i∈N

Bi) is a hypersoft ideal over W for all κ ∈ +I

⇔ pgqcsS,(ϕ,χ) is a fuzzy ideal of W.

Thus pfqcsR,(ϕ,χ) is a fuzzy ideal of V if and only if pgqcsS,(ϕ,χ) is a fuzzy ideal of W.

Theorem 4.24. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) and (W,W, [W]csS:=(S,

∏
i∈NKi),(ϕ,χ)) be approximation spaces

type I. Let f and g be fuzzy subsets of V andW, respectively, and let ι, κ ∈ +I. Let (Γ ,Λ)h be a given hypersoft homo-
morphism from a hypersoft semigroup (V

(f,ι,>)∏
i∈NAi

,
∏
i∈NAi) over V to a hypersoft semigroup (W

(g,κ,>)∏
i∈NBi

,
∏
i∈N Bi)

over W satisfying equations (4.1) and (4.2). If Γ is injective, then xfycsR,(ϕ,χ) is a fuzzy ideal of V if and only if
xgycsS,(ϕ,χ) is a fuzzy ideal of W.

Proof. Applying Propositions 3.31 (ii), 4.13 (i), and Theorem 4.20, this statement is easily provided.

Theorem 4.25. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) and (W,W, [W]csS:=(S,

∏
i∈NKi),(ϕ,χ)) be approximation spaces

type I. Let f and g be fuzzy subsets of V andW, respectively, and let ι, κ ∈ +I. Let (Γ ,Λ)h be a given hypersoft homo-
morphism from a hypersoft semigroup (V

(f,ι,>)∏
i∈NAi

,
∏
i∈NAi) over V to a hypersoft semigroup (W

(g,κ,>)∏
i∈NBi

,
∏
i∈N Bi)

over W satisfying equations (4.1) and (4.2). If Γ is injective, then pfqcsR,(ϕ,χ) is a fuzzy quasi-ideal of V if and only
if pgqcsS,(ϕ,χ) is a fuzzy quasi-ideal of W.

Proof. Suppose Γ is injective. Then, by Propositions 3.31 (i), 4.13 (ii), and Theorem 4.21, we observe that

pfqcsR,(ϕ,χ) is a fuzzy quasi-ideal of V

⇔ (V
(pfqcsR,(ϕ,χ),ι,>)∏
i∈NAi

,
∏
i∈N

Ai) is a hypersoft quasi-ideal over V for all ι ∈ +I

⇔ (V
(f,ι,>)∏
i∈NAi

,
∏
i∈N

Ai)ecsR,(ϕ,χ) is a hypersoft quasi-ideal over V for all ι ∈ +I

⇔ (W
(g,κ,>)∏
i∈NBi

,
∏
i∈N

Bi)ecsS,(ϕ,χ) is a hypersoft quasi-ideal over W for all κ ∈ +I

⇔ (W
(pgqcsS,(ϕ,χ),κ,>)∏
i∈NBi

,
∏
i∈N

Bi) is a hypersoft quasi-ideal over W for all κ ∈ +I

⇔ pgqcsS,(ϕ,χ) is a fuzzy quasi-ideal of W.

Therefore pfqcsR,(ϕ,χ) is a fuzzy quasi-ideal of V if and only if pgqcsS,(ϕ,χ) is a fuzzy quasi-ideal of W.

Theorem 4.26. Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) and (W,W, [W]csS:=(S,

∏
i∈NKi),(ϕ,χ)) be approximation spaces

type I. Let f and g be fuzzy subsets of V and W, respectively, and let ι, κ ∈ +I. Let (Γ ,Λ)h be a hypersoft homomor-
phism from a hypersoft semigroup (V

(f,ι,>)∏
i∈NAi

,
∏
i∈NAi) over V to a hypersoft semigroup (W

(g,κ,>)∏
i∈NBi

,
∏
i∈N Bi)

over W satisfying equations (4.1) and (4.2). If Γ is injective, then xfycsR,(ϕ,χ) is a fuzzy quasi-ideal of V if and only
if xgycsS,(ϕ,χ) is a fuzzy quasi-ideal of W.

Proof. We can verify that the statement is true by using Propositions 3.31 (ii), 4.13 (ii), and Theorem
4.22.
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5. Observations and conclusions

In this research article, the concept related to the hesitant bipolar-valued fuzzy soft set theory and
hypersoft set theory was developed to hesitant bipolar-valued fuzzy hypersoft relations. We have adapted
the methodologies of [15, 39, 43, 45] to extended approximation spaces and novel rough approximation
models induced by hesitant bipolar-valued fuzzy hypersoft relations as the following.

• The basic element of the rough approximation of hypersoft sets constitutes upper and lower rough
approximations, boundary regions, definable hypersoft sets, and rough hypersoft sets.

• The basic element of the rough approximation of fuzzy sets constitutes upper and lower rough
approximations, definable fuzzy sets, and rough fuzzy sets.

Consequently, we obtained that a hesitant bipolar-valued fuzzy hypersoft reflexive relation and a hesitant
bipolar-valued fuzzy hypersoft antisymmetric relation on a single universe generate both the definable
hypersoft set and the definable fuzzy set.

As summarized above, we shall discuss to accuracy and roughness measures of hypersoft sets and
fuzzy sets in terms of Pawlak’s rough set theory [39]. In the study of accuracy and roughness measures, V
and W are denoted as finite. Pawlak suggests two numerical measures for characterizing the imprecision
in a Pawlak’s approximation space (V ,E) as follows.

Let X be a subset of V . An accuracy measure of X, denoted by X|E, is defined by

X|E :=
|bXcE|
|dXeE|

,

where |dXeE| and |bXcE| denote cardinalities of dXeE and bXcE, respectively. We observe that 0 6 X|E6 1.
A roughness measure of X, denoted by X‖E, is defined by

X‖E := 1 −X|E.

In the following, accuracy and roughness measures of hypersoft sets are considered in approximation
spaces induced by hesitant bipolar-valued fuzzy hypersoft relations. We let (V ,W, [V]csR:=(R,

∏
i∈NKi),(ϕ,χ))

be an approximation space type I. Let F := (F,
∏
i∈NAi) be a hypersoft set over V . For a ∈

∏
i∈NAi, an

accuracy measure of F(a) based on [V]csR,(ϕ,χ), denoted by F(a)|csR,(ϕ,χ), is defined by

F(a)|csR,(ϕ,χ) :=
|FccsR,(ϕ,χ)(a)|

|FecsR,(ϕ,χ)(a)|
,

where |FecsR,(ϕ,χ)(a)| and |FccsR,(ϕ,χ)(a)| denote cardinalities of FecsR,(ϕ,χ)(a) and FccsR,(ϕ,χ)(a), respectively.
Generally, observe that F(a)|csR,(ϕ,χ) ∈ +I for all a ∈

∏
i∈NAi. In what follows, for a ∈

∏
i∈NAi, a

roughness measure of F(a) based on [V]csR,(ϕ,χ), denoted by F(a)‖csR,(ϕ,χ), is defined by

F(a)‖csR,(ϕ,χ) := 1 − F(a)|csR,(ϕ,χ).

In observation, the following arguments indeed hold.

• Let (V ,W, [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be an approximation space type I. If F := (F,

∏
i∈NAi) is a hyper-

soft set over V , then we have F is a definable hypersoft set within (V ,V , [V]csR,(ϕ,χ)) if and only if
F(a)|csR,(ϕ,χ) = 1 or F(a)‖csR,(ϕ,χ) = 0 for all a ∈ Hsupp(F).

• Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) and (V ,V , [V]csS:=(S,

∏
i∈NKi),(γ,ω)) be approximation spaces type I

with the property that the inclusion relation of the hesitant bipolar-valued fuzzy hypersoft reflex-
ive relation R and the hesitant bipolar-valued fuzzy hypersoft transitive relation S is R ⊆ir S,
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and (γ,ω) ⊆sr (ϕ,χ). If F := (F,
∏
i∈NAi) is a hypersoft set over V , then we have F(a)|csR,(ϕ,χ) >

F(a)|csS,(γ,ω) for all a ∈ Hsupp(F). In fact, we let a ∈ Hsupp(F) be given. Then, by using Proposition
3.19, we see that |FecsR,(ϕ,χ)(a)| 6 |FecsS,(γ,ω)(a)| and |FccsS,(γ,ω)(a)| 6 |FccsR,(ϕ,χ)(a)|. Now

F(a)|csS,(γ,ω) :=
|FccsS,(γ,ω)(a)|

|FecsS,(γ,ω)(a)|
6

|FccsR,(ϕ,χ)(a)|

|FecsS,(γ,ω)(a)|
6

|FccsR,(ϕ,χ)(a)|

|FecsR,(ϕ,χ)(a)|
=: F(a)|csR,(ϕ,χ).

• Let (V ,V , [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be a given approximation space type I with the property that R is

a hesitant bipolar-valued fuzzy hypersoft reflexive relation and a hesitant bipolar-valued fuzzy hy-
persoft antisymmetric relation over V ×V , and (ϕ,χ) ∈ P(−I)\{−I}×P(+I)\{∅}. If F := (F,

∏
i∈NAi)

is a hypersoft set over V , then F(a)|csR,(ϕ,χ) = 1 and F(a)‖csR,(ϕ,χ) = 0 for all a ∈ Hsupp(F) due to
Proposition 3.20.

• We further study the fact under distance measurement concerning the classical concept of Mar-
czewski and Steinhaus [28]. Let X and Y be subsets of V . Marczewski and Steinhaus propose the
notion of distance measure of X and Y as follows.

A symmetric difference between X and Y, denoted by X� Y, is defined by

X� Y := (X∪ Y) − (X∩ Y).

A distance measure of X and Y, denoted by DM(X, Y), is defined by

DM(X, Y) :=

{
|X�Y|
|X∪Y| , if |X∪ Y| > 0,

0, if |X∪ Y| = 0,

where |X ∪ Y| denotes the cardinality of X ∪ Y, and |X� Y| denotes the cardinality of the symmetric
difference X� Y. Based on (V ,W, [V]csR:=(R,

∏
i∈NKi),(ϕ,χ)) type I, if F := (F,

∏
i∈NAi) is a hypersoft

set over V , then we obtain that DM(FecsR,(ϕ,χ)(a), Fc
cs
R,(ϕ,χ)(a)) is equal to F(a)‖csR,(ϕ,χ) for all a ∈

Hsupp(F). In fact, let a ∈ Hsupp(F). Then F(a) 6= ∅. By Remark 3.14, we get that FecsR,(ϕ,χ)(a) 6= ∅.
We observe that |FecsR,(ϕ,χ)(a)| > 0 and |FecsR,(ϕ,χ)(a)∪ Fc

cs
R,(ϕ,χ)(a)| > 0. Now

DM(FecsR,(ϕ,χ)(a), Fc
cs
R,(ϕ,χ)(a)) :=

|FecsR,(ϕ,χ)(a)� Fc
cs
R,(ϕ,χ)(a)|

|FecsR,(ϕ,χ)(a)∪ Fc
cs
R,(ϕ,χ)(a)|

=
|FecsR,(ϕ,χ)(a)∪ Fc

cs
R,(ϕ,χ)(a)|

|FecsR,(ϕ,χ)(a)∪ Fc
cs
R,(ϕ,χ)(a)|

−
|FecsR,(ϕ,χ)(a)∩ Fc

cs
R,(ϕ,χ)(a)|

|FecsR,(ϕ,χ)(a)∪ Fc
cs
R,(ϕ,χ)(a)|

= 1 −
|FccsR,(ϕ,χ)(a)|

|FecsR,(ϕ,χ)(a)|
= 1 − F(a)|csR,(ϕ,χ) =: F(a)‖csR,(ϕ,χ).

In the fuzzy context, we further study to accuracy and roughness measures of fuzzy sets in approxi-
mation spaces induced by hesitant bipolar-valued fuzzy hypersoft relations as the following.

Let (V ,W, [V]csR:=(R,
∏
i∈NKi),(ϕ,χ)) be an approximation space type I, f a fuzzy subset of V and ι ∈ +I.

An ι-level accuracy measure of f based on [V]csR,(ϕ,χ), denoted by (f, ι,>)|cs,ι
R,(ϕ,χ), is defined by

(f, ι,>)|cs,ι
R,(ϕ,χ) :=

|V
(xfycsR,(ϕ,χ),ι,>)

|

|V
(pfqcs

R,(ϕ,χ),ι,>)
|
,

where |V
(pfqcsR,(ϕ,χ),ι,>)

| and |V
(xfycsR,(ϕ,χ),ι,>)

| denote cardinalities of finite sets V(pfqcsR,(ϕ,χ),ι,>) and
V
(xfycsR,(ϕ,χ),ι,>), respectively. Now, observe that f|cs,ι

R,(ϕ,χ) ∈ +I. An ι-level roughness measure of f based on
[V]csR,(ϕ,χ), denoted by (f, ι,>)‖csR,(ϕ,χ), is defined by

(f, ι,>)‖cs,ι
R,(ϕ,χ) := 1 − (f, ι,>)|cs,ι

R,(ϕ,χ).
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Based on Proposition 3.31, if f is a fuzzy subset of V and ι ∈ +I such that (V
(f,ι,>)∏
i∈NAi

,
∏
i∈NAi) is a

(f, ι,>)-relative whole hypersoft set over V , then we observe that the following items are true.

• (f, ι,>)|cs,ι
R,(ϕ,χ) = V

(f,ι,>)∏
i∈NAi

(a)|csR,(ϕ,χ) for all a ∈
∏
i∈NAi.

• (f, ι,>)‖cs,ι
R,(ϕ,χ) = V

(f,ι,>)∏
i∈NAi

(a)‖csR,(ϕ,χ) for all a ∈
∏
i∈NAi.

This means that the concept of accuracy and roughness measures of fuzzy sets can be described in terms
of hypersoft sets.

In order to obtain the optimal multi-parameter of a hypersoft set in general, we present the decision-
making algorithm of associated rough hypersoft sets in approximation spaces induced by hesitant bipolar-
valued fuzzy hypersoft relations as follows.
Step 1. Construct an information (maybe algebraic) system containing the approximation space
(V ,W, [V]csR:=(R,

∏
i∈NKi),(ϕ,χ)).

Step 2. Input a hypersoft set F := (F,
∏
i∈NAi) over V .

Step 3. Compute FecsR,(ϕ,χ) and FccsR,(ϕ,χ).

Step 4. If the value min16i6n{m(F(ai)) :=
DM(FecsR,(ϕ,χ)(ai),FccsR,(ϕ,χ)(ai))

card(F(ai))
} is found, then the optimal decision

is F(a), where a is a multi-parameter generated the minimum value. Otherwise, the optimal decision does
not exist. In this step, we call the multi-parameter a an optimal multi-parameter of (F,

∏
i∈NAi).

We consider the corresponding example as follows. Based on Example 3.13, let
∏
i∈NAi = {ai :

i is a natural number with 1 6 i 6 4} and let (F,
∏
i∈NAi) be a hypersoft set over V defined by

F(a1) = {v3i : i is a natural number}∪ {v3i−2 : i is a natural number with i = 1},
F(a2) = {v3i : i is a natural number}∪ {v3i−2 : i is a natural number with 1 6 i 6 2},
F(a3) = {v3i : i is a natural number}∪ {v3i−2 : i is a natural number with 1 6 i 6 3},
F(a4) = {v3i : i is a natural number}.

Using Definition 3.12, we obtain that

FecsR,([−1,−0.7),[0.5,1])(a) = {v3i : i is a natural number}∪ {v3i−2 : i is a natural number},

FccsR,([−1,−0.7),[0.5,1])(a) = {v3i : i is a natural number}

for all a ∈ {a1,a2,a3}. Moreover, we get that

FecsR,([−1,−0.7),[0.5,1])(a4) = FccsR,([−1,−0.7),[0.5,1])(a4).

By Remark 3.14, we see that

m(F(a1)) > m(F(a2)) > m(F(a3)) > m(F(a4)) = 0.

Therefore a4 is the optimal multi-parameter of (F,
∏
i∈NAi) such that F(a4) is the best choice. Observe

that F(a4) is definable. Then, the definable-based approximation approach induces the optimal multi-
parameter and the best alternative. Here, the notion of the set-valued distance measurement combined
with a decision-making algorithm based on rough set theory generates the optimal multi-parameter as
well as the best alternative of a hypersoft set. Furthermore, such an algorithm can be also applied to semi-
group (or other algebraic structures) and several information systems under decision-making problems.

In the approach of semigroup theory, we used the novel models to study upper and lower rough
approximations of hypersoft quasi-ideals over semigroups and fuzzy quasi-ideals of semigroups. Then,
we demonstrated arguments like the following.
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• In a regular semigroup, every upper rough approximation of a hypersoft quasi-ideal (resp., a fuzzy
quasi-ideal) is a hypersoft quasi-ideal (resp., a fuzzy quasi-ideal) based on a hesitant bipolar-valued
fuzzy hypersoft reflexive relation, a hesitant bipolar-valued fuzzy hypersoft transitive relation, and
a hesitant bipolar-valued fuzzy hypersoft compatible relation.

• Every lower rough approximation of a hypersoft quasi-ideal (resp., a fuzzy quasi-ideal) is a hyper-
soft quasi-ideal (resp., a fuzzy quasi-ideal) based on a bipolar fuzzy reflexive relation, a hesitant
bipolar-valued fuzzy hypersoft transitive relation, and a hesitant bipolar-valued fuzzy hypersoft
complete relation.

Moreover, we got that a hesitant bipolar-valued fuzzy hypersoft symmetric relation and a hesitant bipolar-
valued fuzzy hypersoft antisymmetric relation are not sufficient conditions for all results. In the end, we
used hypersoft homomorphisms to study upper and lower rough approximations of hypersoft quasi-
ideals over semigroups and fuzzy quasi-ideals of semigroups. Then, we obtained necessary and sufficient
conditions for upper and lower rough approximations of hypersoft quasi-ideals over semigroups and
fuzzy quasi-ideals of semigroups.

Combined with other types of hypersoft sets and fuzzy sets, we shall verify the results of rough
approximations for these and also consider other types of several algebraic structures in the future. Based
on the interesting applicative concept in [30], we also further study the approximation of fuzzy hypersoft
sets by hesitant bipolar-valued fuzzy hypersoft relation with image processing application in the next
step.
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[47] O. Steinfeld, Über die quasiideale von halbgruppen, Publ. Math. Debrecen, 4 (1956), 262–275. 1, 2.3
[48] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529–539. (iii)
[49] J. Y. Wang, Y. P. Wang, L. Liu, Hesitant bipolar-valued fuzzy soft sets and their application in decision making, Complex-

ity, 2020 (2020), 12 pages. 1, 2.34

https://go.gale.com/ps/i.do?id=GALE%7CA466052694&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=19950772&p=AONE&sw=w
https://go.gale.com/ps/i.do?id=GALE%7CA466052694&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=19950772&p=AONE&sw=w
https://academic.oup.com/jlms/article-pdf/doi/10.1112/jlms/s1-44.1.572b/2501306/s1-44-1-572b.pdf
http://www.afmi.or.kr/articles_in_%20press/2013-12/AFMI-H-131001R1/AFMI-H-131001.pdf
http://www.afmi.or.kr/articles_in_%20press/2013-12/AFMI-H-131001R1/AFMI-H-131001.pdf
https://www.tandfonline.com/doi/abs/10.1080/03081079008935107
https://www.jstor.org/stable/24896454
https://link.springer.com/article/10.1007/s00500-009-0465-6
https://link.springer.com/article/10.1007/s00500-009-0465-6
https://ieeexplore.ieee.org/abstract/document/7088605/
https://ieeexplore.ieee.org/abstract/document/7088605/
https://scholar.google.com/scholar?as_q=&as_epq=Fundamentals+of+semigroup+theory&as_oq=&as_eq=&as_occt=title&as_sauthors=&as_publication=&as_ylo=1995&as_yhi=1995&hl=en&as_sdt=0%2C5
http://www.engineeringletters.com/issues_v25/issue_2/EL_25_2_08.pdf
http://www.engineeringletters.com/issues_v25/issue_2/EL_25_2_08.pdf
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs18834
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs18834
https://link.springer.com/article/10.1007/s40314-019-0851-3
https://link.springer.com/article/10.1007/s40314-019-0851-3
https://www.mdpi.com/566360
https://books.google.com/books?hl=en&lr=&id=61rSBwAAQBAJ&oi=fnd&pg=PA1&dq=Rough+sets+and+data+mining&ots=DFCjor4FQZ&sig=twznQy8mzyt1fex-ZDF11FwSCXQ
https://scholar.google.com/scholar?as_q=&as_epq=Fuzzy+soft+sets&as_oq=&as_eq=&as_occt=title&as_sauthors=maji&as_publication=&as_ylo=2001&as_yhi=2001&hl=en&as_sdt=0%2C5
https://doi.org/10.1016/S0898-1221(03)00016-6
https://link.springer.com/article/10.1007/s41066-018-0118-1
https://link.springer.com/article/10.1007/s41066-018-0118-1
https://www.impan.pl/en/publishing-house/journals-and-series/colloquium-mathematicum/all/6/1/112233/on-a-certain-distance-of-sets-and-the-corresponding-distance-of-functions
https://www.impan.pl/en/publishing-house/journals-and-series/colloquium-mathematicum/all/6/1/112233/on-a-certain-distance-of-sets-and-the-corresponding-distance-of-functions
https://www.researchgate.net/profile/Talal-Al-Hawary/publication/322077567_ON_MODULAR_FLATS_AND_PUSHOUTS_OF_MATROIDS/links/5e5b7fb7a6fdccbeba0f3bea/ON-MODULAR-FLATS-AND-PUSHOUTS-OF-MATROIDS.pdf#page=927
https://www.researchgate.net/profile/Talal-Al-Hawary/publication/322077567_ON_MODULAR_FLATS_AND_PUSHOUTS_OF_MATROIDS/links/5e5b7fb7a6fdccbeba0f3bea/ON-MODULAR-FLATS-AND-PUSHOUTS-OF-MATROIDS.pdf#page=927
https://link.springer.com/article/10.1007/s00500-021-05769-3
https://link.springer.com/article/10.1007/s00500-021-05769-3
https://doi.org/10.1016/S0898-1221(99)00056-5
https://books.google.com/books?hl=en&lr=&id=OvU0rIyjuksC&oi=fnd&pg=PA1&ots=u99HdIqQKJ&sig=DPPaQgv3H6kj2IgnDcJYM_KrPrk
https://www.azjm.org/volumes/0601/0601-4.pdf
https://www.anstuocmath.ro/mathematics/anale2020v3/10_Muhiuddin%20G..pdf
https://www.anstuocmath.ro/mathematics/anale2020v3/10_Muhiuddin%20G..pdf
https://www.worldscientific.com/doi/abs/10.1142/S1793830920500184
https://www.worldscientific.com/doi/abs/10.1142/S1793830920500184
https://link.springer.com/article/10.1007/s40815-021-01110-0
https://link.springer.com/article/10.1007/s40815-021-01110-0
http://lemma-tijdschriften.com/gallery/goj-1527.pdf
http://lemma-tijdschriften.com/gallery/goj-1527.pdf
https://ijpam.uniud.it/online_issue/201636/52-PanZhan.pdf
https://doi.org/10.1007/BF01001956
https://www.sciencedirect.com/science/article/pii/S0020025506001484
http://aimspress.com/aimspress-data/math/2022/2/PDF/math-07-02-160.pdf
http://aimspress.com/aimspress-data/math/2022/2/PDF/math-07-02-160.pdf
http://www.ssstj.sci.ssru.ac.th/Content/journals/Volume8_No1/Vol8_No1_004.pdf
http://www.ssstj.sci.ssru.ac.th/Content/journals/Volume8_No1/Vol8_No1_004.pdf
https://doi.org/10.1515/math-2018-0136
https://doi.org/10.1515/math-2018-0136
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs181435
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs181435
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Development+of+rough+hypersoft+set+with+application+in+decision+making+for+the+best+choice+of+chemical+material&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Development+of+rough+hypersoft+set+with+application+in+decision+making+for+the+best+choice+of+chemical+material&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Development+of+rough+hypersoft+set+with+application+in+decision+making+for+the+best+choice+of+chemical+material&btnG=
https://books.google.com/books?hl=en&lr=&id=KeeaDwAAQBAJ&oi=fnd&pg=PA168&dq=Extension+of+Soft+Set+to+Hypersoft+Set,+and+then+to+Plithogenic+Hypersoft+Set&ots=TF0drGLFZM&sig=PVOy8ERetzQWFrGFyHhI-SFyHgE
https://books.google.com/books?hl=en&lr=&id=KeeaDwAAQBAJ&oi=fnd&pg=PA168&dq=Extension+of+Soft+Set+to+Hypersoft+Set,+and+then+to+Plithogenic+Hypersoft+Set&ots=TF0drGLFZM&sig=PVOy8ERetzQWFrGFyHhI-SFyHgE
https://scholar.google.com/scholar?hl=en&as_sdt=%2C5&q=Uber+die+quasiideale+von+halbgruppen&btnG=
https://doi.org/10.1002/int.20418
https://www.hindawi.com/journals/complexity/2020/6496030/
https://www.hindawi.com/journals/complexity/2020/6496030/


R. Prasertpong, A. Iampan, J. Math. Computer Sci., 28 (2023), 85–122 122

[50] Q. M. Wang, J. M. Zhan, A novel view of rough soft semigroups based on fuzzy ideals, Ital. J. Pure Appl. Math., 37
(2017), 673–686. 1

[51] Q. M. Xiao, Z. L. Zhang, Rough prime ideals and rough fuzzy prime ideals in semigroups, Inform. Sci., 176 (2006),
725–733. 1, 2.11

[52] Y. Y. Yao, Relational interpretations of neighborhood operators and rough set approximation operators, Inform. Sci., 111
(1998), 239–259. 1

[53] L. A. Zadeh, Fuzzy set, Information and Control, 8 (1965), 338–353. 1, 2.6, 2.7
[54] L. A. Zadeh, Similarity relations and fuzzy orderings, Inform. Sci., 3 (1971), 117–200. 1, 2.13
[55] J. M. Zhan, B. Davvaz, A kind of new rough set: Rough soft sets and rough soft rings, J. Intell. Fuzzy Syst., 30 (2016),

475–483. 1
[56] J. M. Zhan, Q. Liu, W. Zhu, Another approach to rough soft hemirings and corresponding decision making, Soft Comput.,

21 (2017), 3769–3780. 1
[57] W. R. Zhang, Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent deci-

sion analysis, Proceedings of the First International Joint Conference of The North American Fuzzy Information
Processing Society Biannual Conference, 1994 (1994), 305–309. (i), 2.16, 2.17

[58] Q. H. Zhang, Q. Xie, G. Y. Wang, A survey on rough set theory and its applications, CAAI T. Intell. Techno., 1 (2016),
323–333. 1

[59] W. R. Zhang, L. Zhan, YinYang bipolar logic and bipolar fuzzy logic, Inf. Sci., 165 (2004), 265–287. (i)

https://ijpam.uniud.it/online_issue/201737/59-WangZhan.pdf
https://ijpam.uniud.it/online_issue/201737/59-WangZhan.pdf
https://www.sciencedirect.com/science/article/pii/S0020025504003585
https://www.sciencedirect.com/science/article/pii/S0020025504003585
https://www.sciencedirect.com/science/article/pii/S0020025598100063
https://www.sciencedirect.com/science/article/pii/S0020025598100063
https://doi.org/10.1016/S0019-9958(65)90241-X
https://www.sciencedirect.com/science/article/pii/S0020025571800051
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs1772
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs1772
https://link.springer.com/article/10.1007/s00500-016-2058-5
https://link.springer.com/article/10.1007/s00500-016-2058-5
https://ieeexplore.ieee.org/abstract/document/375115
https://ieeexplore.ieee.org/abstract/document/375115
https://ieeexplore.ieee.org/abstract/document/375115
https://www.sciencedirect.com/science/article/pii/S2468232216300786
https://www.sciencedirect.com/science/article/pii/S2468232216300786
https://www.sciencedirect.com/science/article/pii/S0020025503004043

	Introduction
	Basic notions and earlier works
	Some essential attributes in semigroups
	Some properties of fuzzy sets
	Some essential definitions of soft sets and hypersoft sets
	Variations of rough sets

	Rough hypersoft sets and rough fuzzy sets via hesitant bipolar-valued fuzzy hypersoft relations
	Rough approximations for hypersoft quasi-ideals and fuzzy quasi-ideals of semigroups
	Observations and conclusions

