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Abstract
A general class of fourth-order neutral differential equations with distributed deviating arguments is considered. New

oscillation criteria are deduced in both canonical and noncanonical cases. Two illustrative examples are given.
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1. Introduction

In this paper, we are concerned with the oscillation of fourth-order half-linear neutral differential
equations of the form(

r (t)
(
z
′′′
(t)
)α)′

+

∫d
c

q (t, ζ) f (x (σ (t, ζ)))dζ = 0, t > t0, (1.1)

where z(t) = x (t) +
∫b
a p (t,µ) x (τ (t,µ))dµ and α > 1 is a quotient of odd positive integers under the

conditions
R (t0) =

∫∞
t0

1

r
1
α (t)

dt =∞, (1.2)

and
R (t0) =

∫∞
t0

1

r
1
α (t)

dt <∞. (1.3)

Throughout the paper, we assume the following assumptions:

(A1) r (t) ∈ C1 ([t0,∞), (0,∞)) , r′ (t) > 0;
(A2) p (t,µ) ∈ C ([t0,∞)× [a,b] , [0,∞)) , 0 6

∫b
a p (t,µ)dµ 6 P < 1;

(A3) τ (t,µ) ∈ C ([t0,∞)× [a,b] ,R) is a nondecreasing function for µ satisfying τ (t,µ) 6 t and
lim inft→∞ τ (t,µ) =∞;
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(A4) q (t, ζ) ∈ C ([t0,∞)× [c,d] , (0,∞)), f ∈ C (R,R) , f (x) /xα > K for all x 6= 0, and for some K > 0;
(A5) σ (t, ζ) ∈ C([t0,∞)× [c,d] ,R) is a nondecreasing function for ξ satisfying σ (t, ξ) 6 t,σ′1 (t) > 0,

where σ1 (t) = σ (t, c) , and lim inft→∞ σ (t, ξ) =∞.

By a solution of (1.1), we mean a nontrivial real function x (t) such that

r (t)

([
x (t) +

∫b
a

p (t,µ) x (τ (t,µ)dµ)

]′′′)α

is continuously differentiable satisfying (1.1) for any t1 > t0. A solution of (1.1) is called oscillatory if it is
neither eventually positive nor eventually negative, otherwise it is called nonoscillatory. Equation (1.1) is
said to be oscillatory if all its solutions are oscillatory.

In recent years, there has been a great deal of interest in studying the oscillatory behavior of solutions
of various types of differential equations; see [1–16, 18, 19, 21–25, 27–36, 38–40]. The half-linear equations
have numerous applications in the study of p-Laplace equations, non-Newtonian fluid theory, porous
medium, etc; see, e.g., [6–8, 20] for more details. Moreover, in the frame of continuous PDEs, and in
particular in dynamical models, delay and oscillatory-type effects are often modeled by external sources
perturbing the natural evolution of the related systems, some of these contributions on parabolic chemo-
taxis model with nonlinear diffusions can be found in [17, 26, 37], which are connected to mathematical
biology. In particular, the papers [6–8, 12, 21, 23–25] were concerned with the oscillation of various classes
of half-linear differential equations, whereas the papers [22, 27, 39] were concerned with the oscillatory
behavior of different classes of fourth-order differential equations. In the following, we show some previ-
ous results in the literature which related to this paper. The authors in [3, 4, 28] discussed the oscillatory
behavior of solutions of the fourth-order neutral differential equation(

r (t)
(
[x (t) + p (t) x (τ (t))]′′′

)α)′
+ q (t) xβ (δ (t)) = 0, (1.4)

under the condition (1.2).
In [11] Dassios and Bazighifan discussed the oscillation of Eq. (1.4) under the condition (1.3).
In [19] Li et al. studied the oscillation of the fourth-order neutral differential equations with p-laplacian

like operators of the type

(
r (t)

∣∣∣z′′′ (t)∣∣∣p−2
z
′′′
(t)

)′
+

l∑
i=1

qi (t) |x (τi (t))|
p−2 x (τi (t)) = 0,

where z(t) = x (t) + a (t) x (σ (t)) , under the condition
∫∞
t0

1

r
1
p−2 (t)

dt <∞.

In [5] Bazighifan et al. discussed the asymptotic behavior of solutions of the fourth-order neutral
differential equations

(
r (t)

(
[x (t) + p (t) x (φ (t))]′′′

)α)′
+

∫b
a

q (t, θ) xβ (δ (t, θ))dθ = 0,

where α,β are quotients of odd positive integers and β > α under the condition (1.2).
The aim of this paper is to employ generalized Riccati transformation to establish some new conditions

for the oscillation of all solutions of equation (1.1), under the conditions (1.2) and (1.3).

2. Preliminaries

We first outline some lemmas which will be needed for the proofs of the main results.
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Lemma 2.1 ([29]). Let z (t) be a positive and n-times differentiable function on an interval [T ,∞), with non -
positive nth derivative z(n) (t) on [T ,∞) which is not identically zero on any interval of the form [T ′,∞), T ′ > T ,
and such that z(n−1) (t) z(n) (t) 6 0. Then there exist constants 0 < θ < 1 and N > 0 such that z′ (θt) >
Ntn−2z(n−1) (t) for all sufficient large t.

Lemma 2.2 ([28]). Let z(n) (t) be of fixed sign and z(n−1) (t) z(n) (t) 6 0, for all t > t1. If limt→∞ z (t) 6= 0,
then for every λ ∈ (0, 1) there exists tλ > t1 such that z (t) > λ

(n−1)!t
n−1

∣∣z(n−1) (t)
∣∣ for t > tλ.

Lemma 2.3 ([2]). If α is a ratio of two odd numbers with V > 0 and U are constants, then UY − VY
(α+1)
α

6 αα

(α+1)α+1
Uα+1

Vα .

Lemma 2.4. Assume that x (t) is an eventually positive solution of (1.1), and z′ (t) > 0, then(
r (t)

(
z
′′′
(t)
)α)′

6 −q1 (t) z
α (σ1 (t)) , (2.1)

where q1 (t) = K (1 − P)α
∫d
c q (t, ζ)dζ, σ1 (t) = σ (t, c) .

Proof. Since x (t) is an eventually positive solution of (1.1), then there exists a t1 > t0 such that x (t) >
0, x (σ (t, ξ)) > 0 and x (τ (t,µ)) > 0 for t > t1. Now from the definition of z we have

x (t) = z (t) −

∫b
a

p (t,µ) x (τ (t,µ))dµ

> z (t) −
∫b
a

p (t,µ) z (τ (t,µ))dµ

> z (t) − z (τ (t,b))
∫b
a

p (t,µ)dµ >

(
1 −

∫b
a

p (t,µ)dµ

)
z (t) > (1 − P) z (t) .

Using Eq. (1.1), we get

(
r (t)

(
z
′′′
(t)
)α)′

6 −K

∫d
c

q (t, ξ) xα (σ (t, ξ))dξ

6 −K (1 − P)α
∫d
c

q (t, ξ) zα (σ (t, ξ))dξ

6 −K (1 − P)α zα (σ (t, c))
∫d
c

q (t, ξ)dξ = −q1 (t) z
α (σ1 (t)) .

Thus the proof is completed.

The following two auxiliary results are very similar to those in [3, 11].

Lemma 2.5. Let x (t) be a positive solution of (1.1). If (1.2) is satisfied, then there exists t > t1 such that

z (t) > 0, z′ (t) > 0, z′′′ (t) > 0, z(4) (t) < 0,
(
r (t)

(
z
′′′
(t)
)α)′

6 0.

Lemma 2.6. Let x (t) be a positive solution of (1.1). If (1.3) is satisfied, then there exist three possible cases for
sufficiently large t > t1:

(S1) z (t) > 0, z′ (t) > 0, z′′′ (t) > 0, and z(4) (t) 6 0;
(S2) z (t) > 0, z′ (t) > 0, z′′ (t) > 0, and z′′′ (t) < 0;
(S3) z (t) > 0, z′ (t) < 0, z′′ (t) > 0, and z′′′ (t) < 0.
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3. Main results

In this section, we start with the case R (t0) =∞.

Lemma 3.1. Let x be an eventually positive solution of (1.1). If there exist ρ (t) ∈ C1 ([t0,∞), (0,∞)) ,a (t) ∈
C1 ([t0.∞), [0,∞)), δ ∈ (0, 1), and ε > 0, such that

ϑ (t) = ρ (t)

r (t)
(
z
′′′
(t)
)α

z
α (δσ1 (t))

+ r (t)a (t)

 , t > t1, (3.1)

then
ϑ′ (t) 6 −Q (t) +A (t) ϑ (t) −B (t) ϑ1+ 1

α (t) , (3.2)

where

A (t) =
ρ′ (t)

ρ (t)
+ (α+ 1) δεσ2

1 (t)σ
′
1 (t)a

1
α (t) , B (t) =

αδεσ2
1 (t)σ

′
1 (t)

[r (t) ρ (t)]
1
α

,

and
Q (t) = q1 (t) ρ (t) − ρ (t) [r (t)a (t)]

′ + δεσ2
1 (t)σ

′
1 (t) r (t) ρ (t)a

1+ 1
α (t) .

Proof. Assume that x is an eventually positive solution of (1.1). Using Lemma 2.4, we obtain (2.1). It is
clear by (3.1) that ϑ (t) > 0 for t > t1, and

ϑ′ (t) =
ρ′ (t)

ρ (t)
ϑ (t) + ρ (t) [r (t)a (t)]′ + ρ (t)

(
r (t)

(
z
′′′
(t)
)α)′

zα (δσ1 (t))
− ρ (t)

αδr (t)σ′1 (t)
(
z
′′′
(t)
)α
z′ (δσ1 (t))

zα+1 (δσ1 (t))
,

i.e.,

ϑ′ (t) 6
ρ′ (t)

ρ (t)
ϑ (t) + ρ (t) [r (t)a (t)]′ − ρ (t)

q1 (t) z
α (σ1 (t))

zα (δσ1 (t))
− ρ (t)

αδr (t)σ′1 (t)
(
z
′′′
(t)
)α
z′ (δσ1 (t))

zα+1 (δσ1 (t))
.

By Lemma 2.1, we have
z′ (δσ1 (t)) > εσ

2
1 (t) z

′′′
(σ1 (t)) .

Since z (t) is increasing, then we have

zα (σ1 (t)) > z
α (δσ1 (t)) ,

then

ϑ′ (t) 6
ρ′ (t)

ρ (t)
ϑ (t) + ρ (t) [r (t)a (t)]′ − ρ (t)q1 (t) − ρ (t)

αδεr (t)σ′1 (t)
(
z
′′′
(t)
)α
σ2

1 (t) z
′′′
(σ1 (t))

zα+1 (δσ1 (t))
.

But since
z
′′′
(σ1 (t)) > z

′′′
(t) ,

then

ϑ′ (t) 6
ρ′ (t)

ρ (t)
ϑ (t) + ρ (t) [r (t)a (t)]′ − ρ (t)q1 (t) − ρ (t)αεδr (t)σ

′
1 (t)σ

2
1 (t)

(
z
′′′
(t)

z (δσ1 (t))

)α+1

.
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Moreover since from (3.1), we have

z
′′′
(t)

z (δσ1 (t))
=

1

r
1
α (t)

[
ϑ (t)

ρ (t)
− [r (t)a (t)]

] 1
α

,

then

ϑ′ (t) 6
ρ′ (t)

ρ (t)
ϑ (t) + ρ (t) [r (t)a (t)]′ − ρ (t)q1 (t) −αδεσ

′
1 (t)σ

2
1 (t)

ρ (t)

r
1
α (t)

(
ϑ (t)

ρ (t)
− [r (t)a (t)]

)α+1
α

. (3.3)

Following [35], we define

M =
ϑ (t)

ρ (t)
and N = r (t)a (t) ,

using the inequality

M1+ 1
α − (M−N)1+ 1

α 6 N
1
α

[(
1 +

1
α

)
M−

1
α
N

]
, MN > 0, α > 1,

we have (
ϑ (t)

ρ (t)
− [r (t)a (t)]

)α+1
α

>

[
ϑ (t)

ρ (t)

]1+ 1
α

+
1
α
[r (t)a (t)]1+

1
α −

(
1 +

1
α

)
[r (t)a (t)]

1
α

ρ (t)
ϑ (t) . (3.4)

Using the inequalities (3.3) and (3.4), for t > T , we have

ϑ′ (t) 6
ρ′ (t)

ρ (t)
ϑ (t) + ρ (t) [r (t)a (t)]′ − ρ (t)q1 (t)

+αδεσ′1 (t)σ
2
1 (t)

ρ (t)

r
1
α (t)

[(
1 +

1
α

)
[r (t)a (t)]

1
α

ρ (t)
ϑ (t) −

1
α
[r (t)a (t)]1+

1
α −

ϑ1+ 1
α (t)

ρ1+ 1
α (t)

]
.

Then

ϑ′ (t) 6 ρ (t)
(
[r (t)a (t)]′ − q1 (t)

)
+

[
ρ′ (t)

ρ (t)
+ (α+ 1) δεσ′1 (t)σ

2
1 (t)a

1
α (t)

]
ϑ (t)

−
αδεσ′1 (t)σ

2
1 (t)

r
1
α (t) ρ

1
α (t)

ϑ1+ 1
α (t) − δεσ′1 (t)σ

2
1 (t) r (t) ρ (t)a

1+ 1
α (t) .

Thus we obtain
ϑ′ (t) 6 −Q (t) +A (t) ϑ (t) −B (t) ϑ1+ 1

α (t) .

This completes the proof.

In the following theorem we establish a Kamenev-type oscillation criterion for (1.1) under the condition
(1.2).

Theorem 3.2. If

lim sup
t→∞

1
tn

∫t
t0

(t− s)n

Q (s) −
r (s) ρ (s)

(α+ 1)α+1

[
ρ′(s)
ρ(s) + (α+ 1) δεσ′1 (s)σ

2
1 (s)a

1
α (s)

]α+1

[
δεσ′1 (s)σ

2
1 (s)

]α
ds =∞, (3.5)

then (1.1) is oscillatory.
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Proof. Let x be a nonoscillatory solution of (1.1) on [t0,∞). Without loss of generality, we may assume that
x is an eventually positive. Using Lemma 3.1, we get (3.2). Now let

U =
ρ′ (t)

ρ (t)
+ (α+ 1) δεσ′1 (t)σ

2
1 (t)a

1
α (t) , V = αδεσ′1 (t)σ

2
1 (t)

1

[r (t) ρ (t)]
1
α

, and Y = ϑ (t) .

Thus by Lemma 2.3, we obtain[
ρ′ (t)

ρ (t)
+ (α+ 1) δεσ′1 (t)σ

2
1 (t)a

1
α (t)

]
ϑ (t) −

[
αδεσ′1 (t)σ

2
1 (t)

1

[r (t) ρ (t)]
1
α

]
ϑ
α+1
α (t)

6
αα

(α+ 1)α+1

r (t) ρ (t)
[
ρ′(t)
ρ(t) + (α+ 1) δεσ′1 (t)σ

2
1 (t)a

1
α (t)

]α+1

αα
[
δεσ′1 (t)σ

2
1 (t)

]α .

Thus we have

ϑ′ (t) 6 −Q (t) +
r (t) ρ (t)

[
ρ′(t)
ρ(t) + (α+ 1) δεσ′1 (t)σ

2
1 (t)a

1
α (t)

]α+1

(α+ 1)α+1 [δεσ′1 (t)σ2
1 (t)

]α ,

and

−

∫t
t0

(t− s)n ϑ′ (s)ds >
∫t
t0

(t− s)n

Q (s) −
r (s) ρ (s)

[
ρ′(s)
ρ(s) + (α+ 1) δεσ′1 (s)σ

2
1 (s)a

1
α (s)

]α+1

(α+ 1)α+1 [δεσ′1 (s)σ2
1 (s)

]α
ds.

(3.6)
Since ∫t

t0

(t− s)n ϑ′ (s)ds = n

∫t
t0

(t− s)n−1 ϑ (s)ds− (t− t0)
n ϑ (t0) ,

then from (3.6), we get

(t− t0)
n ϑ (t0) −n

∫t
t0

(t− s)n−1 ϑ (s)ds

>
∫t
t0

(t− s)n

Q (s) −
r (s) ρ (s)

[
ρ′(s)
ρ(s) + (α+ 1) δεσ′1 (s)σ

2
1 (s)a

1
α (s)

]α+1

(α+ 1)α+1 [δεσ′1 (s)σ2
1 (s)

]α
ds.

Hence

1
tn

∫t
t0

(t− s)n

Q (s) −
r (s) ρ (s)

[
ρ′(s)
ρ(s) + (α+ 1) δεσ′1 (s)σ

2
1 (s)a

1
α (s)

]α+1

(α+ 1)α+1 [δεσ′1 (s)σ2
1 (s)

]α
ds 6 (t− t0

t

)n
ϑ (t0) ,

and so

lim sup
t→∞

1
tn

∫t
t0

(t− s)n

Q (s) −
r (s) ρ (s)

[
ρ′(s)
ρ(s) + (α+ 1) δεσ′1 (s)σ

2
1 (s)a

1
α (s)

]α+1

(α+ 1)α+1 [δεσ′1 (s)σ2
1 (s)

]α
ds→ ϑ (t0) ,

which contradicts (3.5) and this completes the proof.

In the following, we establish Philos-type oscillation criteria for Eq. (1.1) under the condition (1.2). We
first need the following definition.
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Definition 3.3. LetD =
{
(t, s) ∈ R2 : t > s > t0

}
andD0 =

{
(t, s) ∈ R2 : t > s > t0

}
. The functionsHi (t, s) ∈

C (D,R), i = 1, 2 are said to belong to the class X written as Hi ∈ X if they satisfy:

I) Hi (t, t) = 0 for t > t0, Hi (t, s) > 0, (t, s) ∈ D0;

II) ∂Hi(t,s)
∂s 6 0, and there exist η (t) ∈ C1 ([t0,∞), (0,∞)) and hi (t, s) ∈ C (D,R) satisfying

−
∂H1 (t, s)
∂s

= H1 (t, s)
[
ρ′ (t)

ρ (t)
+ (α+ 1) δεσ′1 (t)σ

2
1 (t)a

1
α (t)

]
+ h1 (t, s) ,

and
∂H2 (t, s)
∂s

+
η′ (t)

η (t)
H2 (t, s) =

h2 (t, s)
η (t)

[H2 (t, s)]
α
α+1 .

Theorem 3.4. If there exists a function H1 ∈ X such that

lim sup
t→∞

1
H1 (t, t0)

∫t
t0

[
H1 (t, s)Q (s) −

r (s) ρ (s)

(α+ 1)α+1
[|h1 (t, s)|]

α+1[
δεσ′1 (s)σ

2
1 (s)H1 (t, s)

]α
]
ds =∞, (3.7)

then every solution of (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we may assume that x is an
eventually positive solution of (1.1). Now from Lemma 3.1 we get (3.2). Multiplying the inequality (3.2)
by H1 (t, s) and integrating the resulting inequality from T to t, we have

∫t
T

H1 (t, s)Q (s)ds 6
∫t
T

H1 (t, s) [−ϑ′ (s) +A (s) ϑ (s) −B (s) ϑ1+ 1
α (s)]ds

= H1 (t, T) ϑ (T) +
∫t
T

[
∂H1 (t, s)
∂s

+H1 (t, s)A (s)

]
ϑ (s)ds−

∫t
T

H1 (t, s)B (s) ϑ1+ 1
α (s)ds

= H1 (t, T) ϑ (T) −
∫t
T

h1 (t, s) ϑ (s)ds−
∫t
T

H1 (t, s)B (s) ϑ1+ 1
α (s)]ds,

6 H1 (t, T) ϑ (T) +
∫t
T

[
|h1 (t, s)| ϑ (s) −H1 (t, s)B (s) ϑ1+ 1

α (s)
]
ds.

Letting U = |h1 (t, s)| , V = H1 (t, s)B (s), and using Lemma 2.3, we obtain

|h1 (t, s)| ϑ (s) −H1 (t, s)B (s) ϑ1+ 1
α (s) 6

αα

(α+ 1)α+1
|h1 (t, s)|

α+1

[H1 (t, s)B (s)]α
.

Then ∫t
T

H1 (t, s)Q (s)ds 6 H1 (t, T) ϑ (T) +
∫t
T

αα

(α+ 1)α+1
r (s) ρ (s) |h1 (t, s)|

α+1

αα [H1 (t, s)]
α [δεσ′1 (s)σ2

1 (s)
]αds.

Hence
1

H1 (t, T)

∫t
T

[
H1 (t, s)Q (s) −

r (s) ρ (s)

(α+ 1)α+1
|h1 (t, s)|

α+1[
δεσ′1 (s)σ

2
1 (s)H1 (t, s)

]α
]
ds 6 ϑ (T) ,

for all sufficiently large t, which contradicts (3.7).
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4. The case R (t0) <∞
In this section, we discuss the oscillation of Eq. (1.1) under the condition (1.3) . We first need the

following lemma.

Lemma 4.1. Assume that x is an eventually positive solution of Eq. (1.1) and (S2) holds. If

Φ (t) = η (t)
r (t)

[
z
′′′
(t)
]α

[z′′ (t)]α
, (4.1)

then

Φ′ (t) 6
η′ (t)

η (t)
Φ (t) − η (t)q1 (t)

[
λ

2
σ2

1 (t)

]α
−
αΦα+1 (t)

r
1
α (t)η

1
α (t)

, λ ∈ (0, 1) . (4.2)

Proof. Assume that x is an eventually positive solution of Eq. (1.1) and (S2) holds. Since z′ > 0, then by
using Lemma 2.4, we obtain (2.1). Now from (4.1) we see that Φ (t) < 0, for t > t1, and

Φ′ (t) =
η′ (t)

η (t)
Φ (t) + η (t)

[
r (t)

[
z
′′′
(t)
]α]′

[z′′ (t)]α
−
αη (t) r (t)

[
z
′′′
(t)
]α+1

[z′′ (t)]α+1 .

This with (2.1) and (4.1) leads to

Φ′ (t) 6
η′ (t)

η (t)
Φ (t) − η (t)

q1 (t) z
α (σ1 (t))

[z′′ (t)]α
−

αΦ
α+1
α (t)

r
1
α (t)η

1
α (t)

,

i.e.,

Φ′ (t) 6
η′ (t)

η (t)
Φ (t) − η (t)

q1 (t) z
α (σ1 (t)) [z

′′ (σ1 (t))]
α

[z′′ (σ1 (t))]
α [z′′ (t)]α

−
αΦ

α+1
α (t)

r
1
α (t)η

1
α (t)

.

Since z′′ (t) is decreasing, then −z
′′(σ1(t))
z′′(t) 6 −1, and from Lemma 2.2, we obtain z (σ1 (t)) >

λ
2σ

2
1 (t) z

′′ (σ1 (t)).
Then

Φ′ (t) 6
η′ (t)

η (t)
Φ (t) − η (t)q1 (t)

[
λ

2
σ2

1 (t)

]α
−

αΦ
α+1
α (t)

r
1
α (t)η

1
α (t)

.

Thus the proof is completed.

Theorem 4.2. Assume that (3.7) holds. If

lim sup
t→∞

∫t
t0

[
H2 (t, s)η (s)q1 (s)

[
λ

2
σ2

1 (s)

]α
−

r (s)

(α+ 1)α+1 ηα (s)
[h2 (t, s)]

α+1

]
ds > 0, (4.3)

and one of the following conditions holds ∫∞
t0

R (s)ds =∞, (4.4)

or ∫∞
t0

∫∞
u

R (s)dsdu =∞, (4.5)

then Eq. (1.1) is oscillatory.
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Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality we may assume that x is
eventually positive. From Lemma 2.6, we have that three possible cases hold. Letting (S1) holds, then
by Theorem 3.4 we see that every solution of (1.1) is oscillatory when condition (3.7) holds. Now if (S2)
holds, then from Lemma 4.1, we have (4.2). Multiplying (4.2) by H2 (t, s) and integrating from t1 to t, we
obtain∫t

t1

H2 (t, s)η (s)q1 (s)

[
λ

2
σ2

1 (s)

]α
ds

6 H2 (t, t1)Φ (t1) +

∫t
t1

[
∂H2 (t, s)
∂s

+
η′ (s)

η (s)
H2 (t, s)

]
Φ (s)ds−α

∫t
t1

H2 (t, s)
Φ
α+1
α (s)

r
1
α (s)η

1
α (s)

ds,

= H2 (t, t1)Φ (t1) +

∫t
t1

h2 (t, s)
η (s)

[H2 (t, s)]
α
α+1 Φ (s)ds−α

∫t
t1

H2 (t, s)
Φ
α+1
α (s)

r
1
α (s)η

1
α (s)

ds.

Set

V =
αH2 (t, s)

r
1
α (s)η

1
α (s)

, U =
h2 (t, s)
η (s)

[H2 (t, s)]
α
α+1 , and Y = Φ (s) .

Then by Lemma 2.3, we have

h2 (t, s)
η (s)

[H2 (t, s)]
α
α+1 Φ (s) −

αH2 (t, s)Φ
α+1
α (s)

r
1
α (s)η

1
α (s)

6
1

(α+ 1)α+1 [h2 (t, s)]
(α+1) r (s)

ηα (s)
.

Hence∫t
t1

[
H2 (t, s)η (s)q1 (s)

[
λ

2
σ2

1 (s)

]α
−

1

(α+ 1)α+1 [h2 (t, s)]
(α+1) r (s)

ηα (s)

]
ds 6 H2 (t, t1)Φ (t1) < 0,

which contradicts (4.3). Now consider the case (S3). Assume that z (t) satisfies (S3). Noting that

r (t)
(
z
′′′
(t)
)α

is nonincreasing, we have

r
1
α (s)

(
z
′′′
(s)
)
6 r

1
α (t)

(
z
′′′
(t)
)

, s > t > t1.

Going through as in the proof of Theorem 2.3 case 1 in [19], we get a contradiction with (4.4) and (4.5)
and so the proof is completed.

5. Examples

Example 5.1. For t > 1 and q0 > 0, consider the fourth-order differential equation(
t

[
x (t) +

∫ 2

1

µ

t+ 1
x

(
t+ µ

3

)
dµ

]′′′)′
+

∫ 1

0

2q0ξ

t3 x

(
t+ ξ

2

)
dξ = 0. (5.1)

Here α = 1,a = 1,b = 2, c = 0,d = 1,K = 1, r (t) = t,p (t,µ) = µ
t+1 , τ (t,µ) = t+µ

3 ,q (t, ξ) = 2q0ξ
t3 , and

σ (t, ξ) = t+ξ
2 . Then∫b

a

p (t,µ)dµ =

∫ 2

1

µ

t+ 1
dµ 6

3
4

, σ1 (t) = σ (t, c) =
t

2
, σ′1 (t) =

1
2
> 0, and

∫∞
1

1
r (s)

ds =∞.

Therefore the conditions (A1)-(A5) and (1.2) are satisfied. Choosing P = 3
4 , ρ (t) = t2,a (t) = 1

t3 , and
H1 (t, s) = (t− s)2, then h1 (t, s) = (t− s)

[(
4 + δε

4

)
− 8+δε

4 ts−1
]

,Q (t) =
[
q0
4 + 2 + δε

8

] 1
t , and

lim sup
t→∞

1
H1 (t, t0)

∫t
t0

[
H1 (t, s)Q (s) −

r (s) ρ (s)

(α+ 1)α+1
[h1 (t, s)]

α+1[
δεσ′1 (s)σ

2
1 (s)H1 (t, s)

]α
]
ds
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= lim sup
t→∞

1
(t− 1)2

∫t
1

[
(t− s)2

[
q0

4
+ 2 +

δε

8

]
1
s
−

2s
δε

[(
4 +

δε

4

)
−

8 + δε

4
ts−1

]2
]
ds =∞.

Therefore, by Theorem 3.4, every solution of (5.1) is oscillatory, if q0 >
32
δε for some ε > 0 and δ ∈ (0, 1).

Example 5.2. For t > 1 and q0 > 0, consider the fourth-order differential equation(
t2

[
x (t) +

∫ 1

1
2

4µ
3t2x

(
t+ µ

3

)
dµ

]′′′)′
+

∫ 1

0

32q0ξ

t2 x

(
t+ ξ

2

)
dξ = 0. (5.2)

Here α = 1,a = 1
2 ,b = 1, c = 0,d = 1,K = 1, r (t) = t2,p (t,µ) = 4µ

3t2 , τ (t,µ) = t+µ
3 ,q (t, ξ) = 32q0ξ

t2 , and
σ (t, ξ) = t+ξ

2 . Then∫b
a

p (t,µ)dµ =

∫ 1

1
2

4µ
3t2dµ 6

1
2

, σ1 (t) = σ (t, c) =
t

2
, σ′1 (t) =

1
2
> 0,∫∞

t0

1
r (s)

ds =

∫∞
1

1
s2ds <∞,

∫∞
t0

R (s)ds =∞,
∫∞
t0

∫∞
u

R (s)dsdu =∞.

Therefore the conditions (A1)-(A5), (1.3), (4.4), and (4.5) are satisfied. Choose P = 1
2 , ρ (t) = t,η (t) =

1,a (t) = 1
t3 and H1 (t, s) = H2 (t, s) = (t− s)2 . Then

h1 (t, s) = (t− s)

[(
3 +

δε

4

)
−

4 + δε

4
ts−1

]
,

h2 (t, s) = −2,

q1 = 8
q0

t2 ,

Q (t) =

[
8q0 + 1 +

δε

8

]
1
t

,

lim sup
t→∞

1
H1 (t, t0)

∫t
t0

[
H1 (t, s)Q (s) −

r (s) ρ (s)

(α+ 1)α+1
[h1 (t, s)]

α+1[
δεσ′1 (s)σ

2
1 (s)H1 (t, s)

]α
]
ds

= lim sup
t→∞

1
(t− 1)2

∫t
1

[
(t− s)2

[
8q0 + 1 +

δε

8

]
1
s
−

2s
δε

[(
3 +

δε

4

)
−

4 + δε

4
ts−1

]2
]
ds =∞,

for any ε > 0, δ ∈ (0, 1) , and q0 >
1

4δε . Moreover

lim sup
t→∞

∫t
t0

[
H2 (t, s)η (s)q1 (s)

[
λ

2
σ2

1 (s)

]α
−

r (s)

(α+ 1)α+1 ηα (s)
[h2 (t, s)]

α+1

]
ds

= lim sup
t→∞

∫t
1

[
λq0 (t− s)

2 − s2ds
]
> 0,

for any λ ∈ (0, 1), and q0 >
1
λ . Therefore, by Theorem 4.2, every solution of (5.2) is oscillatory where

q0 >
1

4δε and q0 >
1
λ .

6. Conclusions

In this work, we discuss the oscillation of fourth-order neutral differential equations with distributed
deviating arguments of the type (1.1) in both cases

∫∞
t0

1
r

1
α (t)

dt = ∞ and
∫∞
t0

1
r

1
α (t)

dt < ∞. We establish

new oscillation criteria using Riccati and generalized Riccati transformation. For interested researchers,
there is a good deal of finding new results for (1.1) with different neutral coefficients see, e.g., the papers
[7, 12, 21–23, 25, 27].
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