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Abstract

The aims of this paper are to present new twelfth order iterative methods for solving nonlinear equations and one of them
is second derivative free which has been removed using the interpolation technique. Analysis of convergence finalized that the
order of convergence is twelfth. Some numerical examples illustrate that the algorithm is more efficient and performs better
than other methods with the same order. In the end, we present the basins of attraction using some complex polynomials of
different degrees to observe the fractal behavior and dynamical aspects of the proposed algorithms.
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1. Introduction

One of the major problems in applied mathematics and engineering sciences is to solve the nonlinear
equation of the form

f(x) = 0.

In this literature of finding a root of non-linear Newton’s method (NR) [14] is one of the well known
optimal methods to obtain the zero of a non-linear equation

xn+1 = xn −
f(xn)

f ′(xn)
.

After that, the iteration of the fourth order convergence was presented by Shengfeng Li [7]:

yn = xn −
f(xn)

f ′(xn)
, xn+1 = xn −

(f(xn) − f(yn))f(xn)

(f(xn) − 2f(yn))f ′(xn)
.
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The iteration of Householder’s [3] with the third order convergence is

xn+1 = xn −
f(xn)

f ′(xn)
−
f(xn)f

′′(xn)

2f ′3(xn)
.

Recently, there are many numerical iterative methods have been developed to solve these problems. These
methods are constructed by using several different techniques, such as Taylor series, quadrature formulas,
homotopy perturbation technique and its variant forms, decomposition technique, variational iteration
technique, and Predictor-corrector technique. For more details, see [5, 6, 9–13].

In this paper, we propose and analyze predictor-corrector type iterative methods, which we take
Newton’s method as a predictor step. We prove that these newly developed algorithms have twelfth
order of convergence and are most efficient as compared to other well-known iterative methods of the
same kind. The proposed algorithms are applied to solve some test examples in order to assess its
validity and accuracy. In the last section, we generate the polynomiographs of complex polynomials
of different degrees through our proposed algorithms and compare it with other methods of the same
category. The presented polynomiographs have very interesting and aesthetic patterns which reflects
different properties of the polynomials.

2. The twelfth-order method

In this section we define new twelfth order iterative methods for solving nonlinear equation. In order
to construct new twelfth order methods, we use well known fourth order iterative methods, presented by
Shengfeng Li [7] and Householder’s [3].

Algorithm 2.1. For a given x0, compute approximates solution xn+1 by the iterative schemes:

yn = xn −
f(xn)

f ′(xn)
, xn+1 = xn −

(f(xn) − f(yn))f(xn)

(f(xn) − 2f(yn))f ′(xn)
.

Algorithm 2.2. For a given x0, compute approximates solution xn+1 by the iterative schemes:

xn+1 = xn −
f(xn)

f ′(xn)
−
f(xn)f

′′(xn)

2f ′3(xn)
.

This is known as Householder’s method, which has cubic convergence [3].

We have suggested the following three-step method, using Algorithm 2.1 method as predictor and
Algorithm 2.2 as a corrector.

Algorithm 2.3. For a given x0, compute approximates solution xn+1 by the iterative schemes:

yn = xn −
f(xn)

f ′(xn)
, zn = xn −

(f(xn) − f(yn))f(xn)

(f(xn) − 2f(yn))f ′(xn)
, xn+1 = zn −

f(zn)

f ′(zn)
−
f(zn)f

′′(zn)

2f ′3(zn)
.

In order to implement this method, one has to find the second derivative of this function, which may
create some problems. To overcome this drawback, we use new and different technique to reduce second
derivative of the function into the first derivative. This idea plays a significant role in developing some
new iterative methods free from second derivatives. To be more precise, we consider

f ′′(zn) =
2

zn − yn

(
2f ′(zn) + f ′(yn) − 3

f(zn) − f(yn)

zn − yn

)
= d.

We suggest the following new iterative method for solving the nonlinear equation and this is the new
motivation of higher-order.
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Algorithm 2.4. For a given x0, compute approximates solution xn+1 by the iterative schemes:

yn = xn −
f(xn)

f ′(xn)
, zn = xn −

(f(xn) − f(yn))f(xn)

(f(xn) − 2f(yn))f ′(xn)
, xn+1 = zn −

f(zn)

f ′(zn)
−
f(zn)d

2f ′3(zn)
,

which is a new two-step iterative method free from second derivative.

For the method defined by Algorithm 2.4, we have the following analysis of convergence.

Theorem 2.5. Suppose that α is a root of the equation f(x) = 0. If f(x) is sufficiently smooth in the neighborhood
of α, then the order of convergence of Algorithm 2.4 is twelve.

Proof. To analyze the convergence of Algorithm 2.4, suppose that α is a root of the equation f(x) = 0 and
en be the error at nth iteration, then en = xn −α, and by using Taylor series expansion, we have

f(xn) = f
′(α)[en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + c7e

7
n + · · · ], (2.1)

f ′(xn) = f
′(α)[1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n + 6c6e

5
n + 7c7e

6
n + · · · ], (2.2)

where cn =
f(n)(α)

n!f ′(α)
. With the help of equations (2.1) and (2.2), we get

f(xn)

f ′(xn)
=en − c2e

2
2 − (2c3 − 2c2

2)e
3
n − (3c4 − 7c2c3 + 4c3

2)e
4
n

+ 2(5c2c4 + 4c4
2 − 10c2

2c3 + 3c2
3 − 2c5)e

5
n + · · · ,

yn =α+ c2e
2
n + 2(c3 − c

2
2)e

3
n − (3c4 − 7c2c3 + 4c3

2)e
4
n

+ (−8c4
2 + 20c2

2c3 − 10c2c4 − 6c2
3 + 4c5)e

5
n + · · · ,

f(yn) =f
′(α)[c2e

2
n + 2(c3 − c

2
2)e

3
n + (5c3

2 − 7c2c3 + 3c4)e
4
n

+ (−12c4
2 + 24c2

2c3 − 10c2c4 − 6c2
3 + 4c5)e

5
n + · · · ],

f ′(yn) =f
′(α)[1 + 2c2

2e
2
n + 4(c3c2 − c

3
2)e

3
n + (6c2c4 − 11c3c

2
2 + 8c4

2)e
4
n

+ (−16c5
2 + 28c3

2c3 − 20c2
2c4 + 8c2c5)e

5
n + · · · ].

(2.3)

Using equations (2.1)-(2.3), we get

z =α+ (c3
2 − c2c3)e

4
n + (−4c4

2 + 8c2
2c3 − 2c2c4 − 2c2

3)e
5
n

+ (10c5
2 − 30c3

2c3 + 12c2
2c4 + 18c2c

2
3 − 3c2c5 − 7c3c4)e

6
n + · · · ,

f(zn) =f
′(α)[(c3

2 − c2c3)e
4
n + (−4c4

2 + 8c2
2c3 − 2c2c4 − 2c2

3)e
5
n

+ (10c5
2 − 30c3

2c3 + 12c2
2c4 + 18c2c

2
3 − 3c2c5 − 7c3c4)e

6
n · · · ],

f ′(zn) =f
′(α)[1 + (2c4

2 − 2c2
2c3)e

4
n + (−8c5

2 + 16c3
2c3 − 4c2

2c4 − 4c2c
2
3)e

5
n

+ (20c6
2 − 60c4

2c3 + 24c3
2c4 + 36c2

2c
2
3 − 6c2

2c5 − 14c2c3c4)e
6
n + · · · ],

d =f ′(α)[2c2 + (6c3
2c3 − 2c2

2c4 − 6c2c
2
3)e

4
n + (−24c4

2c3 + 8c3
2c4 + 48c2

2c
2
3 − 20c2c3c4 − 12c3

3)e
5
n

+ (60c5
2c3 − 20c4

2c4 − 180c3
2c

2
3 − 4c3

2c5 + 112c2
2c3c4 + 108c2c

3
3 − 18c2c3c5

− 12c2c
2
4 − 50c2

3c4)e
6
n + . . .].

(2.4)

Using equations (2.4), we get

xn+1 = α+
(
2c11

2 − 7c9
2c3 + c

8
2c4 + 9c7

2c
2
3 − 2c6

2c3c4 − 5c5
2c

3
3 + c

4
2c

2
3c4 + c

3
2c

4
3
)
e12
n +O(e13

n ),

which implies that

en+1 =
(
2c11

2 − 7c9
2c3 + c

8
2c4 + 9c7

2c
2
3 − 2c6

2c3c4 − 5c5
2c

3
3 + c

4
2c

2
3c4 + c

3
2c

4
3
)
e12
n +O(e13

n ).

The above equation shows that the order of convergence of Algorithm 2.4 is twelve.
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3. Numerical Examples

In this section, we include some nonlinear functions to illustrate the efficiency of our newly developed
numerical algorithms. We compare these algorithms with Ahmad et al. (AHM) [2], Liu and Wang (LIU)
[8], and Yasir and Abdul-Hassan (YAS) [1]. For this purpose, the following numerical examples have been
solved:

f1(x) = x
2 − ex − 3x+ 2, x0 = 3.6,

f2(x) = x
3 + 4x2 − 10, x0 = 1,

f3(x) = e
x sin(x) + ln(x2 + 1), x0 = 2.9,

f4(x) = x
3 − 2x2 − 5, x0 = 6.3,

f5(x) = (x+ 2)ex − 1, x0 = −0.9,

f6(x) = (x2 − 1)−1 − 1, x0 = 1.6,

f7(x) = e
sin(x) − 1 −

x

5
, x0 = 1.0.

(3.1)

Here, we take ε = 10−200 in the following stopping criteria |f(xn+1| < ε and |xn+1 − xn| < ε. All examples
were performed on maple with 2000 digit decimals.

Tables 1-7 show the numerical comparisons of our developed algorithms with Khattri (KHA) [2],
Liu and Wang (LIU) [8], and Yasir and Abdul-Hassan (YAS) [1]. The columns represent the number of
iterations N, the approximate root xn+1, the magnitude |f(x)| of f(x) at the final estimate xn+1, and the
difference between two consecutive approximations xn+1 − xn of the equation.

Table 1: Comparison of various iterative methods.
Method N xn+1 |f(xn+1)| |xn+1 − xn|

f1, x0 = 3.6
KHA 3 0.257530285439860760455367304937 7.9e− 252 1.8e− 31
LIU 3 0.257530285439860760455367304937 1.6e− 250 7.1e− 21
YAS 3 0.257530285439860760455367304937 3.6e− 310 6.9e− 26
AL2.4 3 0.257530285439860760455367304937 2.6e− 310 8.0e− 26

Table 2: Comparison of various iterative methods.
Method N xn+1 |f(xn+1)| |xn+1 − xn|

f2, x0 = 1
KHA 3 1.365230013414096845760806828981 1.6e− 370 8.4e− 47
LIU 3 1.365230013414096845760806828981 1.0e− 998 2.6e− 87
YAS 3 1.365230013414096845760806828981 1.0e− 998 2.0e− 101
AL2.4 3 1.365230013414096845760806828981 1.0e− 998 2.0e− 101

Table 3: Comparison of various iterative methods.
Method N xn+1 |f(xn+1)| |xn+1 − xn|

f3, x0 = 2.9
KHA 3 3.237562984023921313250921300445 2.7e− 237 2.1e− 30
LIU 3 3.237562984023921313250921300445 1.1e− 535 1.8e− 45
YAS 3 3.237562984023921313250921300445 3.6e− 763 2.5e− 64
AL2.4 3 3.237562984023921313250921300445 2.0e− 765 1.6e− 64
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Table 4: Comparison of various iterative methods.
Method N xn+1 |f(xn+1)| |xn+1 − xn|

f4, x0 = 6.3
KHA 4 2.690647448028613750350788882676 9.2e− 650 1.0e− 81
LIU 4 2.690647448028613750350788882676 1.0e− 998 1.8e− 154
YAS 3 2.690647448028613750350788882676 1.1e− 213 2.7e− 18
AL2.4 3 2.690647448028613750350788882676 1.0e− 213 2.7e− 18

Table 5: Comparison of various iterative methods.
Method N xn+1 |f(xn+1)| |xn+1 − xn|

f5, x0 = −0.8
KHA 3 −0.442854401002388583141327999999 1.4e− 298 9.6e− 38
LIU 3 −0.442854401002388583141327999999 6.2e− 579 7.1e− 49
YAS 3 −0.442854401002388583141327999999 4.2e− 961 1.5e− 80
AL2.4 3 −0.442854401002388583141327999999 4.0e− 972 5.7e− 79

Table 6: Comparison of various iterative methods.
Method N xn+1 |f(xn+1)| |xn+1 − xn|

f6, x0 = 3.2
KHA 3 1.414213562373095048801688724209 2.2e− 424 1.2e− 53
LIU 3 1.414213562373095048801688724209 1.0e− 334 4.6e− 29
YAS 3 1.414213562373095048801688724209 1.0e− 999 1.6e− 87
AL2.4 3 1.414213562373095048801688724209 1.0e− 999 5.5e− 92

Table 7: Comparison of various iterative methods.
Method N xn+1 |f(xn+1)| |xn+1 − xn|

f7, x0 = 1.0
KHA 3 7.080901417521118963254487e− 241 5.7e− 241 1.4e− 30
LIU 3 9.117579045189126459350754e− 279 7.3e− 279 9.0e− 24
YAS 3 1.202260016613233904793461e− 613 9.6e− 614 1.2e− 51
AL2.4 3 3.481190908233362755514154e− 767 2.8e− 767 2.0e− 64

4. Polynomiography

Polynomials are one of the most significant objects in many fields of mathematics. Polynomial root-
finding has played a key role in the history of mathematics. It is one of the oldest and most deeply
studied mathematical problems. The last interesting contribution to the polynomials root-finding history
was made by Kalantari [4], who introduced the polynomiography. Polynomiography is defined to be “the
art and science of visualization in approximation of the zeros of complex polynomials, via fractal, and
nonfractal images created using the mathematical convergence properties of iteration functions” [4]. An
individual image is called a “polynomiograph”.

In the numerical algorithms that are based on the iterative processes, we need a stopping criterion for
the process, that is, a test that tells us that the process has converged or it is very near to the solution. This
type of test is called a convergence test. Usually, in the iterative process that use a feedback, like the root-
finding methods, the standard convergence test has the following form |f(zn+1)| < ε and |zn+1 − zn| < ε.
The different colors of an image depend on the number of iterations to reach a root with given accuracy ε.
Here, we present the basins of attractions using the following complex polynomials of different degrees:

p1(z) = z
3 − 1, p2(z) = z

4 − 1, p3(z) = z
5 − 1,
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p4(z) = (z3 − 1)2, p5(z) = (z4 − 1)2, p6(z) = (z5 − 1)2.

All the figures have been generated using the computer program maple by taking ε < 0.01, [−2, 2]× [−2, 2],
and k = 15, where ε shows the accuracy of the given root, A represents the area in which we draw the
basins of attraction, and k represents the upper bound of the number of iterations.

In Figures 1-6, polynomiographs of different complex polynomials for Khattri (KHA) [2] Liu and
Wang (LIU) [8] and Yasir and Abdul-Hassan (YAS) [1], and our developed algorithms have been shown
which describe the regions of convergence of these polynomials.

Figure 1: Polynomiographs for the polynomial of KHA, LIU, YAS, and AL2.4, respectively for p1(z).

Figure 2: Polynomiographs for the polynomial of KHA, LIU, YAS, and AL2.4, respectively for p2(z).

Figure 3: Polynomiographs for the polynomial of KHA, LIU, YAS, and AL2.4, respectively for p3(z).
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Figure 4: Polynomiographs for the polynomial of KHA, LIU, YAS, and AL2.4, respectively for p4(z).

Figure 5: Polynomiographs for the polynomial of KHA, LIU, YAS, and AL2.4, respectively for p5(z).

Figure 6: Polynomiographs for the polynomial of KHA, LIU, YAS, and AL2.4, respectively for p6(z).

5. Conclusions

In this method, we introduced the new twelfth order convergent iterative method. By using some test
examples, the performance of the proposed algorithms is also discussed. The numerical results uphold
the analysis of the convergence which can be seen in Tables 1-7. The algorithms shown is equally effective
at estimating roots. But Algorithm 2.4 performed better in examples (3.1). Polynomiographs of complex
polynomials of different degrees using three-step iterative methods and our proposed algorithms have
been generated. The presented polynomiographs are rich and colorful and have very interesting and
aesthetic patterns, which reflects the dynamical aspects of our proposed algorithms.
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