Online: ISSN 2008-949X

Journal of Mathematics and Computer Science

Journal Homepage: www.isr-publications.com/jmcs

Interpolating sesqui harmonic slant curve in S-space form

Check for updates

Fatemah Mofarreh^{a,*}, Abdul Haseeb^b, Sarvesh Kumar Yadav^c, Mohd. Aslam^c

^aMathematical Science Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh-11546, Kingdom of Saudi Arabia.

^bDepartment of Mathematics, College of Science, Jazan University, Jazan-2097, Kingdom of Saudi Arabia.

^cDepartment of Mathematics, Jamia Millia Islamia, New Delhi-110025, India.

Abstract

In this paper, we study interpolating sesqui harmonic slant curve in S-space form and thus generalizing the results of the papers [D. Fetcu, J. Korean Math. Soc., **45** (2008), 393–404], [C. Özgür, S. Güvenc, Turkish J. Math., **38** (2014), 454–461], [F. Karaca, C. Özgür, U. C. De, Int. J. Geom. Methods Mod. Phys., **17** (2020), 13 pages]. Finally we give examples in support of our results.

Keywords: Interpolating sesqui harmonic map, slant curve, S-space form.

2020 MSC: 53C25, 53C40, 53A05.

©2023 All rights reserved.

1. Introduction

A map $\tilde{\phi}$ between two Riemannian manifolds (M, g₁) and (N, g₂) is called harmonic if the divergence of its differential vanishes. The harmonic map equation is given by

$$\tau(\tilde{\varphi}) = \operatorname{trace}(\nabla d\tilde{\varphi}) = 0. \tag{1.1}$$

Eells and Sampson gave the natural generalization of the harmonic map as biharmonic map which is critical point of bienergy functional [5]

$$\mathsf{E}_{2}(\tilde{\varphi}) = \frac{1}{2} \int_{\mathcal{M}} |\tau(\tilde{\varphi})|^{2} d\nu_{g}.$$

The Euler-Lagrange equation for biharmonic maps is defined by Jiang [10]

$$\pi_{2}(\tilde{\phi}) = \operatorname{trace}(\nabla^{N}\nabla^{N} - \nabla^{N}_{\nabla})(\tau(\tilde{\phi})) - \operatorname{trace}(\mathsf{R}^{N}(d\tilde{\phi}, \tau(\phi))d\tilde{\phi}) = 0,$$

where $\tau_2(\tilde{\phi})$ is called bitension of $\tilde{\phi}$.

*Corresponding author

Email addresses: fyalmofarrah@pnu.edu.sa (Fatemah Mofarreh), malikhaseeb80@gmail.com, haseeb@jazanu.edu.sa (Abdul Haseeb), yadavsarvesh74@gmail.com (Sarvesh Kumar Yadav), kidwaiaslam@gmail.com (Mohd. Aslam)

doi: 10.22436/jmcs.028.01.02

Received: 2021-08-16 Revised: 2021-09-03 Accepted: 2022-03-10

As a generalization of biharmonic map, Branding defined interpolating sesqui-harmonic map as a critical point of $E_{\delta_1,\delta_2}(\tilde{\phi})$ [1]

$$\mathsf{E}_{\delta_1,\delta_2}(\tilde{\phi}) = \delta_1 \int_{\mathcal{M}} |d(\tilde{\phi})|^2 d\nu_g + \delta_2 \int_{\mathcal{M}} |\tau(\tilde{\phi})|^2 d\nu_g.$$

where $\delta_1, \delta_2 \in R$. In string theory of Physics the above functional is used and known as bosonic string with extrinsic curvature term [15]. The equation for interpolating sesqui harmonic map is given by

$$\tau_{\delta_1,\delta_2}(\tilde{\varphi}) = \delta_2 \tau_2(\tilde{\varphi}) - \delta_1 \tau(\tilde{\varphi}) = 0.$$

In [1], Branding studied interpolating sesqui-harmonic curves in 3-dimensional sphere. Cho et al. classified biharmonic curves in 3-dimensional Sasakian space form and as a generalization of Legendre curve the notion of slant curve in Sasakian 3-manifolds is defined by [4] and [3], respectively. Calin and Crasmareanu studied slant curve in 3-dimensional normal almost contact manifolds [2]. Güvenc and Özgür studied slant curves in S-manifolds [9]. Biharmonic Legendre curve in Sasakian space form has been studied by Fetcu and Oniciuc [7]. In 2014, Özgür and Güvenc generalized their results in S-space form [13] and generalized Sasakian space form [14]. In [12] Luo and Ou studied some properties of Bi-f-harmonic and f-biharmonic maps. Further Güvenc Özgür [8] characterizes the f-biharmonic Legendre curves in Sasakian space form. Recently, Karaca et al. [11] consider interpolating sesqui harmonic Legendre curves in Sasakian space form which generalized some results of [7].

It is noted that interpolating sesqui-harmonic slant curve is

- (1) Interpolating sesqui harmonic Legendre curve in Sasakian space form if s = 1 and $\theta = \frac{\pi}{2}$;
- (2) Biharmonic Legendre curve in S-space form if $\theta = \frac{\pi}{2}$ and $\delta_2 = 1$, $\delta_1 = 0$;
- (3) Biharmonic Legendre curve in Sasakian-space form if $\theta = \frac{\pi}{2}$ and $\delta_2 = 1$, $\delta_1 = 0$, s = 1.

In this paper we discuss interpolating sesqui harmonic slant curve in S-space form and thus generalizing the results of the papers [6, 11, 13]. In the last section we give examples in support of our results.

2. Preliminaries

Let $(\overline{\mathfrak{M}}^{(2n+s)}, g)$ be a (2n+s)-dimensional Riemannian manifolds. $\overline{\mathfrak{M}}^{(2n+s)}$ is called S-manifold if there exist a φ -structure (where rank $\varphi=2n$) and structure vector fields $\xi_1 \cdots \xi_s$ and their dual forms $\eta_1 \cdots \eta_s$ such that

$$\begin{split} \varphi \xi_{\alpha} &= 0, \eta_{\alpha} \circ \varphi = 0, \varphi^{2} = -I + \sum_{\alpha} \xi_{\alpha} \otimes \eta_{\alpha}, \\ g(X,Y) &= g(\varphi X, \varphi Y) + \sum_{\alpha} \eta_{\alpha}(X) \eta_{\alpha}(Y), \end{split}$$
(2.1)

$$\eta_{\alpha}(X) = g(X,\xi), \quad d\eta_{\alpha}(X,Y) = g(X,\phi Y).$$
(2.2)

The Riemannian connection $\overline{\nabla}$ of g on an S-manifold $\overline{\mathfrak{M}}^{(2n+s)}$ satisfies

$$(\overline{\nabla}_{X}\phi)Y = \sum_{\alpha=1}^{s} \{g(\phi X, \phi Y)\xi_{\alpha} + \eta_{\alpha}(Y)\phi^{2}X\},\$$

and

$$\overline{\nabla}_X \xi_{\alpha} = -\phi X_{\alpha}$$

for any $X, Y \in T\overline{\mathcal{M}}$ and any $\alpha = 1, \cdots, s$.

The sectional curvature of two planes spanned by X and ϕX , where X is a unit orthogonal to $\xi_1 \cdots \xi_s$ called ϕ -sectional curvature. An S-manifold of constant ϕ -sectional curvature c is called an S-space form denoted by $\overline{\mathcal{M}}(c)$. Then curvature tensor field of S-space form $\overline{\mathcal{M}}(c)$ is given by [13, 16]

$$R^{\overline{\mathcal{M}}}(X,Y)Z = \sum_{\alpha,\beta} \{\eta_{\alpha}(X)\eta_{\beta}(Y)\phi^{2}Y - \eta_{\alpha}(Y)\eta_{\beta}(Z)\phi^{2}X - g(\phi X, \phi Z)\eta_{\alpha}(Y)\xi_{\beta} + g(\phi Y, \phi Z)\eta_{\alpha}(X)\xi_{\beta}\} + \frac{(c+3s)}{4} \{-g(\phi Y, fZ)\phi^{2}X + g(\phi X, \phi Z)\phi^{2}Y\} + \frac{(c-s)}{4} \{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)Z\},$$

$$(2.3)$$

for all X, Y, Z $\in T\overline{\mathcal{M}}$. If s = 1, then $\overline{\mathcal{M}}$ is known as Sasakian space form.

Definition 2.1 ([13]). If $\tilde{\phi}$ is a unit speed curve in an S-manifold then it is called slant curve if there exists a constant angle θ called the contact angle of $\tilde{\phi}$ such that $\eta_{\alpha}(X) = \cos(\theta)$, for all $\alpha = \{1, \dots, s\}$. For $\theta = \frac{\pi}{2}$ slant curve becomes Legendre curve.

Let $\tilde{\varphi}$: $I \to \overline{\mathcal{M}}(c)$ be a unit speed curve in an n-dimensional Riemannian manifold $(\overline{\mathcal{M}}, g)$. If $\{E_1, E_2, \cdots, E_r\}$ is a set of orthonormal vectors then the curve $\tilde{\varphi}$ is called Frenet curve of osculating order $r, 1 \leq r \leq n$ such that [13]

$$\begin{cases} T = E_1 = \tilde{\phi}', \\ \nabla_T E_1 = k_1 E_2, \\ \nabla_T E_i = -k_{i-1} E_{i-1} + k_i E_{i+1}, & \text{for } 2 \leq i \leq n-1, \\ \nabla_T E_r = -k_{r-1} E_{r-1}, \end{cases}$$
(2.4)

where $k_i, 1 \leq i \leq r-1$ are curvature functions of $\tilde{\phi}$.

- (1) A Frenet curve of osculating order r = 1 is a geodesic.
- (2) A Frenet curve of osculating order r = 2 with k_1 non zero positive constant is a circle.
- (3) A Frenet curve of osculating order r ≥ 3 with k₁···k_{r-1} non zero positive constant is a helix of order r. A helix of order 3 is simply called helix [13].

3. Interpolating sesqui-harmonic slant curves in S-space form

A curve $\tilde{\varphi}$ is called Interpolating sesqui harmonic if and only if the following equation satisfied [1]:

$$\tau_{\delta_1,\delta_2}(\tilde{\varphi}) \equiv \delta_2(\nabla_{\mathsf{T}}\nabla_{\mathsf{T}}\nabla_{\mathsf{T}}\mathsf{T}) - \delta_2\mathsf{R}^{\mathcal{M}}(\mathsf{T},\nabla_{\mathsf{T}}\mathsf{T})\mathsf{T} - \delta_1\nabla_{\mathsf{T}}\mathsf{T} = 0, \tag{3.1}$$

where $\delta_1, \delta_2 \in \mathbb{R}$.

Now for Interpolating sesqui harmonic slant curve in S-space form we may state the following theorem.

Theorem 3.1. Let $\tilde{\varphi} : I \to \overline{\mathcal{M}}(c)$ be a slant curve of osculating order r in S-space form $\overline{\mathcal{M}}(c) = (\overline{\mathcal{M}}^{(2n+s)}, \varphi, \xi_{\alpha}, \eta_{\alpha}, g), \alpha = \{1 \cdots s\}$ and $p = \min\{r, 4\}$. Then $\tilde{\varphi}$ is interpolating sesqui harmonic if and only if there exists δ_1, δ_2 such that

1. $c = s \text{ or } \phi T \perp E_2 \text{ or } \phi T \in \{E_2, \cdots, E_n\};$

2. first p of the following equations are satisfied

$$\begin{cases} \delta_{2}k_{1}k_{1}' = 0, \\ \delta_{2}[k_{1}'' - k_{1}^{3} - k_{1}k_{2}^{2} + s^{2}k_{1}\cos^{2}(\theta) + k_{1}(\frac{c+3s}{4})(1 - s\cos^{2}(\theta)) + 3k_{1}\frac{(c-s)}{4}g(\phi T, E_{2})^{2}] = \delta_{1}k_{1}, \\ \delta_{2}[2k_{1}'k_{2} + k_{1}k_{2}' + 3\frac{(c-s)}{4}k_{1}g(\phi T, E_{2})g(\phi T, E_{3})] = 0, \\ \delta_{2}[k_{1}k_{2}k_{3} + 3\frac{(c-s)}{4}k_{1}g(\phi T, E_{2})g(\phi T, E_{4})] = 0. \end{cases}$$

$$(3.2)$$

Proof. Making use of (1.1) and (2.4), we get

$$\nabla_{\mathsf{T}}\mathsf{E}_1 = \mathsf{k}_1\mathsf{E}_2 = \tau(\tilde{\varphi}),\tag{3.3}$$

which gives

$$\nabla_{\mathsf{T}}\nabla_{\mathsf{T}}\mathsf{T} = -k_1^2\mathsf{E}_1 + k_1'\mathsf{E}_2 + k_1k_2\mathsf{E}_3,$$

_

and

$$\begin{split} \nabla_{\mathsf{T}} \nabla_{\mathsf{T}} \nabla_{\mathsf{T}} \nabla_{\mathsf{T}} \mathsf{T} &= -3k_1k_1'\mathsf{E}_1 + (k_1''-k_1^3-k_1k_2^2)\mathsf{E}_2 + (2k_1'k_2\\ &+ k_1k_2')\mathsf{E}_3 + (k_1k_2k_3)\mathsf{E}_4. \end{split}$$

Moreover by virtue of (2.3) it yields

$$R(T, \nabla_{T}T)T = -s^{2}\cos^{2}(\theta)k_{1}E_{2} + \frac{(c+3s)}{4}s(\cos^{2}(\theta) - 1)k_{1}E_{2} + \frac{(c-s)}{4}(-3k_{1}g(\phi T, E_{2})\phi T.$$
(3.4)

Thus it follows from (3.3), (3.4) and (3.1) that

$$\begin{split} \tau_{\delta_1,\delta_2}(\tilde{\phi}) &= -3\delta_2 k_1 k_1' \mathsf{E}_1 + [\delta_2 (k_1'' - k_1^3 - k_1 k_2^2) + s^2 \cos^2(\theta) k_1 \\ &\quad + k_1 \frac{(c+3s)}{4} (1 - s \cos^2(\theta)) - \delta_1 k_1] \mathsf{E}_2 + \delta_2 (2k_1' k_2 + k_1 k_2') \mathsf{E}_3 \\ &\quad + (\delta_2 k_1 k_2 k_3) \mathsf{E}_4 + 3 \frac{(c-s)}{4} k_1 g(\varphi \mathsf{T},\mathsf{E}_2) \varphi \mathsf{T}, \end{split}$$

and by taking the inner product with E_1, E_2, E_3 and E_4 we get the desired result.

Next, we discuss four different cases to investigate and simplify the result of Theorem 3.1. In each case we take $\frac{\delta_1}{\delta_2} \neq 0$.

Case 1: c = s.

Proposition 3.2. Let $\tilde{\phi} : I \to \overline{\mathcal{M}}(c)$ be a slant curve of osculating order r in S-space form

$$\overline{\mathfrak{M}}(\mathbf{c}) = (\overline{\mathfrak{M}}^{(2\mathbf{n}+s)}, \boldsymbol{\phi}, \boldsymbol{\xi}_{\alpha}, \boldsymbol{\eta}_{\alpha}, \boldsymbol{g}),$$

 $\alpha = \{1 \cdots s\}$ such that c = s and $p = min\{r, 4\}$. Then $\tilde{\phi}$ is interpolating sesqui-harmonic if and only if

$$\begin{cases} k_1 = \text{constant} > 0, \\ k_1^2 + k_2^2 = s^2 \cos^2(\theta) + s(1 - s \cos^2(\theta)) - \frac{\delta_1}{\delta_2}, \\ k_2 = \text{constant}, \quad k_2 k_3 = 0. \end{cases}$$
(3.5)

Proof. For c = s and making use of (3.2) we find

$$\begin{cases} k_1 k'_1 = 0, \\ (k''_1 - k_1^3 - k_1 k_2^2) + s^2 \cos^2(\theta) k_1 + k_1 (1 - s \cos^2(\theta)) - \frac{\delta_1}{\delta_2} k_1 = 0, \\ 2k'_1 k_2 + k_1 k'_2 = 0, \\ k_1 k_2 k_3 = 0. \end{cases}$$
(3.6)

By using $k_1 = constant > 0$ in last three equations of (3.6) we get the result.

Now using proposition (3.2) we have the following theorem.

Theorem 3.3. Let $\tilde{\phi} : I \to \overline{\mathcal{M}}(c)$ be a slant curve of osculating order r in S-space form

$$\overline{\mathcal{M}}(\mathbf{c}) = (\overline{\mathcal{M}}^{(2n+s)}, \phi, \xi_{\alpha}, \eta_{\alpha}, g),$$

 $\alpha = \{1 \cdots s\}$ such that c = s and $p = \min\{r, 4\}$. Then

- 1. $\tilde{\phi}$ is a geodesic, or
- 2. $\tilde{\phi}$ is interpolating sesqui-harmonic if and only if it is a circle with

$$k_1 = \sqrt{s^2 \cos^2(\theta) + s(1 - s \cos^2(\theta)) - \frac{\delta_1}{\delta_2}},$$

3. $\tilde{\phi}$ is interpolating sesqui-harmonic if and only if it is a helix with

$$k_1^2 + k_2^2 = s^2 \cos^2(\theta) + s(1 - \cos^2(\theta)s) - \frac{\delta_1}{\delta_2}$$

Proof. If $\tilde{\phi}$ is of osculating order r = 2 with $\frac{\delta_1}{\delta_2} \neq 0$, then $k_2 = 0$ and thus (3.5) yields

$$k_1 = \sqrt{s^2 \cos^2(\theta) + s(1 - s \cos^2(\theta)) - \frac{\delta_1}{\delta_2}}, \quad \text{where} \quad \frac{\delta_1}{\delta_2} < s^2 \cos^2(\theta) + s(1 - s \cos^2(\theta)).$$

Moreover $\tilde{\varphi}$ is osculating order r = 3, then $k_3 = 0$ therefore by (3.5) we have,

$$k_1^2 + k_2^2 = s^2 \cos^2(\theta) + s(1 - s\cos^2(\theta)) - \frac{\delta_1}{\delta_2}, \quad \text{where} \quad \frac{\delta_1}{\delta_2} < s^2 \cos^2(\theta) + s(1 - s\cos^2(\theta)).$$

In each case $\tilde{\phi}$ satisfies Theorem 3.1. If $s^2 \cos^2(\theta) + s(1 - s \cos^2(\theta)) = \frac{\delta_1}{\delta_2}$, then $\tilde{\phi}$ is geodesic.

In particular for a interpolating sesqui harmonic Legendre curve in Sasakian space form, that is, s = 1 and $\theta = \frac{\pi}{2}$, we have [11, Theorem (3)]. Further for biharmonic Legendre curve in S-space form, that is, $\theta = \frac{\pi}{2}$, $\delta_1 = 0$ and $\delta_2 = 1$, from Theorem 3.3 we have

Corollary 3.4 ([13]). Let φ be a Legendre frenet curve in an S-space form $\overline{\mathcal{M}}(c) = (\overline{\mathcal{M}}^{(2n+s)}, \varphi, \xi_{\alpha}, \eta_{\alpha}, g), \alpha \in \{1, \dots, s\}, c = s$ and 2m + s > 3. Then φ is proper biharmonic if and only if either φ is a circle with $k_1 = \sqrt{s}$ or a helix with $k_1^2 + k_2^2 = s$.

Case 2: $c \neq s$ and $\phi T \perp E_2$. Then from Theorem 3.1 we have

Proposition 3.5. Let $\tilde{\varphi} : I \to \overline{\mathcal{M}}(c)$ be a slant curve of osculating order r in S-space form

$$\overline{\mathcal{M}}(\mathbf{c}) = (\overline{\mathcal{M}}^{(2n+s)}, \mathbf{\phi}, \boldsymbol{\xi}_{\alpha}, \boldsymbol{\eta}_{\alpha}, g)$$

 $\alpha = \{1 \cdots s\}$ such that $c \neq s$, $\phi T \perp E_2$ and $p = \min\{r, 4\}$. Then $\tilde{\phi}$ is interpolating sesqui-harmonic if and only if

$$\begin{cases} k_1 = \text{constant} > 0, \\ k_1^2 + k_2^2 = s^2 \cos^2(\theta) + \frac{(c+3s)}{4} (1 - s \cos^2(\theta)) - \frac{\delta_1}{\delta_2}, \\ k_2 = \text{constant}, \\ k_2 k_3 = 0. \end{cases}$$

Next, we have

Theorem 3.6. Let $\tilde{\phi} : I \to \overline{\mathcal{M}}(c)$ be a slant curve of osculating order r in S-space form

$$\overline{\mathfrak{M}}(\mathbf{c}) = (\overline{\mathfrak{M}}^{(2\mathbf{n}+\mathbf{s})}, \boldsymbol{\varphi}, \boldsymbol{\xi}_{\alpha}, \boldsymbol{\eta}_{\alpha}, \boldsymbol{g}),$$

 $\alpha = \{1 \cdots s\}$ such that $c \neq s$ and $\varphi T \perp E_2.$ Then we have

- 1. *if* $c \leq 4(\frac{\delta_1}{\delta_2} s^2 \cos^2(\theta)) \frac{1}{1 s \cos^2(\theta)} 3s$ such that $1 s \cos^2(\theta) \neq 0$, then $\tilde{\phi}$ is interpolating sesqui-harmonic *if and only if it is geodesic;*
- *if and only if it is geodesic;* 2. *if* $c > 4(\frac{\delta_1}{\delta_2} - s^2 \cos^2(\theta)) \frac{1}{1 - s \cos^2(\theta)} - 3s$ such that $1 - s \cos^2(\theta) \neq 0$, then $\tilde{\phi}$ is interpolating sesqui-harmonic *if and only if either*
 - (a) $\tilde{\phi}$ is of osculating order $r = 2, n \ge 2$ and it is circle with

$$k_1^2 = s^2 \cos^2(\theta) + \frac{c+3s}{4}(1-s\cos^2(\theta)) - \frac{\delta_1}{\delta_2},$$

(b) $\tilde{\phi}$ is of osculating order $r = 3, n \ge 3$ and it helix with

$$k_1^2 + k_2^2 = s^2 \cos^2(\theta) + \frac{c+3s}{4}(1 - s\cos^2(\theta)) - \frac{\delta_1}{\delta_2}.$$

Proof. If $\phi T \perp E_2$, then we have $g(\phi T, E_2) = 0$ by Proposition 3.5. If we take

$$\mathbf{c} \leqslant 4(\frac{\delta_1}{\delta_2} - \mathbf{s}^2\cos^2(\theta))\frac{1}{1 - \mathbf{s}\cos^2(\theta)} - 3\mathbf{s},$$

such that $1 - s \cos^2(\theta) \neq 0$, then it can be easy seen that $\tilde{\phi}$ is interpolating sesqui-harmonic if and only if it is a geodesic. Making use of Proposition 3.5 with

$$c > 4(\frac{\delta_1}{\delta_2} - s^2 \cos^2(\theta)) \frac{1}{1 - s \cos^2(\theta)} - 3s,$$

such that $1 - \cos^2(\theta) \neq 0$ and $\tilde{\phi}$ is of osculating order r = 2, $n \ge 2$, then it is a circle with

$$k_{1}^{2} = s^{2} \cos^{2}(\theta) + \frac{(c+3s)}{4} (1 - \cos^{2}(\theta)) - \frac{\delta_{1}}{\delta_{2}}$$

is a non-zero positive constant. if $\tilde{\phi}$ is of osculating order r = 3, $n \ge 2$, then it is helix with

$$k_{1}^{2} + k_{2}^{2} = s^{2} \cos^{2}(\theta) + \frac{(c+3s)}{4} (1 - \cos^{2}(\theta)) - \frac{\delta_{1}}{\delta_{2}}$$

Conversely, if $\tilde{\phi}$ is circle with $k_1^2 = s^2 \cos^2(\theta) + \frac{(c+3s)}{4}(1-\cos^2(\theta)) - \frac{\delta_1}{\delta_2}$ or helix with

$$k_1^2 + k_2^2 = s^2 \cos^2(\theta) + \frac{c + 3s}{4} (1 - \cos^2(\theta) - \frac{\delta_1}{\delta_2})$$

then $\tilde{\varphi}$ satisfies Theorem 3.1 and this completes the proof.

In particular for a Legendre curve in Sasakian space form, that is, s = 1 and $\theta = \frac{\pi}{2}$ we have [11, Theorem (7)]. Further for biharmonic Legendre curve in S-space form, that is, $\theta = \frac{\pi}{2}$, $\delta_1 = 0$ and $\delta_2 = 1$ from Theorem 3.3, we have

Corollary 3.7 ([13]). Let $\tilde{\phi}$ be a Legendre Frenet curve in an S-space form

$$(\overline{\mathcal{M}}^{(2n+s)}, \phi, \xi_{\alpha}, \eta_{\alpha}, g),$$

 $\alpha \in \{1, \dots, s\}, c \neq s \text{ and } \varphi T \perp E_2$. Then $\tilde{\varphi}$ is proper biharmonic if and only if either

- 1. $n \ge 2$ and $\tilde{\phi}$ is a circle with $k_1 = \frac{1}{2}\sqrt{c+3}$, where c > -3s and $\{T = E_1, E_2, \varphi T, \nabla_T \varphi T, \xi_1, \cdots, \xi_s\}$ is linearly independent, or
- 2. $n \ge 3$ and $\tilde{\phi}$ is a helix with $k_1^2 + k_2^2 = c + 3$, where c > -3s and $\{T = E_1, E_2, \phi T, \nabla_T \phi T, \xi_1, \cdots, \xi_s\}$ is linearly independent.

If $c \leq -3s$, then $\tilde{\phi}$ is biharmonic if and only if it is a geodesic.

Case 3: $c \neq s$ and $\varphi T \| E_2$.

Proposition 3.8. Let $\tilde{\varphi} : I \to \overline{\mathcal{M}}(c)$ be a slant curve of osculating order r in S-space form

$$\overline{\mathcal{M}}(c) = (\overline{\mathcal{M}}^{(2n+s)}, \phi, \xi_{\alpha}, \eta_{\alpha}, g)$$

 $\alpha = \{1 \cdots s\}$ such that $c \neq s$ and $\phi T \| E_2$. Then $\tilde{\phi}$ is interpolating sesqui-harmonic if and only if

$$\begin{aligned} k_1 &= \text{constant} > 0, \\ k_1^2 + k_2^2 &= s^2 \cos^2(\theta) + c(1 - s \cos^2(\theta)) - \frac{\delta_1}{\delta_2}, \\ k_2 &= \text{constant}, \\ k_2 k_3 &= 0. \end{aligned}$$

Proof. For $c \neq s$, Using (3.2) and Definition 2.1 we have,

$$g(\phi T, \phi T) = 1 - s \cos^2(\theta)$$

So for unit vector E_2 we write $E_2 = \pm \frac{1}{\sqrt{1-s\cos^2(\theta)}} \varphi T$. Therefore we have $g(\varphi T, E_2) = \pm \sqrt{1-s\cos^2(\theta)}$, $g(\varphi T, E_3) = 0$ and $g(\varphi T, E_4) = 0$. Using these relations in Theorem 3.1 we obtain the results.

Theorem 3.9. Let $\tilde{\phi} : I \to \overline{\mathcal{M}}(c)$ be a slant curve of osculating order r in S-space form

$$\overline{\mathcal{M}}(\mathbf{c}) = (\overline{\mathcal{M}}^{(2n+s)}, \phi, \xi_{\alpha}, \eta_{\alpha}, g)$$

 $\alpha = \{1 \cdots s\}$ such that $c \neq s$ and $\varphi T \| E_2$ with the Frenet frame $\{T, \varphi T, \frac{1}{\sqrt{s}} \sum_{\alpha=1}^{s} \xi_{\alpha}\}$. Then

- 1. *if* $c \leq s + \frac{\delta_1}{\delta_2(1-s\cos^2(\theta))}$ such that $1-s\cos^2(\theta) \neq 0$, then $\tilde{\phi}$ is interpolating sesqui-harmonic with $\frac{\delta_1}{\delta_2} \neq 0$ if and only if it is geodesic;
- 2. *if* $c > s + \frac{\delta_1}{\delta_2(1-s\cos^2(\theta))}$ such that $1-s\cos^2(\theta) \neq 0$, then $\tilde{\phi}$ is interpolating sesqui-harmonic if and only if $\tilde{\phi}$ is of osculating order r = 3, $n \ge 3$ and it helix with

$$k_1^2 = s^2 \cos^2(\theta) + c(1 - s \cos^2(\theta)) - \frac{\delta_1}{\delta_2} - s \quad \text{and} \quad k_2 = \sqrt{s}$$

Proof. If $\phi T \| E_2$, then we have $g(\phi T, E_2) = \sqrt{1 - s \cos^2(\theta)}$. By Proposition 3.8, if we take

$$c\leqslant s+\frac{\delta_1}{\delta_2(1-s\cos^2(\theta))},$$

such that $1 - s \cos^2(\theta) \neq 0$, then it is easy to see that $\tilde{\phi}$ is interpolating sesqui-harmonic if and only if it is a geodesic.

If $c > s + \frac{\delta_1}{\delta_2(1-s\cos^2(\theta))}$ such that $1 - s\cos^2(\theta) \neq 0$, and if $\tilde{\phi}$ is of osculating order r = 3, $n \ge 3$, then it is helix with $k_1^2 = s^2\cos^2(\theta) + c(1 - s\cos^2(\theta)) - \frac{\delta_1}{\delta_2} - s$ and $k_2 = \sqrt{s}$. Conversely, if $\tilde{\phi}$ is helix with $k_1^2 + k_2^2 = s^2\cos^2(\theta) + c(1 - \cos^2(\theta)) - \frac{\delta_1}{\delta_2}$ then $\tilde{\phi}$ satisfies Theorem 3.1.

In particular for a Legendre curve in Sasakian space form that is s = 1 and $\theta = \frac{\pi}{2}$. Thus, we have [11, Theorem (10)]. Further for biharmonic Legendre curve in S-space form, that is, $\theta = \frac{\pi}{2}$, $\delta_1 = 0$ and $\delta_2 = 1$ from Theorem 3.3, we have

Corollary 3.10 ([13]). Let $\tilde{\phi}$ be a Frenet curve in an S-space form $(\overline{\mathcal{M}}^{(2n+s)}, \phi, \xi_{\alpha}, \eta_{\alpha}, g) \ \alpha \in \{1, \cdots, s\}, c \neq s$ and $\phi T \| E_2$. Then

$$\{\mathsf{T}, \mathsf{\phi}\mathsf{T}, \frac{1}{\sqrt{s}}\sum_{\alpha=1}^{s}\xi_{\alpha}\},\$$

is the Frenet frame of $\tilde{\phi}$ and $\tilde{\phi}$ is proper biharmonic if and only if it is helix with $k_1 = \sqrt{c-s}$ and $k_2 = \sqrt{s}$, where c > s. If $c \leq s$, then $\tilde{\phi}$ is biharmonic if and only if it is a geodesic.

Case 4: $c \neq s$ and $g(\phi T, E_2) \neq 0, -1, 1$.

Proposition 3.11. Let $\tilde{\phi} : I \to \overline{\mathcal{M}}(c)$ be a slant curve of osculating order r in S-space form

$$\overline{\mathcal{M}}(c) = (\overline{\mathcal{M}}^{(2n+s)}, \phi, \xi_{\alpha}, \eta_{\alpha}, g),$$

such that $4 \leq r \leq 2n + 1$, $n \geq 2$ and $\varphi T \in span\{E_2, \cdots, E_p\}$. Then $\tilde{\phi}$ is interpolating sesqui-harmonic if and only if

$$\begin{cases} k_1 = \text{constant} > 0, \\ k_1^2 + k_2^2 = s^2 \cos^2(\theta) + (1 - s \cos^2(\theta)) \frac{c + 3s}{4} - \frac{\delta_1}{\delta_2} + \frac{3(c - s)}{4} (1 - s \cos^2(\theta)) \cos^2(\theta_1), \\ k_2 k_3 = \frac{-3(c - s)}{4} (1 - s \cos^2 \theta) \sin(2\theta_1. \end{cases}$$

where $\theta_1 \in (0, 2\pi) \setminus \left\{ \frac{\pi}{2}, \pi, \frac{3\pi}{2} \right\}$.

Proof. If $\tilde{\phi}$ is a interpolating sesqui-harmonic frenet curve of osculating order $r \ge 4$ and $g(E_2, \varphi T) \ne 0, 1, -1$. If θ_1 is the angle between φT and E_2 such that

$$g(\phi T, E_2) = \sqrt{1 - s \cos^2 \theta} \cos \theta_1(t)$$

Differentiating above equation and using (2.1), (2.2) and (2.3) we get,

$$g(\phi \mathsf{T}, \mathsf{E}_3) = -\frac{1}{k_2} \sqrt{1 - s \cos^2 \theta} \theta_1'(\mathsf{t}) \sin \theta_1(\mathsf{t}). \tag{3.7}$$

We can write $\varphi T_1 = g(\varphi T_1, E_2) E_2 + g(\varphi T_1, E_3) E_3 + g(\varphi T_1, E_4) E_4$. So, the equations in Theorem 3.1 become

$$\begin{cases} k_1 = \text{constant} > 0, \\ k_1^2 + k_2^2 = s^2 \cos^2 \theta + \frac{c+3s}{4} \left(1 - s \cos^2 \theta\right) + \frac{3(c-s)}{4} (1 - s \cos^2 \theta) \cos^2 \theta_1(t) - \frac{\delta_1}{\delta_2}, \\ k_2 k_2' - \frac{3(c-s)}{4} (1 - s \cos^2 \theta) \theta_1' \sin \theta_1 \cos \theta_1 = 0, \\ k_2 k_3 + \frac{3(c-s)}{4} g\left(\phi T, E_2\right) g\left(\phi T, E_4\right) = 0. \end{cases}$$

On solving the third equation of the above system, we obtain

$$k_{2}^{2} = -3\sqrt{1 - s\cos^{2}\theta} \frac{(c - s)}{4}\cos^{2}\theta_{1} + \delta_{0}, \qquad (3.8)$$

where δ_0 is a constant. If we write (3.8) in the second equation, we have

$$k_1^2 = s^2 \cos^2 \theta + \frac{c+3s}{4} \left(1-s \cos^2 \theta\right) + \frac{3(c-s)}{4} \left(1-s \cos^2 \theta\right) + \sqrt{1-s \cos^2 \theta} \cos^2 \theta_1 - \frac{\delta_1}{\delta_2} + \delta_0.$$

Hence θ_1 is a constant. From (3.7), we have $g(\varphi T, E_3) = 0$ and $k_2 = \text{constant} > 0$. Next, using

$$\|\varphi\mathsf{T}\| = \sqrt{1 - s\cos^2\theta},$$

and $\varphi T = \sqrt{1 - s \cos^2 \theta} \cos \theta_1 E_2 + g(\varphi T, E_4) E_4$, we obtain $g(\varphi T, E_4) = \sqrt{1 - s \cos^2 \theta} \sin \theta_1$ where $\theta_1 \in (0, 2\pi) \setminus \left\{\frac{\pi}{2}, \pi, \frac{3\pi}{2}\right\}$. Thus we have the result.

4. Example

In this section we discuss the two cases for interpolating sesqui harmonic slant curve in S-space form when $\phi T \perp E_2$ and $\phi T ||E_2$ separately in the following examples.

Example 4.1. Let $(\overline{\mathcal{M}}^{(2n+s)}, \varphi, \xi_{\alpha}, \eta_{\alpha}, g)$ be S-space form with coordinate functions

$$\{x_1,\cdots,x_n,y_1,\cdots,y_n,z_1,\cdots,z_s\}.$$

The vector fields

$$X_{i} = 2\frac{\partial}{\partial y_{i}}, \quad X_{n+i} = \phi X_{i} = 2(\frac{\partial}{\partial y_{i}} + y_{i} \sum_{\alpha=1}^{s} \frac{\partial}{\partial z_{\alpha}}), \quad \xi_{\alpha} = 2\frac{\partial}{\partial z_{\alpha}}, \quad (4.1)$$

form a g-orthonormal basis and the Levi-Civita connection is calculated as

$$\nabla_{X_{i}}X_{j} = \nabla_{X_{n+i}}X_{n+j} = 0, \quad \nabla_{X_{i}}X_{n+j} = \delta_{ij}\sum_{\alpha=1}^{s}\xi_{\alpha}, \quad \nabla_{X_{n+i}}X_{j} = -\delta_{ij}\sum_{\alpha=1}^{s}\xi_{\alpha},$$
$$\nabla_{X_{i}}\xi_{\alpha} = \nabla_{\xi_{\alpha}}X_{i} = -X_{n+i}, \quad \nabla_{X_{n+i}}\xi_{\alpha} = \nabla_{\xi_{\alpha}}X_{n+i} = X_{i}.$$

Let $\tilde{\phi}(t) = (\tilde{\phi}_1(t), \tilde{\phi}_2(t), \tilde{\phi}_3(t), \tilde{\phi}_4(t))$ be unit speed slant curve in $\mathbb{R}^4(-6)$. Then for a tangent vector of the slant curve we have

$$\mathsf{T} = \frac{1}{2} [\tilde{\varphi}_1' \frac{\partial}{\partial x_1} + \tilde{\varphi}_2' \frac{\partial}{\partial y_1} + \tilde{\varphi}_3' \frac{\partial}{\partial z_1} + \tilde{\varphi}_4' \frac{\partial}{\partial z_2}].$$

From (4.1), we find

$$X_1 = 2\frac{\partial}{\partial y_1}, \quad X_2 = \phi X_1 = 2\left(\frac{\partial}{\partial x_1} + y_1(\frac{\partial}{\partial z_1} + \frac{\partial}{\partial z_2})\right), \quad \xi_1 = 2\frac{\partial}{\partial z_1}, \\ \xi_2 = 2\frac{\partial}{\partial z_2}.$$

By using these values, it follows that

$$\mathsf{T} = \frac{1}{2} [\tilde{\varphi}_2' X_1 + \tilde{\varphi}_1' X_2 + (\tilde{\varphi}_3' - \tilde{\varphi}_1' \tilde{\varphi}_2) \xi_1 + (\tilde{\varphi}_4' - \tilde{\varphi}_1' \tilde{\varphi}_2) \xi_2].$$
(4.2)

Thus for a slant curve $\eta_{\alpha}(T) = \cos(\theta)$, we have

$$\tilde{\varphi}_4' = \tilde{\varphi}_1' \tilde{\varphi}_2 + 2\cos(\theta), \tag{4.3}$$

$$\tilde{\varphi}_3' = \tilde{\varphi}_1' \tilde{\varphi}_2 + 2\cos(\theta), \tag{4.4}$$

$$\tilde{\varphi}_1^{\prime 2} + \tilde{\varphi}_2^{\prime 2} = 4(1 - 2\cos^2(\theta)). \tag{4.5}$$

Differentiating (4.2) and making use of (4.3) and (4.4), it yields

$$abla_\mathsf{T}\mathsf{T} = rac{1}{2}[ilde{\varphi}_2''X_1 + ilde{\varphi}_1''X_2].$$

Then for $\theta = \frac{\pi}{3}$ in (4.5), we get $\tilde{\varphi}_1 = \sqrt{2} \sin t$ and $\tilde{\varphi}_2 = -\sqrt{2} \cos t$. Now using these values in (4.3) and (4.4), we have $\tilde{\varphi}_3 = \frac{1}{2} \sin 2t$ and $\tilde{\varphi}_4 = \frac{1}{2} \sin 2t$, respectively. Therefore, we have $\tilde{\varphi}(t) = (\sqrt{2} \sin t, -\sqrt{2} \cos t, \frac{1}{2} \sin 2t, \frac{1}{2} \sin 2t)$. Now making use of (4.6), we have

$$\nabla_{\mathsf{T}}\mathsf{T} = \frac{1}{2}[\sqrt{2}\cos \mathsf{t}X_1 - \sqrt{2}\sin \mathsf{t}X_2].$$

Taking the inner product of above equation with itself, we have $k_1 = \frac{1}{\sqrt{2}}$ which satisfies Theorem 3.1 for the case of osculating order 2, $\phi T \perp E_2$, $\delta_1 = -1$, $\delta_2 = 2$.

For $\cos(\theta) = \frac{\sqrt{3}}{2\sqrt{2}}$ and $\phi T \| E_2$ we have the following example.

Example 4.2. The value $\cos(\theta) = \frac{\sqrt{3}}{2\sqrt{2}}$ in (4.5) implies $\tilde{\varphi}_1 = \sin t$ and $\tilde{\varphi}_2 = \cos t$. Now using these values in (4.3) and (4.4) we have $\tilde{\varphi}_3 = \frac{1}{2}(t + \sqrt{6}t + \frac{\sin 2t}{2})$ and $\tilde{\varphi}_4 = \frac{1}{2}(t + \sqrt{6}t + \frac{\sin 2t}{2})$, respectively. Therefore, we get $\tilde{\varphi}(t) = (\sin t, \cos t, \frac{1}{2}(t + \sqrt{6}t + \frac{\sin 2t}{2}), \frac{1}{2}(t + \sqrt{6}t + \frac{\sin 2t}{2}))$, which by making use of (4.6), gives

$$\nabla_{\mathsf{T}}\mathsf{T} = \frac{1}{2}[\cos tX_1 - \sin tX_2].$$

Then by taking the inner product of above equation with itself we find $k_1 = \frac{1}{2}$ which satisfies Theorem 3.1 for the case of osculating order 2, $\phi T || E_2$, $\delta_1 = -19$, $\delta_2 = 4$.

Aknowledgement

The authors are thankful to the editor Prof. Ghadir Sadeghi and anonymous referees for their valuable suggestions that definitely improved the paper.

References

- V. Branding, On interpolating sesqui-harmonic maps between Riemannian manifolds, J. Geom. Anal., 30 (2019), 248–273.
 1, 3
- [2] C. Călin, M. Crasmareanu, Slant curves in 3-dimensional normal almost contact geometry, Mediterr. J. Math., 10 (2013), 1067–1077. 1
- [3] J. T. Cho, J.-I. Inoguchi, J.-E. Lee, Slant curves in Sasakian 3-manifolds, Bull. Austral. Math. Soc., 74 (2006), 359–367.
- [4] J. T. Cho, J.-I. Inoguchi, J.-E. Lee, Biharmonic curves in 3-dimensional Sasakian space forms, Ann. Mat. Pura Appl. (4), 186 (2007), 685–701. 1
- [5] J. Eells, J. H.Sampson, Harmonic mappings of Riemannian manifolds, Amer J. Math., 86 (1964), 109–160. 1
- [6] D. Fetcu, Biharmonic Legendre curves in Sasakian space forms, J. Korean Math. Soc., 45 (2008), 393–404. 1
- [7] D. Fetcu, C. Oniciuc, Explicit formulas for biharmonic submanifolds in Sasakian space form, Pacific J. Math., 240 (2009), 85–107. 1
- [8] S. Güvenc, C. Özgür, On the characterizations of f-biharmonic Legendre curves in Sasakian space forms, Filomat, 31 (2017), 639–648.
- [9] S. Güvenc, C. Özgür, On slant curves in S-manifolds, Commun. Korean Math. Soc., 33 (2018), 293–303. 1
- [10] G. Y. Jiang, 2-Harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A, 7 (1986), 389–402. 1
- [11] F. Karaca, C. Özgür, U. C. De, On interpolating sesqui harmonic legendre curves in Sasakian space forms, Int. J. Geom. Methods Mod. Phys., 17 (2020), 13 pages. 1, 3, 3, 3
- [12] Y. Lou, Y.-L. Ou, Some remarks on Bi-f harmonic maps and f-biharmonic maps, Results Math., 74 (2019), 19 pages. 1
- [13] C. Özgür, S. Güvenc, On biharmonic Legendre curves in S-space forms, Turkish J. Math., 38 (2014), 454–461. 1, 2, 2.1, 2, 2, 3.4, 3.7, 3.10
- [14] C. Özgür, S. Güvenc, On some classes of biharmonic Legendre curves in generalized Sasakian space forms, Collect. Math., 65 (2014), 203–218. 1
- [15] A. Polyako, Fine structure of strings, Nuclear Phys. B, 268 (1986), 406-412. 1
- [16] K. Yano, M. Kon, Structures on manifolds, World Scientific Publishing Co., Singapore, (1984). 2