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Abstract

In this paper, we study interpolating sesqui harmonic slant curve in S-space form and thus generalizing the results of the
papers [D. Fetcu, J. Korean Math. Soc., 45 (2008), 393-404], [C. Ozgﬁr, S. Guivenc, Turkish J. Math., 38 (2014), 454-461], [F. Karaca,
C. Ozgiir, U. C. De, Int. J. Geom. Methods Mod. Phys., 17 (2020), 13 pages]. Finally we give examples in support of our results.
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1. Introduction

A map ¢ between two Riemannian manifolds (M, g1) and (N, g2) is called harmonic if the divergence
of its differential vanishes. The harmonic map equation is given by

T(p) = trace(Vdp) = 0. (1.1)

Eells and Sampson gave the natural generalization of the harmonic map as biharmonic map which is
critical point of bienergy functional [5]

E2(¢) = ;JM It(@)Pdvyg.

The Euler-Lagrange equation for biharmonic maps is defined by Jiang [10]
T(§) = trace(VNVN — V) (t(§)) — trace(RN (d@, T(¢))dp) =0,

where 1,(®) is called bitension of @.
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As a generalization of biharmonic map, Branding defined interpolating sesqui-harmonic map as a
critical point of Es, 5,(®) [1]

Es, 5, (@) = slj 1A(§)Pdvg + 52 JM ()P dvg,

M
where 61,8, € R. In string theory of Physics the above functional is used and known as bosonic string
with extrinsic curvature term [15]. The equation for interpolating sesqui harmonic map is given by

T51,52(¢)) =0T (P) —d1T(P) = 0.

In [1], Branding studied interpolating sesqui-harmonic curves in 3-dimensional sphere. Cho et al. classi-
tied biharmonic curves in 3-dimensional Sasakian space form and as a generalization of Legendre curve
the notion of slant curve in Sasakian 3-manifolds is defined by [4] and [3], respectively. Calin and Cras-
mareanu studied slant curve in 3-dimensional normal almost contact manifolds [2]. Giivenc and Ozgﬁr
studied slant curves in S-manifolds [9]. Biharmonic Legendre curve in Sasakian space form has been stud-
ied by Fetcu and Oniciuc [7]. In 2014, Ozgiir and Giivenc generalized their results in S-space form [13]
and generalized Sasakian space form [14]. In [12] Luo and Ou studied some properties of Bi-f-harmonic
and f-biharmonic maps. Further Giivenc Ozgiir [8] characterizes the f-biharmonic Legendre curves in
Sasakian space form. Recently, Karaca et al. [11] consider interpolating sesqui harmonic Legendre curves
in Sasakian space form which generalized some results of [7].
It is noted that interpolating sesqui-harmonic slant curve is

(1) Interpolating sesqui harmonic Legendre curve in Sasakian space form if s =1 and 6 = 7;
(2) Biharmonic Legendre curve in S-space form if 6 = % and 6, = 1,61 =0;
(3) Biharmonic Legendre curve in Sasakian-space form if 6 = % and 6, =1,61 =0,s =1.
In this paper we discuss interpolating sesqui harmonic slant curve in S-space form and thus generalizing

the results of the papers [6, 11, 13]. In the last section we give examples in support of our results.

2. Preliminaries

Let (ﬁ(znﬂ), g) be a (2n + s)-dimensional Riemannian manifolds. M is called S-manifold if

there exist a ¢-structure (where rank ¢=2n) and structure vector fields &;--- &5 and their dual forms
11 - - -Ms such that

(2n+s)

Gia =0Maod =0,¢> =T+ ) Ex®Ma,

g(X,Y) = g(dX, dY) + Y na(Xna(Y), 1)

X

Na(X) =9g(X, &), dna(X,Y) =g(X, dY). (2.2)

s)

. . L= . (2 g
The Riemannian connection V of g on an S-manifold e satisfies

(VxP)Y = Y {g(dX, dY)ea +nalY)H?X},

=1

and o
Vx&a = —¢X,

for anyX,YeTﬂand anyx=1,---,s.
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The sectional curvature of two planes spanned by X and ¢X, where X is a unit orthogonal to &; - - - &
called ¢-sectional curvature. An S-manifold of constant ¢-sectional curvature c is called an S-space form
denoted by M(c). Then curvature tensor field of S-space form M(c) is given by [13, 16]

RM(X,V)Z =Y Ma(Xnp (V)Y —na(YInp(2)$?X
o, B

—g(dX, dZ I (Y)Ep + g(dY, dZI(X)Ep}

(2.3)
+ 3 g0y, 120X+ g(0X, 02)62Y)
+ 1000 02107 — oY, 02)0X + 20(X, 0V 2,

forall X,Y,Z € TM. If s = 1, then M is known as Sasakian space form.

Definition 2.1 ([13]). If ¢ is a unit speed curve in an S-manifold then it is called slant curve if there exists
a constant angle 0 called the contact angle of @ such that n(X) = cos (0), forall x ={1,--- ,s}. For6 = T
slant curve becomes Legendre curve.

Let @ : I — M(c) be a unit speed curve in an n-dimensional Riemannian manifold (M, g). If
{E1,Ep,---,E;} is a set of orthonormal vectors then the curve ¢ is called Frenet curve of osculating order
1,1 < v < n such that [13]

T=E=¢,

VT1h =Kk by,

V1B =—ki 1Ei1+kiEiyq, for 2<i<n—1,
V1kr = —Ky1Erq,

(2.4)

where ki,1 <1< r—1 are curvature functions of @.
(1) A Frenet curve of osculating order r = 1 is a geodesic.
(2) A Frenet curve of osculating order r = 2 with k; non zero positive constant is a circle.
(3) A Frenet curve of osculating order r > 3 with k; ---k,_; non zero positive constant is a helix of
order 1. A helix of order 3 is simply called helix [13].
3. Interpolating sesqui-harmonic slant curves in S-space form

A curve @ is called Interpolating sesqui harmonic if and only if the following equation satisfied [1]:
To,,8, (@) = 82(VIVTVTT) — 5RM(T, VT)T— 5,V T =0, (3.1)

where 61, 6, € R.
Now for Interpolating sesqui harmonic slant curve in S-space form we may state the following theo-
rem.

—(2n+s

Theorem 3.1. Let @ : I — M(c) be a slant curve of osculating order v in S-space form M(c) = (M ), b, & Mas 9),

o ={1---s}and p = min{r,4}. Then § is interpolating sesqui harmonic if and only if there exists 51,8, such that

1. c=sor T LEyor dT €{Ey,--- ,En};
2. first p of the following equations are satisfied



F. Mofarreh, A. Haseeb, S. K. Yadav, M. Aslam, J. Math. Computer Sci., 28 (2023), 11-20 14

S2kik, =0,
82 (K} — K3 —k1K3 + 52k cos?(8) + ki (€535) (1 — 5 cos?(8)) + 3ky 7 g (T, E2)?) = 81k,
522K ko + ki) + 3%‘%9((1)1 E2)g(¢T, E3)] =0, (3.2
8alkikaks + 3157 k1g(0T, E2)g(§T, E4)] = 0.
Proof. Making use of (1.1) and (2.4), we get
ViE =kk =1(9), (3.3)

which gives
ViVTT = —k3E; + K Es + kikoE3,

and
ViViVTT = —3kiK,Eq + (K] — k3 — ki K3)Ea + (2k]kz
+kika) B + (kikoks) B4
Moreover by virtue of (2.3) it yields

(e +3s) s(cos?(0) — 1)k Ea

4 (3.4)
(—3k1g(PpT, E2)PT.

R(T, V1T = —s? cos?(0)k, Ex +

(c—s)
4
Thus it follows from (3.3), (3.4) and (3.1) that

T5,,5,(®) = —382k1K{ Ey + [82(k] — k§ —k1k3) + 5% cos?(0)kq
(c+3s)

_l’_

+k1 (1—scos?(8)) — 81k + 82(2K ko + ki k5)E3

(c—s)
4
and by taking the inner product with E, Ep, E3 and E4 we get the desired result. O

+ (O2k1kok3)Eq +3 kig(dT, E2)PT,

Next, we discuss four different cases to investigate and simplify the result of Theorem 3.1. In each
case we take g—; £ 0.

Case1: c=s.

Proposition 3.2. Let @ : I — M(c) be a slant curve of osculating order v in S-space form

—(2n+s

M(C) = (M J/ d)/ EvO(/T]O(/ g)/

o ={1---s}such that c = s and p = min{r,4}. Then @ is interpolating sesqui-harmonic if and only if

k1 = constant > 0,
k%+k% :szcosz(e)+s(1—scosz(9))—%, (3.5)
kr, = constant, kykz = 0.

Proof. For ¢ = s and making use of (3.2) we find
kik} =0,
(kY — k% — klk%) +s2cos2(0)ky + ki (1 — s cos?(0)) — g—;kl =0,
2kik2 + k1k/2 =0,
kikoks = 0.

(3.6)

By using ki = constant > 0 in last three equations of (3.6) we get the result. O
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Now using proposition (3.2) we have the following theorem.
Theorem 3.3. Let ¢ : I — M(c) be a slant curve of osculating order r in S-space form

(2n+s)

ﬁ(c) = (M d) E»oc/noc/ )/

o ={1---s}such that c = s and p = min{r,4}. Then

1. @ is a geodesic, or
2. @ is interpolating sesqui-harmonic if and only if it is a circle with

d
ki = \/s2 cos2(0) + s(1 — scos?(0)) — 6—1,
2
3. @ is interpolating sesqui-harmonic if and only if it is a helix with
5
K3 + k3 = s?cos?(0) + s(1 — cos?(8)s) — 61'
2

Proof. 1f @ is of osculating order r = 2 with % # 0, then ky = 0 and thus (3.5) yields

) 01
Kk = \/52 cos2(0) + s(1 —scos2(0)) — 6—1, where 5, < s2cos?(0) + s(1 — s cos?(0)).
2 2

Moreover @ is osculating order r = 3, then k3 = 0 therefore by (3.5) we have,

d o1
k% —i—k% = s2cos?(0) 4+ s(1 — s cos?(0)) — 6—1, where 5 < s2cos?(0) + s(1 — s cos?(0)).
2 2

In each case ¢ satisfies Theorem 3.1. If s? cos?(8) + s(1 — s cos?(8)) = g—;, then ¢ is geodesic. O

In particular for a interpolating sesqui harmonic Legendre curve in Sasakian space form, thatis, s =1
and 6 = 7, we have [11, Theorem (3)]. Further for biharmonic Legendre curve in S-space form, that is,
0= 2 , 61 =0 and 6, = 1, from Theorem 3.3 we have

Corollary 3.4 ([13]). Let @ be a Legendre frenet curve in an S-space form M(c) = (M (2nts) , 0, &N, 9),

owefl,---,s}, c=sand2m+s > 3. Then @ is proper biharmonic if and only if either @ is a circle with k1 = \/s
or a helix wzth K3 +Kk3 =s.

Case 2: ¢ # s and ¢T L E,. Then from Theorem 3.1 we have

Proposition 3.5. Let @ : I — M(c) be a slant curve of osculating order T in S-space form

(2n+s)

ﬁ(c) = ( d) (t—vcx/noc/ )/

o ={1---s}suchthat c #s, T L Ep and p = min{r,4}. Then @ is interpolating sesqui-harmonic if and only if

k1 = constant > 0,
k2 + k3 = s2cos?(0) + 7(“35 (1—scos?(0)) — g—;,
ko = constant,

koks = 0.

Next, we have
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Theorem 3.6. Let @ : I — M(c) be a slant curve of osculating order v in S-space form

Me) = (M, ¢, Eanas 9),
oa={1--- s} such that ¢ # s and T L E,. Then we have
1. ifc < —s2cos2(0)) ksclTW) —3s such that 1—s cos?(0) # 0, then @ is interpolating sesqui-harmonic
if and only if it is geodesic;
2. ifc> 4 L —s cosz(e))m —3s such that 1 —s cos?(0) # 0, then @ is interpolating sesqui-harmonic
if and only if either
(@) @ is of osculating order v = 2, > 2 and it is circle with
3 d
k% = s2cos?(0) + ct+os (1—scos?(8)) — —1,
4 )
(b) @ is of osculating order r = 3,n > 3 and it helix with
d
K3 + k5 = s2cos?(0) + ¢+ 3s (1—scos?(0)) — 6—1
2

Proof. 1f T L E,, then we have g(¢T, Ez) = 0 by Proposition 3.5. If we take

1

01 2. 2
<4(—— 0))———— —3s,
¢ (62 s”cos’( Dl—scosz(e) s

such that 1 — s cos?(0) # 0, then it can be easy seen that ¢ is interpolating sesqui-harmonic if and only if
it is a geodesic. Making use of Proposition 3.5 with

1

01
47_ 2 29 -
c > 4 s~ cos”( ))1—scosz(9)

5 —3s,

such that 1 —cos?(0) # 0 and @ is of osculating order r = 2, n > 2, then it is a circle with

(c+3s) (1— cos2(8)) o1

12 — 2 cos(0 o
1 =s"cos"(0) + 1 5

is a non-zero positive constant. if ¢ is of osculating order r = 3, n > 2, then it is helix with

(c +3s) (1—cos?(8)) — —.

k% + k% = s?cos?(0) +
4 &

Conversely, if @ is circle with k% = 5% cos?(0) + (c+3s) (1—cos?(0)) — & or helix with

1 5
5
K3 + k5 = s2cos?(0) + c+3s (1 — cos?(0) — 6—1,
2
then @ satisfies Theorem 3.1 and this completes the proof. O

In particular for a Legendre curve in Sasakian space form, that is, s = 1 and 6 = 7 we have [11,

Theorem (7)]. Further for biharmonic Legendre curve in S-space form, thatis, 0 = 7, 6; =0 and &, =1
from Theorem 3.3, we have

Corollary 3.7 ([13]). Let @ be a Legendre Frenet curve in an S-space form

(2n+s)

(M Cb EvO(/T](X/ )/

axef{l,--,s},c#sand T L Eyp. Then @ is proper biharmonic if and only if either
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1. n > 2and @ is a circle with k| = %\/c~|—3, where ¢ > —3s and {T = Eq, By, dT, V1T, E1,---, &5} is
linearly independent, or

2. n > 3and ¢ is a helix with k% +k% = ¢+ 3, where ¢ > —3s and {T = E1,Ey, ¢T, V1T, &1, -+, &} s
linearly independent.
If ¢ < —3s, then @ is biharmonic if and only if it is a geodesic.
Case 3: ¢ # s and ¢T||E.
Proposition 3.8. Let @ : I — M(c) be a slant curve of osculating order v in S-space form

(2n+s)

ﬁ(c) = (M b, E»cx/ncx/ )/

o« ={1---s}suchthat c # s and $T||Ey. Then § is interpolating sesqui-harmonic if and only if

ki1 = constant > 0,
k% + k3 = s2cos?(0) + c(1 — s cos?(0)) — ‘%,
ko = constant,

koks = 0.
Proof. For ¢ # s, Using (3.2) and Definition 2.1 we have,
g(¢T, $T) =1 —scos?().

So for unit vector E, we write E; = & \/7c|)T Therefore we have g($T,E) = +4/1—scos2(0),

1—s cos?

g(¢T,E3) =0and g($pT, E4) = 0. Using these relations in Theorem 3.1 we obtain the results. O

Theorem 3.9. Let ¢ : I — M(c) be a slant curve of osculating order r in S-space form

(2n+s)

M(C) = (M ,$, &, Mo 9),

o ={1---s}such that c # s and $T|Ep with the Frenet frame {T, $T, ﬁ Y o1&t Then
1. ifc <s+ m such that 1 — s cos?(0) # 0, then @ is interpolating sesqui-harmonic with 2—; # 0 if
and only if it is geodesic;

2. ifc>s+ m such that 1 — s cos?(0) # 0, then @ is interpolating sesqui-harmonic if and only if @
is of osculating order v = 3,n > 3 and it helix with

)
k%:szcosz(e)+c(1—scosz(9))—6—1—s and kp = +/s.
2

Proof. If ¢$T||Ey, then we have g(¢T,Ep) = \/1— scos?(8). By Proposition 3.8, if we take

o1

< ,
csst 82(1 — s cos2(0)

such that 1 — s cos?(0) # 0, then it is easy to see that ¢ is interpolating sesqui-harmonic if and only if it is
a geodesic.

Ifc>s+ m such that 1 —scos?(0) # 0, and if ¢ is of osculating order r = 3, n > 3, then
it is helix with k% = s2cos%(0) + c(1 — scos?(0)) — 21 s and k, = /s. Conversely, if ¢ is helix with
k% + k% = s2cos?(0) + c(1 — cos?(0)) — % then ¢ satisfies Theorem 3.1. O
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In particular for a Legendre curve in Sasakian space form that is s = 1 and 6 = 7. Thus, we have [11,
Theorem (10)]. Further for biharmonic Legendre curve in S-space form, thatis, © = 7, 8 =0and &, =1
from Theorem 3.3, we have
2n+s

Corollary 3.10 ([13]). Let @ be a Frenet curve in an S-space form (M L0, 8N, g) x €{1,---,s},c #s

and &T||Ey. Then
1 S
{T/ d)T/ = Ea}/
PR

is the Frenet frame of @ and @ is proper biharmonic if and only if it is helix with k1 = \/c — s and kp = \/s, where
c > s. If ¢ <s, then @ is biharmonic if and only if it is a geodesic.

Case 4: ¢ # s and g(¢T,E2) #0,—1,1

Proposition 3.11. Let @ : I — M(c) be a slant curve of osculating order  in S-space form

ﬁ(c) = ( /d)/ Eo Mo 9 ),
such that 4 <v <2n+1,n > 2and ¢T € span{Ey,--- ,Ep}. Then @ is interpolating sesqui-harmonic if and only

if

(2n+s)

ki1 = constant > 0,
ki + K3 = s? cos?(0) + (1 — s cos?(0)) <42 — % + 3(‘:;5) (1—scos?(0)) cos?(01),
koks = w(l — s cos?0) sin(20.

where 01 € (0,2m)\ {Z, 7, 3F }.

Proof. If @ is a interpolating sesqui-harmonic frenet curve of osculating order r > 4 and g(Ep, $T) #
0,1,—1. If 6, is the angle between ¢ T and E; such that

g(T,Ez) = v/1— scos? 0 cos 04 ().

Differentiating above equation and using (2. 1) (2.2) and (2.3) we get,

g(dT,E3) = \/ 1—scos? 007 (t)sin 01 (t (3.7)

We can write Ty = g (@Ty, E2) Ex+g (@Ty, E3) E3 + g (@Ty, E4) E4. So, the equations in Theorem 3.1 become

k1 = constant > 0,

Ki+k5 =s (toszejt%?’S (1—SC0529) +¥(1—scosz 0) cos? 01 (t) — %,
kokh — C75)(1 s cos® 0)0 sin0; cos 01 =0,

koks + 25 g (T, E2) g (@T,Eg) = 0.

On solving the third equatlon of the above system, we obtain

8= 3V1sco20 "V eosl; 5, (3.5)

where 8 is a constant. If we write (3.8) in the second equation, we have

3 3(c— )
k3 = s%cos e+cz S (1—scos?0) + (C4 s) (1—scos?0 +\/1—sc0529)c05291—6*1+60.
2

Hence 0, is a constant. From (3.7), we have g (¢T,E3) = 0 and k, = constant > 0. Next, using

loT|| = V1—scos?0,

and @T = V1 —scos20cos01E; + g (@T,Ey) Ey, we obtain g (¢T,E4) = V1 —scos?0sin0; where 01 €
0,20\ {%, 7, 3—”} Thus we have the result. O
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4. Example

In this section we discuss the two cases for interpolating sesqui harmonic slant curve in S-space form
when ¢T L E; and ¢T||E; separately in the following examples.

(2n+s)

Example 4.1. Let (3\/[ ,$, Ex, N, g) be S-space form with coordinate functions

{Xll' XYt s Yns 21,00 /ZS}'

The vector fields

) ) > )
Xi =2—, Xpai=o0X; =2(— + -§ ), Eg=2—, 4.1
1 ayl n+1i cb 1 ( ay1 yl o(:1 aZo() x aZo( ( )

form a g-orthonormal basis and the Levi-Civita connection is calculated as

Vx X VXnHXnJr] =0, Vx, Xn+] - 61] Z Ear vXn+1 j — 1) Z Eor

a=1
Vxi&a = Ve Xi = —Xnti, Vxi&a = Ve Xnri = Xy

Let @(t) = (@1(t), @2(t), 3(t), @4(t)) be unit speed slant curve in R*(—6). Then for a tangent vector of
the slant curve we have

T=1io1 2 1400 445 9
- 2 (pl axl (-02 ay (p?) az (p4:azz
From (4.1), we find
0 ) 0 0 0
X1=2—, Xo=0X; =2(— —+—)), =2—, & =2—.
1225 X=X =25 o Hulg o)), Bi=25 b =20
By using these values, it follows that
1. . - - o~ . o
T=3[@2X1 + §1X2 + (05— $192)&1 + (04 — P1P2)E2). (4.2)
Thus for a slant curve 1 (T) = cos(0), we have
@) = @1 P2 +2cos(0), (4.3)
@5 = @) P2+2cos(0), (4.4)
P2+ @2 =4(1 —2cos?(0)). (4.5)

Differentiating (4.2) and making use of (4.3) and (4.4), it yields
1
V1T = §[©§/X1 + @1 Xal.
Then for 6 = F in (4.5), we get §; = V2sint and $, = —v2cost. Now using these values in
(4.3) and (4.4), we have @3 = %sinZt and ¢4 = %sinZt, respectively. Therefore, we have ¢(t) =

(V2sint,—v/2cost, 1 sin2t, 1 sin2t). Now making use of (4.6), we have
2 2 g

1
VT = E[\fZ cos tX; — V2 sin tXp].

Taking the inner product of above equation with itself, we have k; = —= which satisfies Theorem 3.1 for
the case of osculating order 2, $T L Ep, 61 = —1,8, = 2.

3
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For cos(0) = % and ¢T||E; we have the following example.

Example 4.2. The value cos(0) = % in (4.5) implies ¢; = sint and @, = cost. Now using these values

in (4.3) and (4.4) we have @3 = %(t + 6t + Si‘;—Zt) and @4 = %(t + V6t + SiTnzt), respectively. Therefore,
we get @(t) = (sint, cost, %(t + 6t + SmZZt), %(t + 6t + %)), which by making use of (4.6), gives

1
V1T = > [cos tX] —sintX5].

Then by taking the inner product of above equation with itself we find k; = 1 which satisfies Theorem
3.1 for the case of osculating order 2, $T||Ep, & = —19,6, = 4.
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