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Abstract
In this paper, we study interpolating sesqui harmonic slant curve in S-space form and thus generalizing the results of the

papers [D. Fetcu, J. Korean Math. Soc., 45 (2008), 393–404], [C. Özgür, S. Güvenc, Turkish J. Math., 38 (2014), 454–461], [F. Karaca,
C. Özgür, U. C. De, Int. J. Geom. Methods Mod. Phys., 17 (2020), 13 pages]. Finally we give examples in support of our results.
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1. Introduction

A map ϕ̃ between two Riemannian manifolds (M,g1) and (N,g2) is called harmonic if the divergence
of its differential vanishes. The harmonic map equation is given by

τ(ϕ̃) = trace(∇dϕ̃) = 0. (1.1)

Eells and Sampson gave the natural generalization of the harmonic map as biharmonic map which is
critical point of bienergy functional [5]

E2(ϕ̃) =
1
2

∫
M

|τ(ϕ̃)|2dvg.

The Euler-Lagrange equation for biharmonic maps is defined by Jiang [10]

τ2(ϕ̃) = trace(∇N∇N −∇N∇)(τ(ϕ̃)) − trace(RN(dϕ̃, τ(φ))dϕ̃) = 0,

where τ2(ϕ̃) is called bitension of ϕ̃.
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As a generalization of biharmonic map, Branding defined interpolating sesqui-harmonic map as a
critical point of Eδ1,δ2(ϕ̃) [1]

Eδ1,δ2(ϕ̃) = δ1

∫
M

|d(ϕ̃)|2dvg + δ2

∫
M

|τ(ϕ̃)|2dvg,

where δ1, δ2 ∈ R. In string theory of Physics the above functional is used and known as bosonic string
with extrinsic curvature term [15]. The equation for interpolating sesqui harmonic map is given by

τδ1,δ2(ϕ̃) = δ2τ2(ϕ̃) − δ1τ(ϕ̃) = 0.

In [1], Branding studied interpolating sesqui-harmonic curves in 3-dimensional sphere. Cho et al. classi-
fied biharmonic curves in 3-dimensional Sasakian space form and as a generalization of Legendre curve
the notion of slant curve in Sasakian 3-manifolds is defined by [4] and [3], respectively. Calin and Cras-
mareanu studied slant curve in 3-dimensional normal almost contact manifolds [2]. Güvenc and Özgür
studied slant curves in S-manifolds [9]. Biharmonic Legendre curve in Sasakian space form has been stud-
ied by Fetcu and Oniciuc [7]. In 2014, Özgür and Güvenc generalized their results in S-space form [13]
and generalized Sasakian space form [14]. In [12] Luo and Ou studied some properties of Bi-f-harmonic
and f-biharmonic maps. Further Güvenc Özgür [8] characterizes the f-biharmonic Legendre curves in
Sasakian space form. Recently, Karaca et al. [11] consider interpolating sesqui harmonic Legendre curves
in Sasakian space form which generalized some results of [7].

It is noted that interpolating sesqui-harmonic slant curve is

(1) Interpolating sesqui harmonic Legendre curve in Sasakian space form if s = 1 and θ = π
2 ;

(2) Biharmonic Legendre curve in S-space form if θ = π
2 and δ2 = 1, δ1 = 0;

(3) Biharmonic Legendre curve in Sasakian-space form if θ = π
2 and δ2 = 1, δ1 = 0, s = 1.

In this paper we discuss interpolating sesqui harmonic slant curve in S-space form and thus generalizing
the results of the papers [6, 11, 13]. In the last section we give examples in support of our results.

2. Preliminaries

Let (M
(2n+s)

,g) be a (2n + s)-dimensional Riemannian manifolds. M
(2n+s)

is called S-manifold if
there exist a φ-structure (where rank φ=2n) and structure vector fields ξ1 · · · ξs and their dual forms
η1 · · ·ηs such that

φξα = 0,ηα ◦φ = 0,φ2 = −I+
∑
α

ξα ⊗ ηα,

g(X, Y) = g(φX,φY) +
∑
α

ηα(X)ηα(Y), (2.1)

ηα(X) = g(X, ξ), dηα(X, Y) = g(X,φY). (2.2)

The Riemannian connection ∇ of g on an S-manifold M
(2n+s)

satisfies

(∇Xφ)Y =

s∑
α=1

{g(φX,φY)ξα + ηα(Y)φ
2X},

and
∇Xξα = −φX,

for any X, Y ∈ TM and any α = 1, · · · , s.
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The sectional curvature of two planes spanned by X and φX, where X is a unit orthogonal to ξ1 · · · ξs
called φ-sectional curvature. An S-manifold of constant φ-sectional curvature c is called an S-space form
denoted by M(c). Then curvature tensor field of S-space form M(c) is given by [13, 16]

RM(X, Y)Z =
∑
α,β

{ηα(X)ηβ(Y)φ
2Y − ηα(Y)ηβ(Z)φ

2X

− g(φX,φZ)ηα(Y)ξβ + g(φY,φZ)ηα(X)ξβ}

+
(c+ 3s)

4
{−g(φY, fZ)φ2X+ g(φX,φZ)φ2Y}

+
(c− s)

4
{g(X,φZ)φY − g(Y,φZ)φX+ 2g(X,φY)Z},

(2.3)

for all X, Y,Z ∈ TM. If s = 1, then M is known as Sasakian space form.

Definition 2.1 ([13]). If ϕ̃ is a unit speed curve in an S-manifold then it is called slant curve if there exists
a constant angle θ called the contact angle of ϕ̃ such that ηα(X) = cos (θ), for all α = {1, · · · , s}. For θ = π

2
slant curve becomes Legendre curve.

Let ϕ̃ : I → M(c) be a unit speed curve in an n-dimensional Riemannian manifold (M,g). If
{E1,E2, · · · ,Er} is a set of orthonormal vectors then the curve ϕ̃ is called Frenet curve of osculating order
r, 1 6 r 6 n such that [13]

T = E1 = ϕ̃′,
∇TE1 = k1E2,
∇TEi = −ki−1Ei−1 + kiEi+1, for 2 6 i 6 n− 1,
∇TEr = −kr−1Er−1,

(2.4)

where ki, 1 6 i 6 r− 1 are curvature functions of ϕ̃.

(1) A Frenet curve of osculating order r = 1 is a geodesic.

(2) A Frenet curve of osculating order r = 2 with k1 non zero positive constant is a circle.

(3) A Frenet curve of osculating order r > 3 with k1 · · ·kr−1 non zero positive constant is a helix of
order r. A helix of order 3 is simply called helix [13].

3. Interpolating sesqui-harmonic slant curves in S-space form

A curve ϕ̃ is called Interpolating sesqui harmonic if and only if the following equation satisfied [1]:

τδ1,δ2(ϕ̃) ≡ δ2(∇T∇T∇TT) − δ2R
M(T ,∇TT)T − δ1∇TT = 0, (3.1)

where δ1, δ2 ∈ R.
Now for Interpolating sesqui harmonic slant curve in S-space form we may state the following theo-

rem.

Theorem 3.1. Let ϕ̃ : I→M(c) be a slant curve of osculating order r in S-space form M(c) = (M
(2n+s)

,φ, ξα,ηα,g),
α = {1 · · · s} and p = min{r, 4}. Then ϕ̃ is interpolating sesqui harmonic if and only if there exists δ1, δ2 such that

1. c = s or φT ⊥ E2 or φT ∈ {E2, · · · ,En};
2. first p of the following equations are satisfied
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δ2k1k

′
1 = 0,

δ2[k
′′
1 − k3

1 − k1k
2
2 + s

2k1 cos2(θ) + k1(
c+3s

4 )(1 − s cos2(θ)) + 3k1
(c−s)

4 g(φT ,E2)
2] = δ1k1,

δ2[2k′1k2 + k1k
′
2 + 3 (c−s)

4 k1g(φT ,E2)g(φT ,E3)] = 0,
δ2[k1k2k3 + 3 (c−s)

4 k1g(φT ,E2)g(φT ,E4)] = 0.

(3.2)

Proof. Making use of (1.1) and (2.4), we get

∇TE1 = k1E2 = τ(ϕ̃), (3.3)

which gives
∇T∇TT = −k2

1E1 + k
′
1E2 + k1k2E3,

and

∇T∇T∇TT = −3k1k
′
1E1 + (k′′1 − k3

1 − k1k
2
2)E2 + (2k′1k2

+ k1k
′
2)E3 + (k1k2k3)E4.

Moreover by virtue of (2.3) it yields

R(T ,∇TT)T = −s2 cos2(θ)k1E2 +
(c+ 3s)

4
s(cos2(θ) − 1)k1E2

+
(c− s)

4
(−3k1g(φT ,E2)φT .

(3.4)

Thus it follows from (3.3), (3.4) and (3.1) that

τδ1,δ2(ϕ̃) = −3δ2k1k
′
1E1 + [δ2(k

′′
1 − k3

1 − k1k
2
2) + s

2 cos2(θ)k1

+ k1
(c+ 3s)

4
(1 − s cos2(θ)) − δ1k1]E2 + δ2(2k′1k2 + k1k

′
2)E3

+ (δ2k1k2k3)E4 + 3
(c− s)

4
k1g(φT ,E2)φT ,

and by taking the inner product with E1,E2,E3 and E4 we get the desired result.

Next, we discuss four different cases to investigate and simplify the result of Theorem 3.1. In each
case we take δ1

δ2
6= 0.

Case 1: c = s.

Proposition 3.2. Let ϕ̃ : I→M(c) be a slant curve of osculating order r in S-space form

M(c) = (M
(2n+s)

,φ, ξα,ηα,g),

α = {1 · · · s} such that c = s and p = min{r, 4}. Then ϕ̃ is interpolating sesqui-harmonic if and only if
k1 = constant > 0,
k2

1 + k
2
2 = s2 cos2(θ) + s(1 − s cos2(θ)) − δ1

δ2
,

k2 = constant, k2k3 = 0.

(3.5)

Proof. For c = s and making use of (3.2) we find
k1k
′
1 = 0,

(k′′1 − k3
1 − k1k

2
2) + s

2 cos2(θ)k1 + k1(1 − s cos2(θ)) − δ1
δ2
k1 = 0,

2k′1k2 + k1k
′
2 = 0,

k1k2k3 = 0.

(3.6)

By using k1 = constant > 0 in last three equations of (3.6) we get the result.
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Now using proposition (3.2) we have the following theorem.

Theorem 3.3. Let ϕ̃ : I→M(c) be a slant curve of osculating order r in S-space form

M(c) = (M
(2n+s)

,φ, ξα,ηα,g),

α = {1 · · · s} such that c = s and p = min{r, 4}. Then

1. ϕ̃ is a geodesic, or
2. ϕ̃ is interpolating sesqui-harmonic if and only if it is a circle with

k1 =

√
s2 cos2(θ) + s(1 − s cos2(θ)) −

δ1

δ2
,

3. ϕ̃ is interpolating sesqui-harmonic if and only if it is a helix with

k2
1 + k

2
2 = s2 cos2(θ) + s(1 − cos2(θ)s) −

δ1

δ2
.

Proof. If ϕ̃ is of osculating order r = 2 with δ1
δ2
6= 0, then k2 = 0 and thus (3.5) yields

k1 =

√
s2 cos2(θ) + s(1 − s cos2(θ)) −

δ1

δ2
, where

δ1

δ2
< s2 cos2(θ) + s(1 − s cos2(θ)).

Moreover ϕ̃ is osculating order r = 3, then k3 = 0 therefore by (3.5) we have,

k2
1 + k

2
2 = s2 cos2(θ) + s(1 − s cos2(θ)) −

δ1

δ2
, where

δ1

δ2
< s2 cos2(θ) + s(1 − s cos2(θ)).

In each case ϕ̃ satisfies Theorem 3.1. If s2 cos2(θ) + s(1 − s cos2(θ)) = δ1
δ2

, then ϕ̃ is geodesic.

In particular for a interpolating sesqui harmonic Legendre curve in Sasakian space form, that is, s = 1
and θ = π

2 , we have [11, Theorem (3)]. Further for biharmonic Legendre curve in S-space form, that is,
θ = π

2 , δ1 = 0 and δ2 = 1, from Theorem 3.3 we have

Corollary 3.4 ([13]). Let ϕ be a Legendre frenet curve in an S-space form M(c) = (M
(2n+s)

,φ, ξα,ηα,g),
α ∈ {1, · · · , s}, c = s and 2m+ s > 3. Then ϕ is proper biharmonic if and only if either ϕ is a circle with k1 =

√
s

or a helix with k2
1 + k

2
2 = s.

Case 2: c 6= s and φT ⊥ E2. Then from Theorem 3.1 we have

Proposition 3.5. Let ϕ̃ : I→M(c) be a slant curve of osculating order r in S-space form

M(c) = (M
(2n+s)

,φ, ξα,ηα,g),

α = {1 · · · s} such that c 6= s, φT ⊥ E2 and p = min{r, 4}. Then ϕ̃ is interpolating sesqui-harmonic if and only if
k1 = constant > 0,
k2

1 + k
2
2 = s2 cos2(θ) +

(c+3s)
4 (1 − s cos2(θ)) − δ1

δ2
,

k2 = constant,
k2k3 = 0.

Next, we have
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Theorem 3.6. Let ϕ̃ : I→M(c) be a slant curve of osculating order r in S-space form

M(c) = (M
(2n+s)

,φ, ξα,ηα,g),

α = {1 · · · s} such that c 6= s and φT ⊥ E2. Then we have

1. if c 6 4(δ1
δ2

− s2 cos2(θ)) 1
1−s cos2(θ)

−3s such that 1− s cos2(θ) 6= 0 , then ϕ̃ is interpolating sesqui-harmonic
if and only if it is geodesic;

2. if c > 4(δ1
δ2

− s2 cos2(θ)) 1
1−s cos2(θ)

− 3s such that 1− s cos2(θ) 6= 0, then ϕ̃ is interpolating sesqui-harmonic
if and only if either

(a) ϕ̃ is of osculating order r = 2,n > 2 and it is circle with

k2
1 = s2 cos2(θ) +

c+ 3s
4

(1 − s cos2(θ)) −
δ1

δ2
,

(b) ϕ̃ is of osculating order r = 3,n > 3 and it helix with

k2
1 + k

2
2 = s2 cos2(θ) +

c+ 3s
4

(1 − s cos2(θ)) −
δ1

δ2
.

Proof. If φT ⊥ E2, then we have g(φT ,E2) = 0 by Proposition 3.5. If we take

c 6 4(
δ1

δ2
− s2 cos2(θ))

1
1 − s cos2(θ)

− 3s,

such that 1 − s cos2(θ) 6= 0, then it can be easy seen that ϕ̃ is interpolating sesqui-harmonic if and only if
it is a geodesic. Making use of Proposition 3.5 with

c > 4(
δ1

δ2
− s2 cos2(θ))

1
1 − s cos2(θ)

− 3s,

such that 1 − cos2(θ) 6= 0 and ϕ̃ is of osculating order r = 2, n > 2, then it is a circle with

k2
1 = s2 cos2(θ) +

(c+ 3s)
4

(1 − cos2(θ)) −
δ1

δ2
,

is a non-zero positive constant. if ϕ̃ is of osculating order r = 3, n > 2, then it is helix with

k2
1 + k

2
2 = s2 cos2(θ) +

(c+ 3s)
4

(1 − cos2(θ)) −
δ1

δ2
.

Conversely, if ϕ̃ is circle with k2
1 = s2 cos2(θ) +

(c+3s)
4 (1 − cos2(θ)) − δ1

δ2
or helix with

k2
1 + k

2
2 = s2 cos2(θ) +

c+ 3s
4

(1 − cos2(θ) −
δ1

δ2
,

then ϕ̃ satisfies Theorem 3.1 and this completes the proof.

In particular for a Legendre curve in Sasakian space form, that is, s = 1 and θ = π
2 we have [11,

Theorem (7)]. Further for biharmonic Legendre curve in S-space form, that is, θ = π
2 , δ1 = 0 and δ2 = 1

from Theorem 3.3, we have

Corollary 3.7 ([13]). Let ϕ̃ be a Legendre Frenet curve in an S-space form

(M
(2n+s)

,φ, ξα,ηα,g),

α ∈ {1, · · · , s}, c 6= s and φT ⊥ E2. Then ϕ̃ is proper biharmonic if and only if either
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1. n > 2 and ϕ̃ is a circle with k1 = 1
2

√
c+ 3, where c > −3s and {T = E1,E2,φT ,∇TφT , ξ1, · · · , ξs} is

linearly independent, or
2. n > 3 and ϕ̃ is a helix with k2

1 + k
2
2 = c+ 3, where c > −3s and {T = E1,E2,φT ,∇TφT , ξ1, · · · , ξs} is

linearly independent.

If c 6 −3s, then ϕ̃ is biharmonic if and only if it is a geodesic.

Case 3: c 6= s and φT‖E2.

Proposition 3.8. Let ϕ̃ : I→M(c) be a slant curve of osculating order r in S-space form

M(c) = (M
(2n+s)

,φ, ξα,ηα,g),

α = {1 · · · s} such that c 6= s and φT‖E2. Then ϕ̃ is interpolating sesqui-harmonic if and only if
k1 = constant > 0,
k2

1 + k
2
2 = s2 cos2(θ) + c(1 − s cos2(θ)) − δ1

δ2
,

k2 = constant,
k2k3 = 0.

Proof. For c 6= s, Using (3.2) and Definition 2.1 we have,

g(φT ,φT) = 1 − s cos2(θ).

So for unit vector E2 we write E2 = ± 1√
1−s cos2(θ)

φT . Therefore we have g(φT ,E2) = ±
√

1 − s cos2(θ),

g(φT ,E3) = 0 and g(φT ,E4) = 0. Using these relations in Theorem 3.1 we obtain the results.

Theorem 3.9. Let ϕ̃ : I→M(c) be a slant curve of osculating order r in S-space form

M(c) = (M
(2n+s)

,φ, ξα,ηα,g),

α = {1 · · · s} such that c 6= s and φT‖E2 with the Frenet frame {T ,φT , 1√
s

∑s
α=1 ξα} . Then

1. if c 6 s+ δ1
δ2(1−s cos2(θ)

such that 1 − s cos2(θ) 6= 0, then ϕ̃ is interpolating sesqui-harmonic with δ1
δ2
6= 0 if

and only if it is geodesic;
2. if c > s+ δ1

δ2(1−s cos2(θ)
such that 1− s cos2(θ) 6= 0, then ϕ̃ is interpolating sesqui-harmonic if and only if ϕ̃

is of osculating order r = 3,n > 3 and it helix with

k2
1 = s2 cos2(θ) + c(1 − s cos2(θ)) −

δ1

δ2
− s and k2 =

√
s.

Proof. If φT‖E2, then we have g(φT ,E2) =
√

1 − s cos2(θ). By Proposition 3.8, if we take

c 6 s+
δ1

δ2(1 − s cos2(θ)
,

such that 1 − s cos2(θ) 6= 0, then it is easy to see that ϕ̃ is interpolating sesqui-harmonic if and only if it is
a geodesic.

If c > s+ δ1
δ2(1−s cos2(θ)

such that 1 − s cos2(θ) 6= 0, and if ϕ̃ is of osculating order r = 3, n > 3, then

it is helix with k2
1 = s2 cos2(θ) + c(1 − s cos2(θ)) − δ1

δ2
− s and k2 =

√
s. Conversely, if ϕ̃ is helix with

k2
1 + k

2
2 = s2 cos2(θ) + c(1 − cos2(θ)) − δ1

δ2
then ϕ̃ satisfies Theorem 3.1.
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In particular for a Legendre curve in Sasakian space form that is s = 1 and θ = π
2 . Thus, we have [11,

Theorem (10)]. Further for biharmonic Legendre curve in S-space form, that is, θ = π
2 , δ1 = 0 and δ2 = 1

from Theorem 3.3, we have

Corollary 3.10 ([13]). Let ϕ̃ be a Frenet curve in an S-space form (M
(2n+s)

,φ, ξα,ηα,g) α ∈ {1, · · · , s}, c 6= s

and φT‖E2. Then

{T ,φT ,
1√
s

s∑
α=1

ξα},

is the Frenet frame of ϕ̃ and ϕ̃ is proper biharmonic if and only if it is helix with k1 =
√
c− s and k2 =

√
s, where

c > s. If c 6 s, then ϕ̃ is biharmonic if and only if it is a geodesic.

Case 4: c 6= s and g(φT ,E2) 6= 0,−1, 1.

Proposition 3.11. Let ϕ̃ : I→M(c) be a slant curve of osculating order r in S-space form

M(c) = (M
(2n+s)

,φ, ξα,ηα,g),

such that 4 6 r 6 2n+ 1,n > 2 and φT ∈ span{E2, · · · ,Ep}. Then ϕ̃ is interpolating sesqui-harmonic if and only
if 

k1 = constant > 0,
k2

1 + k
2
2 = s2 cos2(θ) + (1 − s cos2(θ))c+3s

4 − δ1
δ2

+
3(c−s)

4 (1 − s cos2(θ)) cos2(θ1),
k2k3 =

−3(c−s)
4 (1 − s cos2 θ) sin(2θ1.

where θ1 ∈ (0, 2π)\
{
π
2 ,π, 3π

2

}
.

Proof. If ϕ̃ is a interpolating sesqui-harmonic frenet curve of osculating order r > 4 and g(E2,φT) 6=
0, 1,−1. If θ1 is the angle between φT and E2 such that

g(φT ,E2) =
√

1 − s cos2 θ cos θ1(t).

Differentiating above equation and using (2.1), (2.2) and (2.3) we get,

g(φT ,E3) = −
1
k2

√
1 − s cos2 θθ′1(t) sin θ1(t). (3.7)

We can write ϕT1 = g (ϕT1,E2)E2 +g (ϕT1,E3)E3 +g (ϕT1,E4)E4. So, the equations in Theorem 3.1 become
k1 = constant > 0,
k2

1 + k
2
2 = s2 cos2 θ+ c+3s

4

(
1 − s cos2 θ

)
+

3(c−s)
4 (1 − s cos2 θ) cos2 θ1(t) −

δ1
δ2

,
k2k
′
2 −

3(c−s)
4 (1 − s cos2 θ)θ′1 sin θ1 cos θ1 = 0,

k2k3 +
3(c−s)

4 g (ϕT ,E2)g (ϕT ,E4) = 0.

On solving the third equation of the above system, we obtain

k2
2 = −3

√
1 − s cos2 θ

(c− s)

4
cos2 θ1 + δ0, (3.8)

where δ0 is a constant. If we write (3.8) in the second equation, we have

k2
1 = s2 cos2 θ+

c+ 3s
4

(
1 − s cos2 θ

)
+

3(c− s)
4

(
1 − s cos2 θ +

√
1 − s cos2 θ

)
cos2 θ1 −

δ1

δ2
+ δ0.

Hence θ1 is a constant. From (3.7), we have g (ϕT ,E3) = 0 and k2 = constant > 0. Next, using

‖ϕT‖ =
√

1 − s cos2 θ,

and ϕT =
√

1 − s cos2 θ cos θ1E2 + g (ϕT ,E4)E4, we obtain g (ϕT ,E4) =
√

1 − s cos2 θ sin θ1 where θ1 ∈
(0, 2π)\

{
π
2 ,π, 3π

2

}
. Thus we have the result.
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4. Example

In this section we discuss the two cases for interpolating sesqui harmonic slant curve in S-space form
when φT ⊥ E2 and φT‖E2 separately in the following examples.

Example 4.1. Let (M
(2n+s)

,φ, ξα,ηα,g) be S-space form with coordinate functions

{x1, · · · , xn,y1, · · · ,yn, z1, · · · , zs}.

The vector fields

Xi = 2
∂

∂yi
, Xn+i = φXi = 2(

∂

∂yi
+ yi

s∑
α=1

∂

∂zα
), ξα = 2

∂

∂zα
, (4.1)

form a g-orthonormal basis and the Levi-Civita connection is calculated as

∇XiXj = ∇Xn+iXn+j = 0, ∇XiXn+j = δij
s∑
α=1

ξα, ∇Xn+iXj = −δij

s∑
α=1

ξα,

∇Xiξα = ∇ξαXi = −Xn+i, ∇Xn+iξα = ∇ξαXn+i = Xi.

Let ϕ̃(t) = (ϕ̃1(t), ϕ̃2(t), ϕ̃3(t), ϕ̃4(t)) be unit speed slant curve in R4(−6). Then for a tangent vector of
the slant curve we have

T =
1
2
[ϕ̃′1

∂

∂x1
+ ϕ̃′2

∂

∂y1
+ ϕ̃′3

∂

∂z1
+ ϕ̃′4

∂

∂z2
].

From (4.1), we find

X1 = 2
∂

∂y1
, X2 = φX1 = 2

( ∂
∂x1

+ y1(
∂

∂z1
+
∂

∂z2
)
)
, ξ1 = 2

∂

∂z1
, ξ2 = 2

∂

∂z2
.

By using these values, it follows that

T =
1
2
[ϕ̃′2X1 + ϕ̃

′
1X2 + (ϕ̃′3 − ϕ̃

′
1ϕ̃2)ξ1 + (ϕ̃′4 − ϕ̃

′
1ϕ̃2)ξ2]. (4.2)

Thus for a slant curve ηα(T) = cos(θ), we have

ϕ̃′4 = ϕ̃′1ϕ̃2 + 2 cos(θ), (4.3)
ϕ̃′3 = ϕ̃′1ϕ̃2 + 2 cos(θ), (4.4)

ϕ̃′21 + ϕ̃′22 = 4(1 − 2 cos2(θ)). (4.5)

Differentiating (4.2) and making use of (4.3) and (4.4), it yields

∇TT =
1
2
[ϕ̃′′2X1 + ϕ̃

′′
1X2].

Then for θ = π
3 in (4.5), we get ϕ̃1 =

√
2 sin t and ϕ̃2 = −

√
2 cos t. Now using these values in

(4.3) and (4.4), we have ϕ̃3 = 1
2 sin 2t and ϕ̃4 = 1

2 sin 2t, respectively. Therefore, we have ϕ̃(t) =

(
√

2 sin t,−
√

2 cos t, 1
2 sin 2t, 1

2 sin 2t). Now making use of (4.6), we have

∇TT =
1
2
[
√

2 cos tX1 −
√

2 sin tX2].

Taking the inner product of above equation with itself, we have k1 = 1√
2

which satisfies Theorem 3.1 for
the case of osculating order 2,φT ⊥ E2, δ1 = −1, δ2 = 2.
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For cos(θ) =
√

3
2
√

2
and φT‖E2 we have the following example.

Example 4.2. The value cos(θ) =
√

3
2
√

2
in (4.5) implies ϕ̃1 = sin t and ϕ̃2 = cos t. Now using these values

in (4.3) and (4.4) we have ϕ̃3 = 1
2(t+

√
6t+ sin2t

2 ) and ϕ̃4 = 1
2(t+

√
6t+ sin2t

2 ), respectively. Therefore,
we get ϕ̃(t) = (sin t, cos t, 1

2(t+
√

6t+ sin 2t
2 ), 1

2(t+
√

6t+ sin 2t
2 )), which by making use of (4.6), gives

∇TT =
1
2
[cos tX1 − sin tX2].

Then by taking the inner product of above equation with itself we find k1 = 1
2 which satisfies Theorem

3.1 for the case of osculating order 2,φT‖E2, δ1 = −19, δ2 = 4.
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