Interpolating sesqui harmonic slant curve in S-space form

Fatemah Mofarreh ${ }^{\text {a,* }}$, Abdul Haseeb ${ }^{\text {b }}$, Sarvesh Kumar Yadav ${ }^{\text {c }}$, Mohd. Aslam $^{\text {c }}$
${ }^{a}$ Mathematical Science Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh-11546, Kingdom of Saudi Arabia.
${ }^{\text {b }}$ Department of Mathematics, College of Science, Jazan University, Jazan-2097, Kingdom of Saudi Arabia.
${ }^{\text {c }}$ Department of Mathematics, Jamia Millia Islamia, New Delhi-110025, India.

Abstract

In this paper, we study interpolating sesqui harmonic slant curve in S -space form and thus generalizing the results of the papers [D. Fetcu, J. Korean Math. Soc., 45 (2008), 393-404], [C. Özgür, S. Güvenc, Turkish J. Math., 38 (2014), 454-461], [F. Karaca, C. Özgür, U. C. De, Int. J. Geom. Methods Mod. Phys., 17 (2020), 13 pages]. Finally we give examples in support of our results.

Keywords: Interpolating sesqui harmonic map, slant curve, S-space form.
2020 MSC: 53C25, 53C40, 53A05.
©2023 All rights reserved.

1. Introduction

A map $\tilde{\varphi}$ between two Riemannian manifolds $\left(M, g_{1}\right)$ and $\left(N, g_{2}\right)$ is called harmonic if the divergence of its differential vanishes. The harmonic map equation is given by

$$
\begin{equation*}
\tau(\tilde{\varphi})=\operatorname{trace}(\nabla \mathrm{d} \tilde{\varphi})=0 \tag{1.1}
\end{equation*}
$$

Eells and Sampson gave the natural generalization of the harmonic map as biharmonic map which is critical point of bienergy functional [5]

$$
\mathrm{E}_{2}(\tilde{\varphi})=\frac{1}{2} \int_{M}|\tau(\tilde{\varphi})|^{2} \mathrm{~d} v_{\mathrm{g}}
$$

The Euler-Lagrange equation for biharmonic maps is defined by Jiang [10]

$$
\tau_{2}(\tilde{\varphi})=\operatorname{trace}\left(\nabla^{\mathrm{N}} \nabla^{\mathrm{N}}-\nabla_{\nabla}^{\mathrm{N}}\right)(\tau(\tilde{\varphi}))-\operatorname{trace}\left(\mathrm{R}^{\mathrm{N}}(\mathrm{~d} \tilde{\varphi}, \tau(\phi)) \mathrm{d} \tilde{\varphi}\right)=0
$$

where $\tau_{2}(\tilde{\varphi})$ is called bitension of $\tilde{\varphi}$.

[^0]As a generalization of biharmonic map, Branding defined interpolating sesqui-harmonic map as a critical point of $E_{\delta_{1}, \delta_{2}}(\tilde{\varphi})$ [1]

$$
E_{\delta_{1}, \delta_{2}}(\tilde{\varphi})=\delta_{1} \int_{M}|d(\tilde{\varphi})|^{2} d v_{g}+\delta_{2} \int_{M}|\tau(\tilde{\varphi})|^{2} d v_{g}
$$

where $\delta_{1}, \delta_{2} \in R$. In string theory of Physics the above functional is used and known as bosonic string with extrinsic curvature term [15]. The equation for interpolating sesqui harmonic map is given by

$$
\tau_{\delta_{1}, \delta_{2}}(\tilde{\varphi})=\delta_{2} \tau_{2}(\tilde{\varphi})-\delta_{1} \tau(\tilde{\varphi})=0
$$

In [1], Branding studied interpolating sesqui-harmonic curves in 3-dimensional sphere. Cho et al. classified biharmonic curves in 3-dimensional Sasakian space form and as a generalization of Legendre curve the notion of slant curve in Sasakian 3-manifolds is defined by [4] and [3], respectively. Calin and Crasmareanu studied slant curve in 3-dimensional normal almost contact manifolds [2]. Güvenc and Özgür studied slant curves in S-manifolds [9]. Biharmonic Legendre curve in Sasakian space form has been studied by Fetcu and Oniciuc [7]. In 2014, Özgür and Güvenc generalized their results in S-space form [13] and generalized Sasakian space form [14]. In [12] Luo and Ou studied some properties of Bi-f-harmonic and f-biharmonic maps. Further Güvenc Özgür [8] characterizes the f-biharmonic Legendre curves in Sasakian space form. Recently, Karaca et al. [11] consider interpolating sesqui harmonic Legendre curves in Sasakian space form which generalized some results of [7].

It is noted that interpolating sesqui-harmonic slant curve is
(1) Interpolating sesqui harmonic Legendre curve in Sasakian space form if $s=1$ and $\theta=\frac{\pi}{2}$;
(2) Biharmonic Legendre curve in S-space form if $\theta=\frac{\pi}{2}$ and $\delta_{2}=1, \delta_{1}=0$;
(3) Biharmonic Legendre curve in Sasakian-space form if $\theta=\frac{\pi}{2}$ and $\delta_{2}=1, \delta_{1}=0, s=1$.

In this paper we discuss interpolating sesqui harmonic slant curve in S-space form and thus generalizing the results of the papers $[6,11,13]$. In the last section we give examples in support of our results.

2. Preliminaries

Let $\left(\overline{\mathcal{M}}^{(2 n+s)}, g\right)$ be a $(2 n+s)$-dimensional Riemannian manifolds. $\overline{\mathcal{M}}^{(2 n+s)}$ is called S-manifold if there exist a ϕ-structure (where rank $\phi=2 n$) and structure vector fields $\xi_{1} \ldots \xi_{s}$ and their dual forms $\eta_{1} \cdots \eta_{s}$ such that

$$
\begin{align*}
& \phi \xi_{\alpha}=0, \eta_{\alpha} \circ \phi=0, \phi^{2}=-\mathrm{I}+\sum_{\alpha} \xi_{\alpha} \otimes \eta_{\alpha} \\
& g(X, Y)=g(\phi X, \phi Y)+\sum_{\alpha} \eta_{\alpha}(X) \eta_{\alpha}(Y) \tag{2.1}\\
& \eta_{\alpha}(X)=g(X, \xi), \quad d \eta_{\alpha}(X, Y)=g(X, \phi Y) . \tag{2.2}
\end{align*}
$$

The Riemannian connection $\bar{\nabla}$ of g on an S-manifold $\overline{\mathcal{M}}^{(2 n+s)}$ satisfies

$$
\left(\bar{\nabla}_{X} \phi\right) Y=\sum_{\alpha=1}^{s}\left\{g(\phi X, \phi Y) \xi_{\alpha}+\eta_{\alpha}(Y) \phi^{2} X\right\}
$$

and

$$
\bar{\nabla}_{X} \xi_{\alpha}=-\phi X
$$

for any $X, Y \in T \overline{\mathcal{M}}$ and any $\alpha=1, \cdots, s$.

The sectional curvature of two planes spanned by X and ϕX, where X is a unit orthogonal to $\xi_{1} \ldots \xi_{s}$ called ϕ-sectional curvature. An S-manifold of constant ϕ-sectional curvature c is called an S-space form denoted by $\overline{\mathcal{M}}(c)$. Then curvature tensor field of S-space form $\overline{\mathcal{M}}(c)$ is given by $[13,16]$

$$
\begin{align*}
R^{\overline{\mathcal{M}}}(X, Y) Z= & \sum_{\alpha, \beta}\left\{\eta_{\alpha}(X) \eta_{\beta}(Y) \phi^{2} Y-\eta_{\alpha}(Y) \eta_{\beta}(Z) \phi^{2} X\right. \\
& \left.-g(\phi X, \phi Z) \eta_{\alpha}(Y) \xi_{\beta}+g(\phi Y, \phi Z) \eta_{\alpha}(X) \xi_{\beta}\right\} \\
& +\frac{(c+3 s)}{4}\left\{-g(\phi Y, f Z) \phi^{2} X+g(\phi X, \phi Z) \phi^{2} Y\right\} \tag{2.3}\\
& +\frac{(c-s)}{4}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) Z\}
\end{align*}
$$

for all $X, Y, Z \in T \overline{\mathcal{M}}$. If $s=1$, then $\overline{\mathcal{M}}$ is known as Sasakian space form.
Definition 2.1 ([13]). If $\tilde{\varphi}$ is a unit speed curve in an S-manifold then it is called slant curve if there exists a constant angle θ called the contact angle of $\tilde{\varphi}$ such that $\eta_{\alpha}(X)=\cos (\theta)$, for all $\alpha=\{1, \cdots, s\}$. For $\theta=\frac{\pi}{2}$ slant curve becomes Legendre curve.

Let $\tilde{\varphi}: I \rightarrow \overline{\mathcal{M}}(c)$ be a unit speed curve in an n-dimensional Riemannian manifold $(\overline{\mathcal{M}}, g)$. If $\left\{E_{1}, E_{2}, \cdots, E_{r}\right\}$ is a set of orthonormal vectors then the curve $\tilde{\varphi}$ is called Frenet curve of osculating order $r, 1 \leqslant r \leqslant n$ such that [13]

$$
\left\{\begin{array}{l}
\mathrm{T}=\mathrm{E}_{1}=\tilde{\varphi}^{\prime} \tag{2.4}\\
\nabla_{\mathrm{T}} \mathrm{E}_{1}=k_{1} \mathrm{E}_{2}, \\
\nabla_{\mathrm{T}} \mathrm{E}_{i}=-k_{i-1} \mathrm{E}_{\mathfrak{i}-1}+k_{i} E_{i+1}, \quad \text { for } \quad 2 \leqslant i \leqslant n-1 \\
\nabla_{\mathrm{T}} \mathrm{E}_{\mathrm{r}}=-k_{r-1} \mathrm{E}_{\mathrm{r}-1}
\end{array}\right.
$$

where $k_{i}, 1 \leqslant i \leqslant r-1$ are curvature functions of $\tilde{\varphi}$.
(1) A Frenet curve of osculating order $r=1$ is a geodesic.
(2) A Frenet curve of osculating order $r=2$ with k_{1} non zero positive constant is a circle.
(3) A Frenet curve of osculating order $r \geqslant 3$ with $k_{1} \cdots k_{r-1}$ non zero positive constant is a helix of order r. A helix of order 3 is simply called helix [13].

3. Interpolating sesqui-harmonic slant curves in S-space form

A curve $\tilde{\varphi}$ is called Interpolating sesqui harmonic if and only if the following equation satisfied [1]:

$$
\begin{equation*}
\tau_{\delta_{1}, \delta_{2}}(\tilde{\varphi}) \equiv \delta_{2}\left(\nabla_{\mathrm{T}} \nabla_{\mathrm{T}} \nabla_{\mathrm{T}} \mathrm{~T}\right)-\delta_{2} \mathrm{R}^{\overline{\mathcal{M}}}\left(\mathrm{T}, \nabla_{\mathrm{T}} \mathrm{~T}\right) \mathrm{T}-\delta_{1} \nabla_{\mathrm{T}} \mathrm{~T}=0 \tag{3.1}
\end{equation*}
$$

where $\delta_{1}, \delta_{2} \in R$.
Now for Interpolating sesqui harmonic slant curve in S-space form we may state the following theorem.

Theorem 3.1. Let $\tilde{\varphi}: I \rightarrow \overline{\mathcal{M}}(c)$ be a slant curve of osculating order r in S-space form $\overline{\mathcal{M}}(c)=\left(\overline{\mathcal{M}}^{(2 n+s)}, \phi, \xi_{\alpha}, \eta_{\alpha}, g\right)$, $\alpha=\{1 \cdots s\}$ and $p=\min \{r, 4\}$. Then $\tilde{\varphi}$ is interpolating sesqui harmonic if and only if there exists δ_{1}, δ_{2} such that

1. $c=s$ or $\phi T \perp E_{2}$ or $\phi T \in\left\{E_{2}, \cdots, E_{n}\right\}$;
2. first p of the following equations are satisfied

$$
\left\{\begin{array}{l}
\delta_{2} k_{1} k_{1}^{\prime}=0, \tag{3.2}\\
\delta_{2}\left[k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}+s^{2} k_{1} \cos ^{2}(\theta)+k_{1}\left(\frac{c+3 s}{4}\right)\left(1-s \cos ^{2}(\theta)\right)+3 k_{1} \frac{(c-s)}{4} g\left(\phi T, E_{2}\right)^{2}\right]=\delta_{1} k_{1}, \\
\delta_{2}\left[2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}+3 \frac{(c-s)}{4} k_{1} g\left(\phi T, E_{2}\right) g\left(\phi T, E_{3}\right)\right]=0, \\
\delta_{2}\left[k_{1} k_{2} k_{3}+3 \frac{(c-s)}{4} k_{1} g\left(\phi T, E_{2}\right) g\left(\phi T, E_{4}\right)\right]=0 .
\end{array}\right.
$$

Proof. Making use of (1.1) and (2.4), we get

$$
\begin{equation*}
\nabla_{\mathrm{T}} \mathrm{E}_{1}=\mathrm{k}_{1} \mathrm{E}_{2}=\tau(\tilde{\varphi}), \tag{3.3}
\end{equation*}
$$

which gives

$$
\nabla_{\mathrm{T}} \nabla_{\mathrm{T}} \mathrm{~T}=-\mathrm{k}_{1}^{2} \mathrm{E}_{1}+\mathrm{k}_{1}^{\prime} \mathrm{E}_{2}+\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{E}_{3},
$$

and

$$
\begin{aligned}
\nabla_{\mathrm{T}} \nabla_{\mathrm{T}} \nabla_{\mathrm{T}} \mathrm{~T}= & -3 \mathrm{k}_{1} k_{1}^{\prime} \mathrm{E}_{1}+\left(\mathrm{k}_{1}^{\prime \prime}-\mathrm{k}_{1}^{3}-\mathrm{k}_{1} k_{2}^{2}\right) \mathrm{E}_{2}+\left(2 \mathrm{k}_{1}^{\prime} \mathrm{k}_{2}\right. \\
& \left.+k_{1} k_{2}^{\prime}\right) \mathrm{E}_{3}+\left(k_{1} \mathrm{k}_{2} k_{3}\right) \mathrm{E}_{4} .
\end{aligned}
$$

Moreover by virtue of (2.3) it yields

$$
\begin{align*}
\mathrm{R}\left(\mathrm{~T}, \nabla_{\mathrm{T}} \mathrm{~T}\right) \mathrm{T}= & -s^{2} \cos ^{2}(\theta) \mathrm{k}_{1} \mathrm{E}_{2}+\frac{(c+3 s)}{4} s\left(\cos ^{2}(\theta)-1\right) \mathrm{k}_{1} \mathrm{E}_{2} \tag{3.4}\\
& +\frac{(c-s)}{4}\left(-3 \mathrm{k}_{1} g\left(\phi \mathrm{~T}, \mathrm{E}_{2}\right) \phi \mathrm{T} .\right.
\end{align*}
$$

Thus it follows from (3.3), (3.4) and (3.1) that

$$
\begin{aligned}
\tau_{\delta_{1}, \delta_{2}}(\tilde{\varphi})= & -3 \delta_{2} k_{1} k_{1}^{\prime} E_{1}+\left[\delta_{2}\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right)+s^{2} \cos ^{2}(\theta) k_{1}\right. \\
& \left.+k_{1} \frac{(c+3 s)}{4}\left(1-s \cos ^{2}(\theta)\right)-\delta_{1} k_{1}\right] E_{2}+\delta_{2}\left(2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}\right) \mathrm{E}_{3} \\
& +\left(\delta_{2} k_{1} k_{2} k_{3}\right) E_{4}+3 \frac{(c-s)}{4} k_{1} g\left(\phi \mathrm{~T}, \mathrm{E}_{2}\right) \phi \mathrm{T},
\end{aligned}
$$

and by taking the inner product with E_{1}, E_{2}, E_{3} and E_{4} we get the desired result.
Next, we discuss four different cases to investigate and simplify the result of Theorem 3.1. In each case we take $\frac{\delta_{1}}{\delta_{2}} \neq 0$.

Case 1: $\mathrm{c}=\mathrm{s}$.
Proposition 3.2. Let $\tilde{\varphi}: \mathrm{I} \rightarrow \overline{\mathcal{M}}(\mathrm{c})$ be a slant curve of osculating order r in S -space form

$$
\overline{\mathcal{M}}(\mathrm{c})=\left(\overline{\mathcal{M}}^{(2 \mathrm{n}+\mathrm{s})}, \phi, \xi_{\alpha}, \eta_{\alpha}, \mathrm{g}\right),
$$

$\alpha=\{1 \cdots \mathrm{~s}\}$ such that $\mathrm{c}=s$ and $p=\min \{\mathrm{r}, 4\}$. Then $\tilde{\varphi}$ is interpolating sesqui-harmonic if and only if

$$
\left\{\begin{array}{l}
k_{1}=\text { constant }>0, \tag{3.5}\\
k_{1}^{2}+k_{2}^{2}=s^{2} \cos ^{2}(\theta)+s\left(1-s \cos ^{2}(\theta)\right)-\frac{\delta_{1}}{\delta_{2}}, \\
k_{2}=\text { constant }, \quad k_{2} k_{3}=0 .
\end{array}\right.
$$

Proof. For $\mathrm{c}=\mathrm{s}$ and making use of (3.2) we find

$$
\left\{\begin{array}{l}
k_{1} k_{1}^{\prime}=0 \tag{3.6}\\
\left(k_{1}^{\prime \prime}-k_{1}^{3}-k_{1} k_{2}^{2}\right)+s^{2} \cos ^{2}(\theta) k_{1}+k_{1}\left(1-s \cos ^{2}(\theta)\right)-\frac{\delta_{1}}{\delta_{2}} k_{1}=0 \\
2 k_{1}^{\prime} k_{2}+k_{1} k_{2}^{\prime}=0 \\
k_{1} k_{2} k_{3}=0
\end{array}\right.
$$

By using $\mathrm{k}_{1}=$ constant >0 in last three equations of (3.6) we get the result.

Now using proposition (3.2) we have the following theorem.
Theorem 3.3. Let $\tilde{\varphi}: \mathrm{I} \rightarrow \overline{\mathcal{M}}(\mathrm{c})$ be a slant curve of osculating order r in S -space form

$$
\overline{\mathcal{M}}(\mathrm{c})=\left(\overline{\mathcal{M}}^{(2 n+s)}, \phi, \xi_{\alpha}, \eta_{\alpha}, \mathrm{g}\right),
$$

$\alpha=\{1 \cdots s\}$ such that $c=s$ and $p=\min \{r, 4\}$. Then

1. $\tilde{\varphi}$ is a geodesic, or
2. $\tilde{\varphi}$ is interpolating sesqui-harmonic if and only if it is a circle with

$$
k_{1}=\sqrt{s^{2} \cos ^{2}(\theta)+s\left(1-s \cos ^{2}(\theta)\right)-\frac{\delta_{1}}{\delta_{2}}}
$$

3. $\tilde{\varphi}$ is interpolating sesqui-harmonic if and only if it is a helix with

$$
k_{1}^{2}+k_{2}^{2}=s^{2} \cos ^{2}(\theta)+s\left(1-\cos ^{2}(\theta) s\right)-\frac{\delta_{1}}{\delta_{2}} .
$$

Proof. If $\tilde{\varphi}$ is of osculating order $r=2$ with $\frac{\delta_{1}}{\delta_{2}} \neq 0$, then $k_{2}=0$ and thus (3.5) yields

$$
k_{1}=\sqrt{s^{2} \cos ^{2}(\theta)+s\left(1-s \cos ^{2}(\theta)\right)-\frac{\delta_{1}}{\delta_{2}}}, \quad \text { where } \quad \frac{\delta_{1}}{\delta_{2}}<s^{2} \cos ^{2}(\theta)+s\left(1-s \cos ^{2}(\theta)\right) .
$$

Moreover $\tilde{\varphi}$ is osculating order $r=3$, then $k_{3}=0$ therefore by (3.5) we have,

$$
k_{1}^{2}+k_{2}^{2}=s^{2} \cos ^{2}(\theta)+s\left(1-s \cos ^{2}(\theta)\right)-\frac{\delta_{1}}{\delta_{2}}, \quad \text { where } \quad \frac{\delta_{1}}{\delta_{2}}<s^{2} \cos ^{2}(\theta)+s\left(1-s \cos ^{2}(\theta)\right) .
$$

In each case $\tilde{\varphi}$ satisfies Theorem 3.1. If $s^{2} \cos ^{2}(\theta)+s\left(1-s \cos ^{2}(\theta)\right)=\frac{\delta_{1}}{\delta_{2}}$, then $\tilde{\varphi}$ is geodesic.
In particular for a interpolating sesqui harmonic Legendre curve in Sasakian space form, that is, $s=1$ and $\theta=\frac{\pi}{2}$, we have [11, Theorem (3)]. Further for biharmonic Legendre curve in S-space form, that is, $\theta=\frac{\pi}{2}, \delta_{1}=0$ and $\delta_{2}=1$, from Theorem 3.3 we have
Corollary 3.4 ([13]). Let φ be a Legendre frenet curve in an S-space form $\overline{\mathcal{M}}(\mathrm{c})=\left(\overline{\mathcal{M}}^{(2 n+s)}, \phi, \xi_{\alpha}, \eta_{\alpha}, \mathrm{g}\right)$, $\alpha \in\{1, \cdots, s\}, c=s$ and $2 m+s>3$. Then φ is proper biharmonic if and only if either φ is a circle with $k_{1}=\sqrt{s}$ or a helix with $\mathrm{k}_{1}^{2}+\mathrm{k}_{2}^{2}=\mathrm{s}$.

Case 2: $c \neq s$ and $\phi T \perp E_{2}$. Then from Theorem 3.1 we have
Proposition 3.5. Let $\tilde{\varphi}: \mathrm{I} \rightarrow \overline{\mathrm{M}}(\mathrm{c})$ be a slant curve of osculating order r in S-space form

$$
\overline{\mathcal{M}}(c)=\left(\overline{\mathcal{M}}^{(2 n+s)}, \phi, \xi_{\alpha}, \eta_{\alpha}, g\right),
$$

$\alpha=\{1 \cdots s\}$ such that $c \neq s, \phi T \perp E_{2}$ and $p=\min \{r, 4\}$. Then $\tilde{\varphi}$ is interpolating sesqui-harmonic if and only if

$$
\left\{\begin{array}{l}
k_{1}=\text { constant }>0, \\
k_{1}^{2}+k_{2}^{2}=s^{2} \cos ^{2}(\theta)+\frac{(c+3 s)}{4}\left(1-s \cos ^{2}(\theta)\right)-\frac{\delta_{1}}{\delta_{2}}, \\
k_{2}=\text { constant }, \\
k_{2} k_{3}=0
\end{array}\right.
$$

Next, we have

Theorem 3.6. Let $\tilde{\varphi}: \mathrm{I} \rightarrow \overline{\mathcal{M}}(\mathrm{c})$ be a slant curve of osculating order r in S -space form

$$
\overline{\mathcal{M}}(\mathrm{c})=\left(\overline{\mathcal{M}}^{(2 \mathrm{n}+\mathrm{s})}, \phi, \xi_{\alpha}, \eta_{\alpha}, \mathrm{g}\right),
$$

$\alpha=\{1 \cdots s\}$ such that $c \neq s$ and $\phi T \perp E_{2}$. Then we have

1. if $c \leqslant 4\left(\frac{\delta_{1}}{\delta_{2}}-s^{2} \cos ^{2}(\theta)\right) \frac{1}{1-s \cos ^{2}(\theta)}-3 s$ such that $1-s \cos ^{2}(\theta) \neq 0$, then $\tilde{\varphi}$ is interpolating sesqui-harmonic if and only if it is geodesic;
2. if $c>4\left(\frac{\delta_{1}}{\delta_{2}}-s^{2} \cos ^{2}(\theta)\right) \frac{1}{1-s \cos ^{2}(\theta)}-3 s$ such that $1-s \cos ^{2}(\theta) \neq 0$, then $\tilde{\varphi}$ is interpolating sesqui-harmonic if and only if either
(a) $\tilde{\varphi}$ is of osculating order $\mathrm{r}=2, \mathrm{n} \geqslant 2$ and it is circle with

$$
k_{1}^{2}=s^{2} \cos ^{2}(\theta)+\frac{c+3 s}{4}\left(1-s \cos ^{2}(\theta)\right)-\frac{\delta_{1}}{\delta_{2}}
$$

(b) $\tilde{\varphi}$ is of osculating order $r=3, n \geqslant 3$ and it helix with

$$
k_{1}^{2}+k_{2}^{2}=s^{2} \cos ^{2}(\theta)+\frac{c+3 s}{4}\left(1-s \cos ^{2}(\theta)\right)-\frac{\delta_{1}}{\delta_{2}} .
$$

Proof. If $\phi \mathrm{T} \perp \mathrm{E}_{2}$, then we have $\mathrm{g}\left(\phi \mathrm{T}, \mathrm{E}_{2}\right)=0$ by Proposition 3.5. If we take

$$
c \leqslant 4\left(\frac{\delta_{1}}{\delta_{2}}-s^{2} \cos ^{2}(\theta)\right) \frac{1}{1-s \cos ^{2}(\theta)}-3 s
$$

such that $1-s \cos ^{2}(\theta) \neq 0$, then it can be easy seen that $\tilde{\varphi}$ is interpolating sesqui-harmonic if and only if it is a geodesic. Making use of Proposition 3.5 with

$$
c>4\left(\frac{\delta_{1}}{\delta_{2}}-s^{2} \cos ^{2}(\theta)\right) \frac{1}{1-s \cos ^{2}(\theta)}-3 s
$$

such that $1-\cos ^{2}(\theta) \neq 0$ and $\tilde{\varphi}$ is of osculating order $r=2, n \geqslant 2$, then it is a circle with

$$
k_{1}^{2}=s^{2} \cos ^{2}(\theta)+\frac{(c+3 s)}{4}\left(1-\cos ^{2}(\theta)\right)-\frac{\delta_{1}}{\delta_{2}}
$$

is a non-zero positive constant. if $\tilde{\varphi}$ is of osculating order $r=3, n \geqslant 2$, then it is helix with

$$
k_{1}^{2}+k_{2}^{2}=s^{2} \cos ^{2}(\theta)+\frac{(c+3 s)}{4}\left(1-\cos ^{2}(\theta)\right)-\frac{\delta_{1}}{\delta_{2}} .
$$

Conversely, if $\tilde{\varphi}$ is circle with $k_{1}^{2}=s^{2} \cos ^{2}(\theta)+\frac{(c+3 s)}{4}\left(1-\cos ^{2}(\theta)\right)-\frac{\delta_{1}}{\delta_{2}}$ or helix with

$$
k_{1}^{2}+k_{2}^{2}=s^{2} \cos ^{2}(\theta)+\frac{c+3 s}{4}\left(1-\cos ^{2}(\theta)-\frac{\delta_{1}}{\delta_{2}},\right.
$$

then $\tilde{\varphi}$ satisfies Theorem 3.1 and this completes the proof.
In particular for a Legendre curve in Sasakian space form, that is, $s=1$ and $\theta=\frac{\pi}{2}$ we have [11, Theorem (7)]. Further for biharmonic Legendre curve in S-space form, that is, $\theta=\frac{\pi}{2}, \delta_{1}=0$ and $\delta_{2}=1$ from Theorem 3.3, we have
Corollary 3.7 ([13]). Let $\tilde{\varphi}$ be a Legendre Frenet curve in an S-space form

$$
\left(\overline{\mathcal{M}}^{(2 n+s)}, \phi, \xi_{\alpha}, \eta_{\alpha}, g\right),
$$

$\alpha \in\{1, \cdots, s\}, c \neq s$ and $\phi \mathrm{T} \perp \mathrm{E}_{2}$. Then $\tilde{\varphi}$ is proper biharmonic if and only if either

1. $\mathrm{n} \geqslant 2$ and $\tilde{\varphi}$ is a circle with $\mathrm{k}_{1}=\frac{1}{2} \sqrt{\mathrm{c}+3}$, where $\mathrm{c}>-3 \mathrm{~s}$ and $\left\{\mathrm{T}=\mathrm{E}_{1}, \mathrm{E}_{2}, \phi \mathrm{~T}, \nabla_{\mathrm{T}} \phi \mathrm{T}, \xi_{1}, \cdots, \xi_{s}\right\}$ is linearly independent, or
2. $n \geqslant 3$ and $\tilde{\varphi}$ is a helix with $k_{1}^{2}+k_{2}^{2}=c+3$, where $c>-3 s$ and $\left\{T=E_{1}, E_{2}, \phi T, \nabla_{T} \phi T, \xi_{1}, \cdots, \xi_{s}\right\}$ is linearly independent.

If $\mathrm{c} \leqslant-3 \mathrm{~s}$, then $\tilde{\varphi}$ is biharmonic if and only if it is a geodesic.
Case 3: $c \neq s$ and $\phi T \| E_{2}$.
Proposition 3.8. Let $\tilde{\varphi}: \mathrm{I} \rightarrow \overline{\mathcal{M}}(\mathrm{c})$ be a slant curve of osculating order r in S -space form

$$
\overline{\mathcal{M}}(\mathrm{c})=\left(\overline{\mathcal{M}}^{(2 \mathrm{n}+\mathrm{s})}, \phi, \xi_{\alpha}, \eta_{\alpha}, \mathrm{g}\right),
$$

$\alpha=\{1 \cdots \mathrm{~s}\}$ such that $\mathrm{c} \neq \mathrm{s}$ and $\phi \mathrm{T} \| \mathrm{E}_{2}$. Then $\tilde{\varphi}$ is interpolating sesqui-harmonic if and only if

$$
\left\{\begin{array}{l}
k_{1}=\text { constant }>0 \\
k_{1}^{2}+k_{2}^{2}=s^{2} \cos ^{2}(\theta)+c\left(1-s \cos ^{2}(\theta)\right)-\frac{\delta_{1}}{\delta_{2}} \\
k_{2}=\text { constant } \\
k_{2} k_{3}=0
\end{array}\right.
$$

Proof. For $\mathrm{c} \neq \mathrm{s}$, Using (3.2) and Definition 2.1 we have,

$$
\mathrm{g}(\phi \mathrm{~T}, \phi \mathrm{~T})=1-s \cos ^{2}(\theta) .
$$

So for unit vector E_{2} we write $E_{2}= \pm \frac{1}{\sqrt{1-s \cos ^{2}(\theta)}} \phi T$. Therefore we have $g\left(\phi T, E_{2}\right)= \pm \sqrt{1-s \cos ^{2}(\theta)}$, $g\left(\phi T, E_{3}\right)=0$ and $g\left(\phi T, E_{4}\right)=0$. Using these relations in Theorem 3.1 we obtain the results.

Theorem 3.9. Let $\tilde{\varphi}: I \rightarrow \overline{\mathcal{M}}(c)$ be a slant curve of osculating order r in S -space form

$$
\overline{\mathcal{M}}(\mathrm{c})=\left(\overline{\mathcal{M}}^{(2 n+s)}, \phi, \xi_{\alpha}, \eta_{\alpha}, g\right),
$$

$\alpha=\{1 \cdots \mathrm{~s}\}$ such that $\mathrm{c} \neq \mathrm{s}$ and $\phi \mathrm{T} \| \mathrm{E}_{2}$ with the Frenet frame $\left\{\mathrm{T}, \phi \mathrm{T}, \frac{1}{\sqrt{\mathrm{~s}}} \sum_{\alpha=1}^{\mathrm{s}} \xi_{\alpha}\right\}$. Then

1. if $c \leqslant s+\frac{\delta_{1}}{\delta_{2}\left(1-s \cos ^{2}(\theta)\right.}$ such that $1-s \cos ^{2}(\theta) \neq 0$, then $\tilde{\varphi}$ is interpolating sesqui-harmonic with $\frac{\delta_{1}}{\delta_{2}} \neq 0$ if and only if it is geodesic;
2. if $c>s+\frac{\delta_{1}}{\delta_{2}\left(1-\cos ^{2}(\theta)\right.}$ such that $1-s \cos ^{2}(\theta) \neq 0$, then $\tilde{\varphi}$ is interpolating sesqui-harmonic if and only if $\tilde{\varphi}$ is of osculating order $r=3, n \geqslant 3$ and it helix with

$$
k_{1}^{2}=s^{2} \cos ^{2}(\theta)+c\left(1-s \cos ^{2}(\theta)\right)-\frac{\delta_{1}}{\delta_{2}}-s \text { and } k_{2}=\sqrt{s} .
$$

Proof. If $\phi \mathrm{T} \| \mathrm{E}_{2}$, then we have $\mathrm{g}\left(\phi \mathrm{T}, \mathrm{E}_{2}\right)=\sqrt{1-\mathrm{s} \cos ^{2}(\theta)}$. By Proposition 3.8, if we take

$$
c \leqslant s+\frac{\delta_{1}}{\delta_{2}\left(1-s \cos ^{2}(\theta)\right.},
$$

such that $1-s \cos ^{2}(\theta) \neq 0$, then it is easy to see that $\tilde{\varphi}$ is interpolating sesqui-harmonic if and only if it is a geodesic.

If $c>s+\frac{\delta_{1}}{\delta_{2}\left(1-s \cos ^{2}(\theta)\right.}$ such that $1-s \cos ^{2}(\theta) \neq 0$, and if $\tilde{\varphi}$ is of osculating order $r=3, n \geqslant 3$, then it is helix with $k_{1}^{2}=s^{2} \cos ^{2}(\theta)+c\left(1-s \cos ^{2}(\theta)\right)-\frac{\delta_{1}}{\delta_{2}}-s$ and $k_{2}=\sqrt{s}$. Conversely, if $\tilde{\varphi}$ is helix with $k_{1}^{2}+k_{2}^{2}=s^{2} \cos ^{2}(\theta)+c\left(1-\cos ^{2}(\theta)\right)-\frac{\delta_{1}}{\delta_{2}}$ then $\tilde{\varphi}$ satisfies Theorem 3.1.

In particular for a Legendre curve in Sasakian space form that is $s=1$ and $\theta=\frac{\pi}{2}$. Thus, we have [11, Theorem (10)]. Further for biharmonic Legendre curve in S-space form, that is, $\theta=\frac{\pi}{2}, \delta_{1}=0$ and $\delta_{2}=1$ from Theorem 3.3, we have
Corollary 3.10 ([13]). Let $\tilde{\varphi}$ be a Frenet curve in an S-space form $\left(\overline{\mathcal{M}}^{(2 n+s)}, \phi, \xi_{\alpha}, \eta_{\alpha}, g\right) \alpha \in\{1, \cdots, s\}, c \neq s$ and $\phi \mathrm{T} \| \mathrm{E}_{2}$. Then

$$
\left\{\mathrm{T}, \phi \mathrm{~T}, \frac{1}{\sqrt{s}} \sum_{\alpha=1}^{s} \xi_{\alpha}\right\}
$$

is the Frenet frame of $\tilde{\varphi}$ and $\tilde{\varphi}$ is proper biharmonic if and only if it is helix with $k_{1}=\sqrt{c-s}$ and $k_{2}=\sqrt{s}$, where $\mathrm{c}>\mathrm{s}$. If $\mathrm{c} \leqslant \mathrm{s}$, then $\tilde{\varphi}$ is biharmonic if and only if it is geodesic.
Case 4: $c \neq s$ and $g\left(\phi T, E_{2}\right) \neq 0,-1,1$.
Proposition 3.11. Let $\tilde{\varphi}: \mathrm{I} \rightarrow \overline{\mathcal{M}}(\mathrm{c})$ be a slant curve of osculating order r in S -space form

$$
\overline{\mathcal{M}}(\mathrm{c})=\left(\overline{\mathcal{M}}^{(2 \mathrm{n}+\mathrm{s})}, \phi, \xi_{\alpha}, \eta_{\alpha}, g\right)
$$

such that $4 \leqslant r \leqslant 2 n+1, n \geqslant 2$ and $\phi T \in \operatorname{span}\left\{\mathrm{E}_{2}, \cdots, \mathrm{E}_{\mathrm{p}}\right\}$. Then $\tilde{\varphi}$ is interpolating sesqui-harmonic if and only if

$$
\left\{\begin{array}{l}
k_{1}=\text { constant }>0 \\
k_{1}^{2}+k_{2}^{2}=s^{2} \cos ^{2}(\theta)+\left(1-s \cos ^{2}(\theta)\right) \frac{c+3 s}{4}-\frac{\delta_{1}}{\delta_{2}}+\frac{3(c-s)}{4}\left(1-s \cos ^{2}(\theta)\right) \cos ^{2}\left(\theta_{1}\right) \\
k_{2} k_{3}=\frac{-3(c-s)}{4}\left(1-s \cos ^{2} \theta\right) \sin \left(2 \theta_{1}\right.
\end{array}\right.
$$

where $\theta_{1} \in(0,2 \pi) \backslash\left\{\frac{\pi}{2}, \pi, \frac{3 \pi}{2}\right\}$.
Proof. If $\tilde{\varphi}$ is a interpolating sesqui-harmonic frenet curve of osculating order $r \geqslant 4$ and $g\left(E_{2}, \phi T\right) \neq$ $0,1,-1$. If θ_{1} is the angle between ϕT and E_{2} such that

$$
g\left(\phi T, E_{2}\right)=\sqrt{1-s \cos ^{2} \theta} \cos \theta_{1}(t)
$$

Differentiating above equation and using (2.1), (2.2) and (2.3) we get,

$$
\begin{equation*}
g\left(\phi T, E_{3}\right)=-\frac{1}{k_{2}} \sqrt{1-s \cos ^{2} \theta} \theta_{1}^{\prime}(t) \sin \theta_{1}(t) \tag{3.7}
\end{equation*}
$$

We can write $\varphi T_{1}=g\left(\varphi T_{1}, E_{2}\right) E_{2}+g\left(\varphi T_{1}, E_{3}\right) E_{3}+g\left(\varphi T_{1}, E_{4}\right) E_{4}$. So, the equations in Theorem 3.1 become

$$
\left\{\begin{array}{l}
k_{1}=\text { constant }>0 \\
k_{1}^{2}+k_{2}^{2}=s^{2} \cos ^{2} \theta+\frac{c+3 s}{4}\left(1-s \cos ^{2} \theta\right)+\frac{3(c-s)}{4}\left(1-s \cos ^{2} \theta\right) \cos ^{2} \theta_{1}(t)-\frac{\delta_{1}}{\delta_{2}} \\
k_{2} k_{2}^{\prime}-\frac{3(c-s)}{4}\left(1-s \cos ^{2} \theta\right) \theta_{1}^{\prime} \sin \theta_{1} \cos \theta_{1}=0 \\
k_{2} k_{3}+\frac{3(c-s)}{4} g\left(\varphi T, E_{2}\right) g\left(\varphi T, E_{4}\right)=0
\end{array}\right.
$$

On solving the third equation of the above system, we obtain

$$
\begin{equation*}
\mathrm{k}_{2}^{2}=-3 \sqrt{1-s \cos ^{2} \theta} \frac{(c-s)}{4} \cos ^{2} \theta_{1}+\delta_{0} \tag{3.8}
\end{equation*}
$$

where δ_{0} is a constant. If we write (3.8) in the second equation, we have

$$
k_{1}^{2}=s^{2} \cos ^{2} \theta+\frac{c+3 s}{4}\left(1-s \cos ^{2} \theta\right)+\frac{3(c-s)}{4}\left(1-s \cos ^{2} \theta+\sqrt{1-s \cos ^{2} \theta}\right) \cos ^{2} \theta_{1}-\frac{\delta_{1}}{\delta_{2}}+\delta_{0}
$$

Hence θ_{1} is a constant. From (3.7), we have $g\left(\varphi T, E_{3}\right)=0$ and $k_{2}=$ constant >0. Next, using

$$
\|\varphi \mathrm{T}\|=\sqrt{1-s \cos ^{2} \theta}
$$

and $\varphi \mathrm{T}=\sqrt{1-s \cos ^{2} \theta} \cos \theta_{1} \mathrm{E}_{2}+\mathrm{g}\left(\varphi \mathrm{T}, \mathrm{E}_{4}\right) \mathrm{E}_{4}$, we obtain $\mathrm{g}\left(\varphi \mathrm{T}, \mathrm{E}_{4}\right)=\sqrt{1-s \cos ^{2} \theta} \sin \theta_{1}$ where $\theta_{1} \in$ $(0,2 \pi) \backslash\left\{\frac{\pi}{2}, \pi, \frac{3 \pi}{2}\right\}$. Thus we have the result.

4. Example

In this section we discuss the two cases for interpolating sesqui harmonic slant curve in S-space form when $\phi T \perp E_{2}$ and $\phi T \| E_{2}$ separately in the following examples.

Example 4.1. Let $\left(\overline{\mathcal{N}}^{(2 n+s)}, \phi, \xi_{\alpha}, \eta_{\alpha}, g\right)$ be S-space form with coordinate functions

$$
\left\{x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}, z_{1}, \cdots, z_{s}\right\} .
$$

The vector fields

$$
\begin{equation*}
x_{i}=2 \frac{\partial}{\partial y_{i}}, \quad X_{n+i}=\phi x_{i}=2\left(\frac{\partial}{\partial y_{i}}+y_{i} \sum_{\alpha=1}^{s} \frac{\partial}{\partial z_{\alpha}}\right), \quad \xi_{\alpha}=2 \frac{\partial}{\partial z_{\alpha}}, \tag{4.1}
\end{equation*}
$$

form a g-orthonormal basis and the Levi-Civita connection is calculated as

$$
\begin{gathered}
\nabla_{X_{i}} X_{j}=\nabla_{X_{n+i}} X_{n+j}=0, \quad \nabla_{X_{i}} X_{n+j}=\delta_{i j} \sum_{\alpha=1}^{s} \xi_{\alpha}, \quad \nabla_{X_{n+i}} x_{j}=-\delta_{i j} \sum_{\alpha=1}^{s} \xi_{\alpha} \\
\nabla_{X_{i}} \xi_{\alpha}=\nabla_{\xi_{\alpha}} x_{i}=-X_{n+i}, \quad \nabla_{X_{n+i}} \xi_{\alpha}=\nabla_{\xi_{\alpha}} X_{n+i}=X_{i}
\end{gathered}
$$

Let $\tilde{\varphi}(\mathrm{t})=\left(\tilde{\varphi}_{1}(\mathrm{t}), \tilde{\varphi}_{2}(\mathrm{t}), \tilde{\varphi}_{3}(\mathrm{t}), \tilde{\varphi}_{4}(\mathrm{t})\right)$ be unit speed slant curve in $\mathrm{R}^{4}(-6)$. Then for a tangent vector of the slant curve we have

$$
\mathrm{T}=\frac{1}{2}\left[\tilde{\varphi}_{1}^{\prime} \frac{\partial}{\partial x_{1}}+\tilde{\varphi}_{2}^{\prime} \frac{\partial}{\partial y_{1}}+\tilde{\varphi}_{3}^{\prime} \frac{\partial}{\partial z_{1}}+\tilde{\varphi}_{4}^{\prime} \frac{\partial}{\partial z_{2}}\right] .
$$

From (4.1), we find

$$
X_{1}=2 \frac{\partial}{\partial y_{1}}, \quad X_{2}=\phi X_{1}=2\left(\frac{\partial}{\partial x_{1}}+y_{1}\left(\frac{\partial}{\partial z_{1}}+\frac{\partial}{\partial z_{2}}\right)\right), \quad \xi_{1}=2 \frac{\partial}{\partial z_{1}}, \xi_{2}=2 \frac{\partial}{\partial z_{2}} .
$$

By using these values, it follows that

$$
\begin{equation*}
\mathrm{T}=\frac{1}{2}\left[\tilde{\varphi}_{2}^{\prime} X_{1}+\tilde{\varphi}_{1}^{\prime} X_{2}+\left(\tilde{\varphi}_{3}^{\prime}-\tilde{\varphi}_{1}^{\prime} \tilde{\varphi}_{2}\right) \xi_{1}+\left(\tilde{\varphi}_{4}^{\prime}-\tilde{\varphi}_{1}^{\prime} \tilde{\varphi}_{2}\right) \xi_{2}\right] \tag{4.2}
\end{equation*}
$$

Thus for a slant curve $\eta_{\alpha}(T)=\cos (\theta)$, we have

$$
\begin{align*}
& \tilde{\varphi}_{4}^{\prime}=\tilde{\varphi}_{1}^{\prime} \tilde{\varphi}_{2}+2 \cos (\theta), \tag{4.3}\\
& \tilde{\varphi}_{3}^{\prime}=\tilde{\varphi}_{1}^{\prime} \tilde{\varphi}_{2}+2 \cos (\theta), \tag{4.4}\\
& \tilde{\varphi}_{1}^{\prime 2}+\tilde{\varphi}_{2}^{\prime 2}=4\left(1-2 \cos ^{2}(\theta)\right) . \tag{4.5}
\end{align*}
$$

Differentiating (4.2) and making use of (4.3) and (4.4), it yields

$$
\nabla_{\mathrm{T}} \mathrm{~T}=\frac{1}{2}\left[\tilde{\varphi}_{2}^{\prime \prime} \mathrm{X}_{1}+\tilde{\varphi}_{1}^{\prime \prime} \mathrm{X}_{2}\right] .
$$

Then for $\theta=\frac{\pi}{3}$ in (4.5), we get $\tilde{\varphi}_{1}=\sqrt{2} \sin t$ and $\tilde{\varphi}_{2}=-\sqrt{2} \cos t$. Now using these values in (4.3) and (4.4), we have $\tilde{\varphi}_{3}=\frac{1}{2} \sin 2 \mathrm{t}$ and $\tilde{\varphi}_{4}=\frac{1}{2} \sin 2 \mathrm{t}$, respectively. Therefore, we have $\tilde{\varphi}(\mathrm{t})=$ $\left(\sqrt{2} \sin t,-\sqrt{2} \cos t, \frac{1}{2} \sin 2 t, \frac{1}{2} \sin 2 t\right)$. Now making use of (4.6), we have

$$
\nabla_{\mathrm{T}} \mathrm{~T}=\frac{1}{2}\left[\sqrt{2} \cos t X_{1}-\sqrt{2} \sin t X_{2}\right]
$$

Taking the inner product of above equation with itself, we have $k_{1}=\frac{1}{\sqrt{2}}$ which satisfies Theorem 3.1 for the case of osculating order $2, \phi \mathrm{~T} \perp \mathrm{E}_{2}, \delta_{1}=-1, \delta_{2}=2$.

For $\cos (\theta)=\frac{\sqrt{3}}{2 \sqrt{2}}$ and $\phi \mathrm{T} \| \mathrm{E}_{2}$ we have the following example.
Example 4.2. The value $\cos (\theta)=\frac{\sqrt{3}}{2 \sqrt{2}}$ in (4.5) implies $\tilde{\varphi}_{1}=\sin t$ and $\tilde{\varphi}_{2}=\cos t$. Now using these values in (4.3) and (4.4) we have $\tilde{\varphi}_{3}=\frac{1}{2}\left(t+\sqrt{6} t+\frac{\sin 2 t}{2}\right)$ and $\tilde{\varphi}_{4}=\frac{1}{2}\left(t+\sqrt{6} t+\frac{\sin 2 t}{2}\right)$, respectively. Therefore, we get $\tilde{\varphi}(t)=\left(\sin t, \cos t, \frac{1}{2}\left(t+\sqrt{6} t+\frac{\sin 2 t}{2}\right), \frac{1}{2}\left(t+\sqrt{6} t+\frac{\sin 2 t}{2}\right)\right)$, which by making use of (4.6), gives

$$
\nabla_{\mathrm{T}} \mathrm{~T}=\frac{1}{2}\left[\cos \mathrm{t} \mathrm{X}_{1}-\sin \mathrm{t} \mathrm{X}_{2}\right] .
$$

Then by taking the inner product of above equation with itself we find $k_{1}=\frac{1}{2}$ which satisfies Theorem 3.1 for the case of osculating order $2, \phi \mathrm{~T} \| \mathrm{E}_{2}, \delta_{1}=-19, \delta_{2}=4$.

Aknowledgement

The authors are thankful to the editor Prof. Ghadir Sadeghi and anonymous referees for their valuable suggestions that definitely improved the paper.

References

[1] V. Branding, On interpolating sesqui-harmonic maps between Riemannian manifolds, J. Geom. Anal., 30 (2019), 248-273. 1,3
[2] C. Călin, M. Crasmareanu, Slant curves in 3-dimensional normal almost contact geometry, Mediterr. J. Math., 10 (2013), 1067-1077. 1
[3] J. T. Cho, J.-I. Inoguchi, J.-E. Lee, Slant curves in Sasakian 3-manifolds, Bull. Austral. Math. Soc., 74 (2006), 359-367. 1
[4] J. T. Cho, J.-I. Inoguchi, J.-E. Lee, Biharmonic curves in 3-dimensional Sasakian space forms, Ann. Mat. Pura Appl. (4), 186 (2007), 685-701. 1
[5] J. Eells, J. H.Sampson, Harmonic mappings of Riemannian manifolds, Amer J. Math., 86 (1964), 109-160. 1
[6] D. Fetcu, Biharmonic Legendre curves in Sasakian space forms, J. Korean Math. Soc., 45 (2008), 393-404. 1
[7] D. Fetcu, C. Oniciuc, Explicit formulas for biharmonic submanifolds in Sasakian space form, Pacific J. Math., 240 (2009), 85-107. 1
[8] S. Güvenc, C. Özgür, On the characterizations of f-biharmonic Legendre curves in Sasakian space forms, Filomat, 31 (2017), 639-648. 1
[9] S. Güvenc, C. Özgür, On slant curves in S-manifolds, Commun. Korean Math. Soc., 33 (2018), 293-303. 1
[10] G. Y. Jiang, 2-Harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A, 7 (1986), 389-402. 1
[11] F. Karaca, C. Özgür, U. C. De, On interpolating sesqui harmonic legendre curves in Sasakian space forms, Int. J. Geom. Methods Mod. Phys., 17 (2020), 13 pages. 1, 3, 3, 3
[12] Y. Lou, Y.-L. Ou, Some remarks on Bi-f harmonic maps and f-biharmonic maps, Results Math., 74 (2019), 19 pages. 1
[13] C. Özgür, S. Güvenc, On biharmonic Legendre curves in S-space forms, Turkish J. Math., 38 (2014), 454-461. 1, 2, 2.1, 2, 2, 3.4, 3.7, 3.10
[14] C. Özgür, S. Güvenc, On some classes of biharmonic Legendre curves in generalized Sasakian space forms, Collect. Math., 65 (2014), 203-218. 1
[15] A. Polyako, Fine structure of strings, Nuclear Phys. B, 268 (1986), 406-412. 1
[16] K. Yano, M. Kon, Structures on manifolds, World Scientific Publishing Co., Singapore, (1984). 2

[^0]: *Corresponding author
 Email addresses: fyalmofarrah@pnu.edu.sa (Fatemah Mofarreh), malikhaseeb80@gmail.com, haseeb@jazanu.edu.sa (Abdul Haseeb), yadavsarvesh74@gmail.com (Sarvesh Kumar Yadav), kidwaiaslam@gmail.com (Mohd. Aslam)
 doi: 10.22436/jmcs.028.01.02
 Received: 2021-08-16 Revised: 2021-09-03 Accepted: 2022-03-10

