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1. Introduction

Belleza and Vilela [1] in 2019 introduced and characterized the Dual B-algebra together with some
of its properties and relations to other algebras. In 1999, Jun et al. [5] introduced topological BCI-
algebras, provided some properties on this structure, and characterized a topological BCI-algebra in terms
of neighborhoods. In 2017, Mehrshad and Golzarpoor [6] provided some properties of uniform topology
and topological BE-algebras. Moreover, Gonzales [3] in 2019 introduced the notion of topological B-
algebras and investigated its properties based on neighborhoods and filterbase.

The aforementioned research works have paved way to investigating dual B-filters and its relevance in
the concept of a uniform dual B-topology. Specifically, this paper introduces the notion of the tdB-algebra,
dual B-subalgebras, and dual B-filters, provides some properties of dual B-filters and characterizes uni-
form dual B-topology in a dual B-algebra.

2. Preliminaries

Definition 2.1 ([1]). A dual B-algebra XD is a triple (XD, ◦, 1) where XD is a non-empty set with a binary
operation ” ◦ ” and a constant 1 satisfying the following axioms for all x,y, z in XD

(DB1) x ◦ x = 1;

(DB2) 1 ◦ x = x;
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(DB3) x ◦ (y ◦ z) = ((y ◦ 1) ◦ x) ◦ z.

Example 2.2 ([1]). Let XD = {1,a,b, c} with binary operation ◦ as defined in the table below.

◦ 1 a b c

1 1 a b c

a a 1 c b

b b c 1 a

c c b a 1

Then (XD, ◦, 1) is a dual B-algebra.

Theorem 2.3 ([1]). Let X = (X, ◦, 1) be any algebra of type (2,0). Then X is a dual B-algebra if and only if

(i) x ◦ x = 1;

(ii) x = (x ◦ 1) ◦ 1;

(iii) (x ◦ y) ◦ (x ◦ z) = y ◦ z.

Lemma 2.4 ([1]). Let (XD, ◦, 1) be a dual B-algebra. Then for any x,y ∈ XD, (i) x ◦ y = 1 implies x = y.

Definition 2.5 ([2]). Let X be a set. A topology (or topological structure) in X is a family τ of subsets of X
that satisfies the following:

(i) Each union of members of τ is also a member of τ;

(ii) Each finite intersection of members of τ is also a member of τ; and

(iii) ∅ and X are members of τ.

A couple (X, τ) consisting of a set X and a topology τ in X is called a topological space. We also say
”τ is the topology of the space X”. The members of τ are called open sets of (X, τ). By a neighborhood of
an element x in X (denoted as U(x)) is meant any open set (that is, member of τ) containing x. Let (X, τX)
and (Y, τY) be topological spaces. A map f : X→ Y is called continuous if the inverse image of each open
set in Y is open in X (that is, if f−1 maps τY into τX).

Definition 2.6 ([2]). Let {Yα|α ∈ A} be any family of topological spaces. For each α ∈ A, let τα be
the topology for Yα. The Cartersian product topology in

∏
α Yα is that having for subbasis all sets

< Uβ >= ρ
−1
β (Uβ), where ρ :

∏
α Yα → Yα, Uβ ranges over all members of τβ and β over all elements of

A.

Theorem 2.7 ([2]). Let (X, τX) and (Y, τY) be topological spaces and f : X → Y a map. Then f is continuous if
and only if for each x ∈ X and each neighborhood W

(
f(x)

)
in Y, there exists a neighborhood V(x) in X such that

f
(
V(x)

)
⊆W

(
f(x)

)
.

3. Introduction to topological dual B-algebra

Henceforth, the notation XD will mean the triple (XD, ◦, 1).

Definition 3.1. Let XD be a dual B-algebra. A topology τ on XD is called a dual B-topology and the
couple (XD, τ) is called a dual B-topological space.

Example 3.2. Consider the set XD = {1,a,b, c,d, e} and binary operation ◦ as defined in the table below.
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◦ 1 a b c d e

1 1 a b c d e

a b 1 a d e c

b a b 1 e c d

c c d e 1 a b

d d e c b 1 a

e e c d a b 1

By routine calculations, XD = (XD; ◦, 1) is a dual B-algebra. Let τ = {XD,∅, {1}, {1,a,b}, {1, c,d, e}}. Then τ
is a dual B-topology on XD.

Definition 3.3. The triple (XD, ◦, τ) is called a topological dual B-algebra (or tdB-algebra) if τ is a dual
B-topology and the binary operation ◦ : XD×XD → XD is continuous where the topology on XD×XD is
the Cartesian product topology.

Remark 3.4. Let XD be a dual B-algebra and nonempty A,B ⊆ XD. Then

◦(A×B) = A ◦B,

where A ◦B = {a ◦ b|a ∈ A,b ∈ B}.

Theorem 3.5. Let XD be a dual B-algebra and τ a dual B-topology. Then (XD, ◦, τ) is a tdB-algebra if and only if
for all x,y ∈ XD and U(x ◦ y), there exists U(x) and U(y) such that U(x) ◦U(y) ⊆ U(x ◦ y).

Proof. Suppose (XD, ◦, τ) is a tdB-algebra and let x,y ∈ XD and U(x ◦ y) a neighborhood of x ◦ y. Since ◦
is continuous, ◦−1

(
U(x ◦ y)

)
is a neighborhood of (x,y) ∈ XD × XD. By the Cartesian product topology,

there exists U(x) and U(y) such that U(x)×U(y) ⊆ ◦−1
(
U(x ◦ y)

)
. By Remark 3.4, it follows that

U(x) ◦U(y) = ◦
(
U(x)×U(y)

)
⊆ ◦ ◦−1 (U(x ◦ y)).

Hence, there exists U(x) and U(y) such that U(x) ◦U(y) ⊆ U(x ◦ y). Conversely, let (x,y) ∈ XD ×XD and
U(x ◦ y) ⊆ XD. Then there exists U(x) and U(y) such that U(x) ◦U(y) ⊆ U(x ◦ y). Note that U(x)×U(y)
is a neighborhood of (x,y) in XD × XD. By Remark 3.4, ◦

(
U(x)×U(y)

)
= U(x) ◦U(y). It follows that

◦
(
U(x)×U(y)

)
⊆ U(x ◦ y). By Theorem 2.7, ◦ is continuous. Therefore, (XD, ◦, τ) is a tdB-algebra.

Example 3.6. Consider the dual B-algebra XD= {1,a,b, c} from Example 2.2 and let τ= {XD,∅, {1,a}, {b, c}}.
Then τ is a dual B-topology. Through routine calculations and with Theorem 3.5, (XD, ◦, τ) is a tdB-
algebra.

Example 3.7. Consider the dual B-topological space (XD, τ) from Example 3.2. Note that for a ∈ XD, the
neighborhoods of a are XD and {1,a,b}. Hence, for a ◦ a = 1 ∈ {1}, we have

XD ◦XD = XD ◦ {1,a,b} = {1,a,b} ◦XD = XD * {1},

and {1,a,b} ◦ {1,a,b} = {1,a,b} * {1}. It follows that (XD, ◦, τ) is not a tdB-algebra.

4. Dual B-filters and dual B-subalgebras

Definition 4.1. Let XD be a dual B-algebra and S a nonempty subset of XD. Then S is called a dual
B-subalgebra of XD if S itself is a dual B-algebra with binary operation of XD on S.

Remark 4.2. If S is a dual B-subalgebra of XD, then 1 ∈ S.

Theorem 4.3. Let S be a nonempty subset of a dual B-algebra XD. Then S is a dual B-subalgebra if and only if for
any x,y ∈ S, x ◦ y ∈ S.
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Proof. Let S be a nonempty subset of a dual B-algebra XD with x ◦ y ∈ S for any x,y ∈ S. Note that S
satisfies (DB1), (DB2), (DB3) with 1 = x ◦ x ∈ S. Hence, S is itself a dual B-algebra. The converse follows
immediately by definition of a binary operator.

Example 4.4. Consder the dual B-algebra of Example 3.2. Note that {1,a,b}, {1, c}, {1,d}, and {1, e} are dual
B-subalgebras while {1,a} is not a dual B-subalgebra since a ◦ 1 = b /∈ {1,a}.

Remark 4.5. Not every dual B-subalgebra of a dual B-algebra XD is either an open or closed set in a dual
B-topological space. This remark is illustrated in the next example.

Example 4.6. Consider the dual B-topological space (XD, τ) from Example 3.2 and dual B-subalgebra
S1 = {1, c} from Example 4.4. Note that S1 /∈ τ implying that S1 is not an open set. Morevoer,

XD\S1 = {a,b,d, e} /∈ τ,

implying that S1 is not a closed set.

The next result is a characterization of an open subset in a tdB-algebra. Since dual B-subalgebras are
also subsets of dual B-algebras, the theorem is followed by a corollary indicating that the characterization
may also be applied to dual B-subalgebras.

Theorem 4.7. Let (XD, ◦, τ) be a tdB-algebra, 1 ∈
⋂

U∈τ,U6=∅
U, and S ⊆ XD such that 1 ∈ S. Then a subset S of

XD is open if and only if 1 is an interior point of S.

Proof. Suppose S is open in XD. Then Int(S)= S. Since 1 ∈ S, 1 is an interior point of S. Conversely,
suppose 1 is an interior point of S. Then there exists U(1) such that U(1) ⊆ S. Let x ∈ S. By (DB1),
x ◦ x = 1 ∈ U(1). By Theorem 3.5, there exists U(x) such that U(x) ◦U(x) ⊆ U(1). It remains to show that
U(x) ⊆ S. By hypothesis, 1 ∈ U(x). Since x ∈ U(x), x = 1 ◦ x ∈ U(x) ◦U(x). Thus, U(x) ⊆ U(x) ◦U(x).
Hence, x ∈ U(x) ⊆ U(x) ◦U(x) ⊆ U(1) ⊆ S. Therefore, S is open.

Corollary 4.8. Let (XD, ◦, τ) be a tdB-algebra and 1 ∈
⋂

U∈τ,U6=∅
U. Then a dual B-subalgebra S of XD is open if

and only if 1 is an interior point of S.

Lemma 4.9. Let (XD, ◦, τ) be a tdB-algebra and S1 ⊆ XD where 1 ∈ S1 with the property that if 1 ∈ U, then
S1 ⊆ U for all U ∈ τ. Then for any x ∈ S1 with U(x), S1 ⊆ U(x).

Proof. Suppose x ∈ S1 with U(x). By (DB2), 1 ◦ x = x ∈ U(x). By Theorem 3.5, there exists U(1) such that
U(1) ◦U(x) ⊆ U(x). By (DB1) and the hypothesis, 1 = x ◦ x ∈ S1 ◦U(x) ⊆ U(1) ◦U(x) ⊆ U(x). This implies
that U(x) is an open set containing 1. Therefore, S1 ⊆ U(x).

Theorem 4.10. Let (XD, ◦, τ) be a tdB-algebra such that 1 ∈
⋂

U∈τ,U 6=∅
U and S a closed dual B-subalgebra of XD.

Then S is open in XD.

Proof. Suppose S is a closed dual B-subalgebra of XD. Assume on the contrary that S is not an open set
in XD. By Corollary 4.8, 1 is not an interior point of S. This implies that for all U(1), U(1) * S. Let S1
be open with property defined in Lemma 4.9. Then S1 * S. Hence, (X\S)

⋂
S1 6= ∅ and so there exists

z ∈ (X\S)
⋂
S1. Hence, (X\S)

⋂
S1 is an open set containing z. By Lemma 4.9, S1 ⊆ (X\S)

⋂
S1 which is a

contradiction.

Definition 4.11. Let XD be a dual B-algebra. A subset F of XD is called a dual B-filter if it satisfies the
following axioms: For all x,y in X

(dF1) 1 ∈ F;
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(dF2) (x ◦ y) ∈ F and x ∈ F imply y ∈ F.

Example 4.12. Suppose XD is a dual B-algebra. Then XD and {1} are dual B-filters of XD called the trivial
dual B-filters of XD.

Example 4.13. Consider the dual B-algebra XD = {1,a,b, c,d, e} from Example 3.2. The sets {1}, F1 = {1, c},
F2 = {1,d}, F3 = {1, e}, and F4 = {1,a,b} are dual B-filters of XD while A = {1,a, e} is not a dual B-filter
since e ◦ c = a ∈ A where e ∈ A but c /∈ A.

Proposition 4.14. If F is a dual B-filter of a dual B-algebra XD. Then F is a dual B-subalgebra of XD.

Proof. Suppose F is a dual B-filter of XD and let x,y ∈ F. Since 1 ∈ F and F is a dual B-filter, 1 ◦ (x ◦ y)
implies that x ◦ y ∈ F. Therefore, F is a dual B-subalgebra.

Remark 4.15. Not every open subset of a tdB-algebra XD is a dual B-filter of XD. This is illustrated in the
next example.

Example 4.16. Consider the tdB-algebra from Example 3.6. Note that {b, c} ∈ τ but {b, c} is not a dual
B-filter since 1 /∈ {b, c}.

From this observation, we have the next theorem as a characterization of when an open set is a dual
B-filter in a tdB-algebra provided that 1 is an element of every nonempty open set in the dual b-topology.

Theorem 4.17. Let (XD, ◦, τ) be a tdB-algebra and F an open subset of XD. If 1 ∈
⋂

U∈τ,U6=∅
U, then F is a dual

B-filter of XD.

Proof. Suppose x ◦ y ∈ F and x ∈ F for any x,y ∈ XD. Since F is open, there exists U(x),U(y) such that
U(x) ◦U(y) ⊆ F by Theorem 3.5. By (DB2), y = 1 ◦ y ∈ U(x) ◦U(y) ⊆ F. Therefore, F is a dual B-filter of
XD.

In Example 4.6, it is illustrated that a dual B-subalgebra may not be a close nor an open set in a dual
B-topological space. However if a dual B-subalgebra S is a dual B-filter in a tdB-algebra XD that is open,
it is also a closed dual B-filter in XD. This is formally stated in the next theorem.

Theorem 4.18. Suppose (XD, ◦, τ) is a tdB-algebra and F a dual B-filter of XD. If F is open in XD, then F is closed
in XD.

Proof. Suppose F is a dual B-filter such that F is open in XD. Let x ∈ XD\F. Since F is a dual B-filter of XD

and by (DB1), x ◦ x = 1 ∈ F. By Theorem 3.5, there exists U(x) such that U(x) ◦U(x) ⊆ F. We will show
that U(x) ⊆ XD\F. Assume on the contrary that U(x) * XD\F. Then U(x) ∩ F 6= ∅. Consequently, there
exists y ∈ U(x)∩ F. Note that for all z ∈ U(x), y ◦ z ∈ U(x) ◦U(x) ⊆ F. Since F is a dual B-filter, it follows
that z ∈ F. Hence, U(x) ⊆ F. This implies that x ∈ F, a contradiction. Thus, XD\F is open. Therefore, F is
closed in XD.

The next coroallry follows from Proposition 4.14, Theorem 4.10 and Theorem 4.18.

Corollary 4.19. Let (XD, ◦, τ) be a tdB-algebra such that 1 ∈
⋂

U∈τ,U6=∅
U. Then a dual B-filter F is a closed subset

of XD if and only if F is an open subset of XD.

Definition 4.20. Let XD be a dual B-algebra and N a nonempty subset of XD. Then N is a normal subset
of XD if for any x ◦ y,a ◦ b ∈ N, (a ◦ x) ◦ (b ◦ y) ∈ N.

Proposition 4.21. Let XD be a dual B-algebra and N1,N2 are nonempty subsets of XD. Then the following holds:

(i) If N1 and N2 are dual B-subalgebras of XD, then N1 ∩N2 is also a dual B-subalgebra.
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(ii) If N1 and N2 are normal subsets of XD, then N1 ∩N2 is also a normal subset of XD.

Proof. Suppose XD is a dual B-algebra, N1,N2 are nonempty subsets of XD, and x,y,a,b ∈ XD.

(i) Let N1 and N2 be dual B-subalgebras. Then for any x,y ∈ N1 ∩N2, x,y ∈ N1 and x,y ∈ N2 implies
that x ◦ y ∈ N1,N2. Hence, x ◦ y ∈ N1 ∩N2. It follows that N1 ∩N2 is a dual B-subalgebra.

(ii) Let N1 and N2 be normal subsets of XD. Suppose x ◦ y,a ◦ b ∈ N1 ∩N2. Then x ◦ y,a ◦ b ∈ N1 and
x ◦ y,a ◦ b ∈ N2. This implies that (b ◦ y) ◦ (a ◦ x) ∈ N1,N2. Hence, (a ◦ x) ◦ (b ◦ y) ∈ N1 ∩N2. It follows
that N1 ∩N2 is a normal subset of XD.

Remark 4.22. The set {1} ⊆ XD is a normal dual B-subalgebra of XD by Lemma 2.4 (i) and (DB1).

Example 4.23. Consider the dual B-subalgebra {1,a,b} and {1, c} from Example 4.4. Then {1,a,b} is a
normal dual B-subalgebra while {1, c} is not normal since a ◦ e = c ◦ 1 = c ∈ {1, c} but (c ◦ a) ◦ (1 ◦ e) =
d ◦ e = a /∈ {1, c}. Similarly, {1,d} and {1, e} are not normal dual B-subalgebras.

Suppose (XD, ◦, 1) is a dual B-algebra and S a normal dual B-subalgebra of XD. Let ”∼=S” be a relation
defined by x ∼=

S y if and only if x ◦ y,y ◦ x ∈ S.

Theorem 4.24. Let (XD, ◦, 1) be a dual B-algebra and S a normal dual B-subalgebra of XD. The relation defined
by x ∼=

S y if and only if x ◦ y,y ◦ x ∈ S is a congruence relation on XD for any x,y ∈ XD.

Proof. Since x ◦ x = 1 ∈ S, it follows that x ∼=
S x and thus, reflexive. Suppose x ∼=

S y. Then

x ◦ y,y ◦ x ∈ S.

Hence, y ∼=
S x implying that the relation is symmetric. Supose x ∼=

S y and y ∼=
S z. Then

x ◦ y,y ◦ x,y ◦ z, z ◦ y ∈ S.

By Theorem 2.3 and since S is a dual B-subalgebra, x◦ z = (y◦x)◦ (y◦ z) ∈ S and z◦x = (y◦ z)◦ (y◦x) ∈ S.
Consequently, x ∼=

S z implying that the relation is transitive. Hence, the relation is an equivalence relation
on XD. Suppose x ∼=

S y and a ∼=
S b. Then x ◦ y,y ◦ x,a ◦ b,b ◦ a ∈ S. Since S is normal, this implies that

(x ◦ a) ◦ (y ◦ b), (y ◦ b) ◦ (x ◦ a) ∈ S that is, x ◦ a ∼=
S y ◦ b. Therefore, the relation ”∼=S” is a congruence

relation on XD.

Suppose XD is a dual B-algebra and S a normal dual B-subalgebra of XD. By Theorem 4.24, we
may now define the set Sx = {y|y ∼=

S x} to denote the equivalence class of x for any x ∈ XD and let
XD/S = {Sx|x ∈ XD} to be the set of all equivalence classes of x for any x ∈ XD.

Remark 4.25. For any Sx ∈ XD, S1 ◦ Sx = S1◦x = Sx by (DB2) where S1 ∈ XD/S.

Theorem 4.26. Suppose XD is a dual B-algebra and S a normal dual B-subalgebra. Let XD/S to be the set as
defined above. Then XD/S is a dual B-algebra with binary operation given by Sx ◦ Sy = Sx◦y for any x,y ∈ XD
and with identity element S1.

Proof. Note that there exists S1 ∈ XD/S such that Remark 4.25 holds. That is, S1 is the identity element of
XD/S. For any Sx,Sy ∈ XD/S, Sx ◦ Sy = Sx◦y ∈ XD/S since x ◦ y ∈ XD. Thus, XD/S is a dual B-algebra
by Theorem 4.3

Theorem 4.27. Let S be a family of normal dual B-subalgebras closed under finite intersections in a dual B-algebra
XD. Then there is a topology τ = {U ⊆ XD|∀x ∈ U,∃S ∈ S such that Sx ⊆ U} such that (XD, ◦, τ) is a tdB-
algebra.
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Proof. Note that for all x ∈ XD, there exists S ∈ S such that Sx ⊆ XD. This implies that XD ∈ τ. Vacuosuly,
∅ ∈ τ. Let y ∈ U1 ∩U2, where U1,U2 ∈ τ. Then y ∈ U1 and y ∈ U2 which imply that there exists S1,S2 ∈ S

such that S1y ⊆ U1 and S2y ⊆ U2. Let S = S1 ∩ S2. By Proposition 4.21, S is a normal dual B-subalgebra
of XD. Moreover, S ∈ S by the hypothesis. We will show that Sy ⊆ S1y and Sy ⊆ S2y . Suppose x ∈ Sy.
Then y ∼=

S x which implies that y ◦ x ∈ S ⊆ S1 that is, y ◦ x ∈ S1. Hence, x ∈ S1y . It follows that Sy ⊆ S1y .
Similarly, Sy ⊆ S2y . This implies that Sy ⊆ U1 and Sy ⊆ U2 or Sy ⊆ U1 ∩U2. Consequently, U1 ∩U2 ∈ τ.
Let y ∈

⋃
α∈A

Uα where Uα ∈ τ for all α ∈ A. Then y ∈ Uβ for some β ∈ A. This implies that there exists

Sβ ∈ S such that Sβ ⊆ Uβ ⊆
⋃
α∈A

Uα. Hence,
⋃
α∈A

Uα ∈ τ. Thus, τ is a dual B-topology. We will show

that for any S ∈ S and x ∈ XD, Sx ∈ τ. Let y ∈ Sx. Then y ∼=
S x. Now suppose z ∈ Sy. Then z ∼=

S y.
By transitivity, z ∼=

S x or z ∈ Sx that is, Sy ⊆ Sx. This implies that Sx ∈ τ. Lastly, suppose x,y ∈ XD and
U ∈ τ such that x ◦ y ∈ U. Then there exists S ∈ S such that Sx◦y ⊆ U. Note that Sx and Sy are open sets
containing x and y, respectively and Sx ◦ Sy = Sx◦y. Hence, there exists neighborhoods Sx and Sy such
that Sx ◦ Sy ⊆ U. Therefore, (XD, ◦, τ) is a tdB-algebra.

5. The uniform dual B-topology

Throughout this section, all dual B-filters of a dual B-algebra XD are normal dual B-filters of XD. The
following definitions are parallel to that of [4, pp. 340–341].

Suppose XD is a dual B-algebra and U,V ⊆ XD ×XD, consider the following notations:

(i) U−1 = {(y, x)|(x,y) ∈ U}; (iii) U[x] = {y|(x,y) ∈ U};
(ii) U ∗ V = {(x, z)|(x,y) ∈ V and (y, z) ∈ U, ∃y ∈ X}; (iv) ∆ = {(x, x)|x ∈ XD}.

Suppose Ω is an arbitrary family of dual B-filters F in a dual B-algebra XD and A ⊆ XD. Let us define the
following notations:

(i) UF = {(x,y) ∈ X×X|x ∼=
F y}; (iii) K = {U ⊆ X×X|UF ⊆ U,∃UF ∈ K∗};

(ii) K∗ = {UF : F ∈ Ω}; (iv) UF[A] =
⋃
a∈A

UF[a].

Remark 5.1. K∗ ⊆ K.

Definition 5.2. By a uniformity on a dual B-algebra XD, we shall mean a nonempty collection K of subsets
of XD ×XD which satisfies the following conditions for any U,V ∈ K:

(i) ∆ ⊆ U; (iv) U∩ V ∈ K;
(ii) U−1 ∈ K; (v) If U ⊆W ⊆ XD ×XD, then W ∈ K.
(iii) There exists W ∈ K such that W ◦W ⊆ U;

The pair (XD,K) is called a uniform dual B-structure.

Example 5.3. Consider the dual B-algebra XD = {1,a,b, c,d, e} from Example 3.2. Then the dual B-filters
of XD are that from Example 4.13 including the trivial dual B-filter {1}. Note that by Proposition 4.14 and
Remark 4.22, {1} is a normal dual B-filter. Then {XD, {1}, F} is a set containing all normal dual B-filters
of XD where F = {1,a,b}. By routine calculations, (XD,K) is a uniform dual B-structure where K∗ =
{UXD ,U{1},UF}, UXD [1] = UXD [a] = UXD [b] = UXD [c] = UXD [d] = UXD [e] = U{1}[1] = {1,a,b, c,d, e} = XD,
U{1}[1] = {1},U{1}[a] = {a},U{1}[b] = {b},U{1}[c] = {c},U{1}[d] = {d},U{1}[e] = {e}, UF[1] = UF[a] = UF[b] =
{1,a,b},UF[c] = UF[d],= UF[e] = {c,d, e}.

Remark 5.4. (XD,K∗) is not a uniform dual B-structure as shown in the next example.
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Example 5.5. Consider the dual B-algebra XD = {1,a,b, c,d, e} from Example 3.2 and the dual B-filter
F = {1,a,b} in Example 4.13. As mentioned in Example 5.3, {XD, {1}, F} is a set containing all normal dual
B-filters of XD. Hence, K∗ = {UXD ,U{1},UF} where

UXD = {(x,y) ∈ XD ×XD|x ◦ y,y ◦ x ∈ XD} = XD ×XD,

U{1} = {(x,y) ∈ XD ×XD|x ◦ y,y ◦ x ∈ {1}} = {(x, x) ∈ XD ×XD},
UF = {(1, 1), (a,a), (b,b), (c, c), (d,d), (e, e), (1,b), (b, 1),

(a, 1), (1,a), (b,a), (a,b), (c, e), (e, c), (d, c), (c,d), (e,d), (d, e)}.

Let M = F∪ {1, e} = {1,a,b, e}. Then UM = UF ∪ {(1, e), (e, 1), (a,d), (d,a), (b, c), (c,b)}. Note that

UF ⊆ UM ⊆ XD ×XD.

Moreover, M /∈ Ω since d ◦ a = e,a ∈ M but d /∈ M. Hence, UM /∈ K∗. This implies that K∗ does not
satisfy condition (v) of Definition 5.2.

In view of Remark 5.1, the next theorem states that the pair (XD,K) is a uniform dual B-structure.
Moreover, the pair (XD,K) from Example 5.5 is a uniform dual B-structure.

Theorem 5.6. Let Ω be an arbitrary family of dual B-filters closed under finite intersections in a dual B-algebra
XD. Then (XD,K) is a uniform dual B-structure.

Proof. Suppose Ω is an arbitrary family of dual B-filters in a dual B-algebra XD and U,V ∈ K. Then there
exist UF,UJ ∈ K∗ such that UF ⊆ U and UJ ⊆ V , respectively.

(i) Let (x, x) ∈ ∆. Since x ∼=
F x, it follows that (x, x) ∈ UF. Hence, (x, x) ∈ U so that ∆ ⊆ U.

(ii) Let (x,y) ∈ UF. Then x ∼=
F y and y ∼=

F x. This implies that (y, x) ∈ UF. Hence, (y, x) ∈ U. It follows
that (x,y) ∈ U−1 with UF ⊆ U−1 so that U−1 ∈ K.

(iii) Consider UF ∈ K and (x, z) ∈ UF ◦UF. Then there exists y ∈ X such that (x,y), (y, z) ∈ UF. This
implies that x ∼=

F y and y ∼=
F z. Hence, x ∼=

F z. It follows that (x, z) ∈ UF ⊆ U so that UF ◦UF ⊆ U. (iv)
Let UF,UJ ∈ K∗.

Claim: UF ∩UJ = UF∩J ∈ K∗.

Let (x,y) ∈ UF ∩UJ. Then x ∼=
F y and x ∼=

J y. These imply that x ◦ y,y ◦ x ∈ F, J. Hence, x ◦ y,y ◦ x ∈ F∩ J
implying that x ∼=

F∩J y and so (x,y) ∈ UF∩J. Therefore, UF ∩UJ ⊆ UF∩J. The converse is similar. This
proves the claim.

Let (x,y) ∈ UF∩J = UF ∩UJ. Then x ∼=
F y and x ∼=

J y. Thus, (x,y) ∈ UF and (x,y) ∈ UJ. Hence, (x,y)
∈ U and (x,y) ∈ V . Therefore, (x,y) ∈ U∩ V so that UF∩J ⊆ U∩ V . Consequently, U∩ V ∈ K. It remains
to show that K satisfies condition (v). Let U ∈ K such that U ⊆ V ⊆ XD ×XD. Then there exists UF ∈ K∗

such that UF ⊆ U ⊆ V . Hence, V ∈ K. Therefore, K satisfies condition (v) and (XD,K) is a uniform dual
B-structure.

Definition 5.7. Let (XD,K) be a uniform dual B-structure. If τ is a dual B-topology on XD, then τ is called
a uniform dual B-topology and the pair (XD, τ) is called a uniform dual B-topological space.

Example 5.8. Consider the uniform dual B-structure (XD,K) in Example 5.5. Then the family

τ = {XD,∅, {1,a,b}, {c,d, e}},

is a uniform dual B-topology on XD. Thus, (XD, τ) is a uniform dual B-topological space.

Theorem 5.9. Suppose (XD,K) is a uniform dual B-structure. Then τ = {G ⊆ X|∀x ∈ G,∃U ∈ K,U[x] ⊆ G} is
a uniform dual B-topology on XD.
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Proof. Suppose (XD,K) is a uniform dual B-structure. Note that for all x ∈ XD and U ∈ K, U[x] ⊆ XD.
Hence, XD ∈ τ. Vacuously, ∅ ∈ τ. Let x ∈

⋃
Gi∈τ,i∈A

Gi. Then there exists j ∈ A such that x ∈ Gj.

Since Gj ∈ τ, there exists Uj ∈ K such that Uj[x] ⊆ Gj. This implies that Uj[x] ⊆
⋃

Gi∈τ,i∈A
Gi. Hence,⋃

Gi∈τ,i∈A
Gi ∈ τ. Suppose G,H ∈ τ such that x ∈ G∩H. Then there exist U,V ∈ K such that U[x] ⊆ G and

V[x] ⊆ H. Let W = U∩ V . By Definition 5.2 (iv), W ∈ K.

Claim: W[x] ⊆ U[x]∩ V[x].

Let y ∈ W[x]. Then (x,y) ∈ U and (x,y) ∈ V . This implies that y ∈ U[x] and y ∈ V[x]. Hence,
W[x] ⊆ U[x] ∩ V[x]. This proves the claim. By the claim, W[x] ⊆ U[x] ⊆ G and W[x] ⊆ V[x] ⊆ H. Hence,
W[x] ⊆ G∩H. This implies that G∩H ∈ τ. Therefore, τ is a dual B-topology on XD.

The next remark follows from Definition 5.7 and Theorem 5.9.

Remark 5.10. Suppose XD is a dual B-topological space.

(i) Then (XD, τ) in Theorem 5.9 is a uniform dual B-topological space.

(ii) For any UF ∈ K∗ and x ∈ XD, x ∈ UF[x] and UF[x] ∈ τ, that is, UF[x] is a neighborhood of x.

Lemma 5.11. Suppose XD is a dual B-algebra such that U ⊆ V for any U,V ∈ K. Then U[x] ⊆ V[x] for all
x ∈ XD.

Proof. Let U ⊆ V for any U,V ∈ K and x ∈ X. Suppose a ∈ U[x]. Then (x,a) ∈ U ⊆ V . This implies that
(x,a) ∈ V . Therefore, a ∈ V[x].

Theorem 5.12. Suppose XD is a uniform dual B-structure. Then XD is a tdB-algebra.

Proof. Let (XD,K) be a uniform dual B-structure. By Theorem 5.9 and Remark 5.10 (i), there is a uniform
dual B-topology τ = {G ⊆ X|∀x ∈ G, ∃U ∈ K,U[x] ⊆ G}. Suppose x ◦ y ∈ U(x ◦ y) where x,y ∈ XD. By
Theorem 5.9, there exists W ∈ K such that W[x ◦ y] ⊆ U(x ◦ y). Then there exists WF ∈ K∗ such that
WF ⊆W for some dual B-filter F of XD. By Lemma 5.11, WF[x ◦ y] ⊆W[x ◦ y]. Note that WF[x] and WF[y]
are open neighborhoods of x and y, respectively by Remark 5.10 (ii).

Claim: WF[x] ◦WF[y] ⊆WF[x ◦ y].

Suppose a ◦ b ∈ WF[x] ◦WF[y]. Then (x,a), (y,b) ∈ WF. This implies that x ∼=
F a and y ∼=

F b. Hence,
x ◦ y ∼=

F a ◦ b. It follows that a ◦ b ∈WF[x ◦ y]. This proves the claim.
Hence, WF[x] ◦WF[y] ⊆ U(x ◦ y). By Theorem 3.5, XD is a tdB-algebra.

The converse of Theorem 5.12 follows directly from Definition 5.7 provided that the dual B-topology
is a uniform dual B-topology. This is formally stated in the next corollary.

Corollary 5.13. Suppose XD is a tdB-algebra. If τ is a uniform dual B-topology, then XD is a uniform dual
B-topological space.
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