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Abstract

Using the Al-Oboudi type operator, we present and investigate two special families of bi-univalent functions connected
with the activation function ¢(s) = 2/(14+e %), s € R and k-Fibonacci numbers. We derive the bounds on initial coefficients

© .

and the Fekete-Szeg6 functional for functions of the type g¢,(z) = z+ }_ ¢(s)d;2) in these introduced families. Furthermore,
j=2

we present interesting observations of the results investigated.
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1. Preliminaries

Let R and N :={1,2,3,...} = INp\{0} be the sets of real numbers and positive integers, respectively.
Let C be the sets of complex numbers and the set of normalized regular functions in ® ={z € C: |z| < 1}
is symbolized by A. Such a function g € A has the expansion about the origin in the form

oo
9(z) =2+ b+ da’ - =2+ )47, (1.1)
j=2
and the set of all elements of A that are univalent in ® is symbolized by §. The famous Koebe theorem

(see[12]) ensures that every function g € § has an inverse g ! satisfying g Hg(z)=2z2€D,g(g (w)) =
w, lw| < r(g), w € ® and 1/4 < 19(g), where

g Hw) = f(w) = w — dyw? + (2d5 — d3)w> — (5d5 — 5dpd3 + dg)w* +-- - . (1.2)
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A function g of A is called bi-univalent in ® if g~! and g are both in 8. Let £ denote the set of

1 1
bi-univalent functions having the form (1.1). The functions 17;, 5 log (11_2) and —log(1 — z) are in
2

the class Z, but the Koebe function as well as and z — % (members of 8) are not members the

2
class X. Historically investigations of the family bZegun tifty years ago by Lewin [30] and Brannan and
Clunie [9]. Few years later, Tan [45] found the upper bounds for few coefficients of bi-univalent functions.
Brannan and Taha [10] presented certain subfamilies of ¥ similar to known subfamilies of convex and
starlike functions of order o (0 < o < 1) in ®. Many results concerning initial bounds for some special
families of £ have been found in [6, 11, 23, 39]. However the general coefficient bounds for many of the
special families of functions g € I are not completely addressed.

In the paper [19], Falcon and Plaza have investigated the sequence of k-Fibonacci number {Fy; }

k € R*, defined by

oo
j=0’

Fij+1 =kFj+Fej-1,j €N (1.3)
with Fk,() = O, Fk,l = 1, and
k—t)) —t) k—vkZ+4
Vk? +4 2

If k = 1, then we get the familiar Fibonacci numbers F;.
Ozgﬁr and Sokdl [34] in 2015 proved that if

1+t22?

= ,z€D, 15
1—ktz— 222"~ (15)

Pr(z)

then

Pr(z) = 1+ (Fio + Fro)tkz + (Frq + Fia)thpz? + -
=14+ ktz+ (K +2)822%+---,

where t, = k=vk+4 V2k2+4 . Clearly if py(z) = 1+ Zpy; 2, then we have

Prj = (Frjo1 + Fijr1) th, j € N.

The bounds for first two coefficients and the celebrated Fekete- Szegd inequality were found for bi-
univalent functions connected with certain polynomials like (p, q)-Lucas polynomials, Chebyshev poly-
nomials, Fibonacci polynomials, Gegenbauer polynomials and Horadam polynomials. We also note that
these polynomials as well as their extensions, are potentially very important in a variety of physical, sta-
tistical, engineering, and mathematical disciplines. Additional information related to these polynomials
can be found in [2, 4, 7, 8, 21, 22, 46]. More about the estimates on initial coefficient bounds and the
solution of Fekete- Szegd problem for functions in X linked with k-Fibonacci numbers can be seen in
[5, 13, 14, 24, 26, 27].

The recent research trend is the study of functions of X associated with any of the above mentioned
polynomials using well-known operators, which can be seen in the research papers [1, 15, 25, 32, 36, 40—
44]. Generally interest was shown to estimate the first two coefficients and the Fekete-Szegt inequality
for the introduced families of ¥ using known operators.

In Mathematics, an activation function plays an important role for scientist and engineers. The func-
tion that maps the net input to the output signal value is known as the activation function. Certain
functions such as the identity function, the step function, the sigmoid function, the hyperbolic tangent
function etc. are widely used as activation function in an artificial neural network. Some artificial neural
network training algorithm requires that the activation function be continuous and differentiable. The
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step function is not suitable for such cases. The sigmoid function &(s) = 1/(1+e7%), s € R has the nice
property that they can approximate the step function to the desired extent without loosing its differentia-
bility. The sigmoid function has the following advantages:

i) it increases monotonically;
ii) it gives real numbers between 0 and 1;
iii) it never loses information because it is one-to-one function; and

iv) it maps a very large domain into a small range of outputs. For more details about activation functions,
see [28].

In the real-valued case, a lot of research has been devoted to this topic, but a very limited literature
exists for complex valued neural networks, where most activation functions are generally developed in a
split fashion (i.e., by considering the real and imaginary parts of the activation separately) or with simple
phase-amplitude techniques (for more knowledge, see [38]). In this direction, Ezeafulukwe et al. [16]
proposed and studied certain properties of complex-valued sigmoid function G(z) = 1/(1+e7 %),z € D.
In this article, they have found the starlikeness and convexity of a sigmoid function G(z). Fadipe-Joseph
et al. [18] have studied some properties of the modified sigmoid function F(z) = 2/(1+e7 %),z € ©. For
more details, see [29, 33].

Let Ay be the set of regular functions of the form

o0

9p(2) =z+)_ d(s)d;2,

j=2
where ¢(s) is the real-valued modified sigmoid function defined by
d(s)=2/(1+e %), seR. (1.6)
Clearly ¢(0) =1 and hence A; := A (see [17]).

Definition 1.1. For g4 € Ag, n € INg, B > 0, an Al-Oboudi type operator DE : Ay — Ag, is defined by
D%g¢(2) = go(2), Dhge(z) = (1 B)ge(z) + Bzl (2),. .., Dige(z) = Dp (D} gy l(z)), z € O.

Remark 1.2. If g4 (z) =z + Zd)(s)djzj € Ay, then
OO .
DRge(z) =z+) (1+(—1)B)"d(s)djz), z€D.
j=2

If ¢(s) =1, then we obtain the operator due to Al-Oboudi [3], which reduces to the operator presented
by Salagean in [37], when 3 = 1.

For regular functions g and f in ©, g is said to subordinate to f, if there is a Schwarz function \{ in ®,
W(z)| <1,9(0) =0 such that g(z) = f(\p(z)), z € ®. This is indicated as g < f or g(z) < f(z). Specifically,
when f € §in ©, then g(z) < f(z) < ¢(0) = f(0) and g(®D) C f(D).

Motivated by the recent papers on bi-univalent functions using the real-valued modified sigmoid
function ¢(s) given by (1.6), we present two new special families of £ making use of the Al-Oboudi type
operator which was precisely defined in the paper [25], and k-Fibonacci numbers defined by the formula
(1.3) with Fi; as in (1.4). We determine the initial coefficient estimates and also obtain the relevant
connection to the celebrated Fekete-Szegt functional for functions in these new families.

Throughout this paper we assume that Ty = k — (k? +2)ty with tx as in (1.4), P as given by (1.5) and
the modified sigmoid activation function ¢(s) as in (1.6).
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Definition 1.3. A function g € X having the power series as in (1.1) is said to be in the set
SRGZ(H/‘Y/ B/ n, (b(s)/ﬁk)/ 1f

2(DRgq(2)) +uz?(Dige (2))”
(1=Y)z+vDj9gq(2)

<Pklz), z€D,

and
W (Do (W) + Haw? (D fg ()

(I—y)w+vyDife(w)

= ﬁk(w)/ w € QI

where u >0, >0,0<y<1,neNpand gy (W Hw) = fo(w) is an extension of g~! to D as in (1.2).

It is interesting to note the following subsets of SRSs (v, B, n, ¢(s), px) which are obtained for
certain choices of u and y:

1. SRKs (v, B, n, d(s), px) = SRSx(0,v, B,m, d(s),px) is the set of functions g € I satisfying

z(D n9¢( z)) _ w(DEf¢(w))/ N
(1—-v)z+vD}gs(2) <Pl and g +YDR g (w) <Prlw), zweD,

where  >0,0<y<1,neNp and 9e Hw) = fe (w) is an extension of g~ ! to ® as in (1.2).
2. When vy =0, we have SRLs (i, B, n, d(s), px) = SRS (1,0, B, n, d(s), pk), the group of functions g
€ L satisfying

(Do (2)) +1z(DEge(2))” < Px(z) and (Dify(w)) + pw(Dafe(w))” < prlw),

wherez, w € ®,ne Ny, f >0, u>0and 9¢1( w) = fg (w) is an extension of g~ ! to® asin (1.2).
3. SRMx(w, B, n, d(s), px) = SRGx(w, 1, B, n, d(s), pi) is the set of functions g € L satisfying

( DEgo(2) )+H< DRgo(2) )*Pk(Z), zED

w(Dgfe(w)) w(Dpfe(w))” _
(W) +u <W) = Pk(w); we D,

wheren € Ny, >0, u > 0 and gy (W Hw) = fe (w) is an extension of g~ ! to ® as in (1.2).

and

Letting n = 0 and ¢(s) = 1 in the Definition 1.3, we get the family SRNx (v, 1, px) = SRSz (W, v, B,0,1,px)
of functions g € X satisfying

wf'(w) + pw?f’(w) -

2 1
29'(2) +1g"(2) ) o),

1—vz+vglz) " 1T—y)w +vflw

wherez,w € ©,0<y <1, u>0and f(w) = g ' (w) is as in (1.2).

Definition 1.4. A function g € X having the power series of the form (1.1) is said to belong to the set
SR%Z(Y/ T, B/ n, d)(s)/ﬁk)/ if

ADRg )T
=)z +yDgglz) ~Pxl¥ and

wl(DEfe(w))1” _
1 v)w +yD3fg(@) Pr(w), z w €D,

wheren € Np, 0<vy <1, t>1,3>0and g;l(w) = f¢ (w) is an extension of g~ ! toD asin (1.2).
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Certain values of y lead the family SR®B5 (v, T, B, n, d(s), px) to interesting sets as below:

1. SRPs (T, B, n, d(s), pk) = SRBx (0,7, B, n, d(s), px) is the class of functions g € L satisfying
[(DRge(2))1T <P(z), z€® and [(Dffg(w))]™ <Pr(w), weD,

wheren € Ng, T > 1, f > 0 and g;l(w) = f¢ (w) is an extension of g ! to ® as in (1.2).
2. SRNs (1, B, n, d(s), prk) = SRBx (1,7, B, n, d(s), px) is the family of functions g € X satisfying

2l(D}ge (2)17
Dige(2)

w [(DFfg ()]
D“f¢(w)

<pk(z), ze® and < pr(w), weD,
wheren € Ng, t> 1, > 0 and g;l(w) = fy(w) is an extension of g~! to D as in (1.2).

SR (1, B, nd(s)) is the family of Al-Oboudi type 1-bi-pseudo-starlike functions connected with a
modified sigmoid activation function and k-Fibonacci numbers.

On taking n = 0 and ¢(s) = 1 in the Definition 1.4, we obtain the family SRQx (v, T,px) = SRB: (v, T,
B, 0, 1,px) of functions g € X satisfying

z[(g'(2))]"
(1-v)z +vg(z)

wl(f'(w))]"
1—v)w +vyflw)

<px(z),z€® and

= ﬁk(w)/ w € ©1

where 0 <y <1,7T>1and g }(w) = f(w) is as in (1.2).
Remark 1.5. We note that
1) SRMZ(O, B/ n, d)(s)/ﬁk) = SRK}_‘_(]., B/ n, d)(s)/ﬁk) = SR%Z(]‘/ B/ n, d)(s)/ﬁk)/
11) SRPZ(]-I B/ n, Cb(s)/ﬁk) = SRKZ(Or B/ n, q)(s)/ﬁk) = SRI—Z(O/ [51 n, d)(s)/ﬁk); and
iii) SRKx (v, B, n, &(s), px) = SRB=(v, 1, B, n, d(s), pr)-
Remark 1.6. The family SRNx (0,1, pi) = St (pk) was studied by Giiney et al. [26], when p=0and y = 1.
Remark 1.7. The family SRQx (1, T,p1) = S5 (7, p1) was investigated by Magesh et al. [31], wheny =k =1.
We find the estimates for |d|, [ds| and also, fix the famous Fekete- Szeg6 problem [20] for functions

belonging to classes SRS (W, vy, B, 1, ¢(s), px) and SRBs (v, T, B, n, d(s), px). We present few interesting
cases and relavent connections of main results.

To prove our theorems, we need the below mentioned lemma.

Lemma 1.8 ([35]). If the function p € P, then |pi| < 2 for each i, where P is the set of reqular functions p in D,
normalized by p(z) = 1+ p1z +p2z® + - - -, such that R(p(z)) >0, z € D.

2. Estimates for the family SRSz (u, v, B,n, $(s), pk)

We begin by obtaining the first two coefficients and the Fekete-Szeg6 bounds for functions in SR&x (i,
Y, B/ n, d)(s)rﬁk)‘
Theorem 2.1. If the function g € SRSx(w,y, B,n, d(s), px), then

kvk [ty
(1+B)™d(s)v/I(V2 —v(2n+3) +3(2p + 1))kt + (2(p + 1) —v)2 Tl
1 Ktk K2
(T+2B)"d(s) |32u+1) =y (V2 —v(2u+3) +32u+ 1))kt + (2(n+1) —=v)? Tl |

|do| <

2.1)

lds| <

(2.2)
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and for 5 € R
k|tk\ (14+2B)™5
l— 5= <]
32u+1)—y)(1+2B)"d (s)” ) (1+B)2"d (s) ’
lds — 5d2 K32 ‘17¢ (2.3)
1+8)2 ¢ (s) 1— 28078 | ]
(1+2p)" [(v2—y (2p+3)+3(21+1) ) K2ty + (2 (pu+1)—v) 2 Ti|/ (1+B)d (s) ’
wheren € INp, 0 < v < >0 and
1 s Tk

] = Y —vy(2u+3) +32u+1) + 2(r+1)—v)

(2.4)

(3(2p+1) —7v) K2ty

Proof. Let p(z) =1+ pi1z+ p2z>+ -+, and p < Px. Then there exists a regular function u with |[u(z)| < 1
in ® and p(z) = px(u(z)). Therefore, the function

=14+wz+uz® +- -

u(z)*ilfﬂz—i— u—uj Z—2+ Uz — U, —I—ui
T m(z)+1 2 272 )2 STy

and

2\ 2 2\ 2 2
~ ~ u z w z ~ w1z uw z
Prlu(z) = 1+ Pra (;+<u2—21>2+---)+pk,2<;+<u2_21>2+...> e
Pr Uiz 1 uz\ _ u? _
:1+pk'121 +<2(U2—21>Pk,1+41]9k,2>22+~--.

Also, there exists a regular function v satisfying [v(w)| < 1 in © such that p(w) = px(v(w)). Therefore,
Hw) = % =1+viw+vw?+ - isin the class P. So it follows that

(2.5)

V2

~ P 1ViW 1 v2
Pr(v(w)) =1+pk'121 + (2 <V2—2) Pr1+ 4Pk2> W’ (2.6)

Suppose g € SRGx (1, v, B,n, ¢(s), pk). Then from Definition 1.3, we obtain

2(DRgq(2)) + pz?(Dige (2))”
(1—=v)z+vDjgq(2)

< prlu(z)) (2.7)

and
WDy (W) + pw? (DR g ()"

(1=v)w+vyDife(w)

=< pr(v(w)), (2.8)

where z, w € ©® and ggl(w) = fg(w) is an extension of g~! to D given by (1.2). By virtue of (2.5), (2.6),

(2.7), and (2.8), we obtain
wkty

A+B)"b(s)2(n+1) —v)d2 = ——, (2.9)

(1+2B)“¢(3)(3(2u+1)fv)daf(1+B)2“d>2(8)(2(u+1)* )yd3

1

2 2.10
:(uz—L;>kt + 4(k2~|—2)t2, (2.10)

2
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vikt
—(14 )M b(s)2n+1) —y) dp = =, (211)
—(142)"d(s)(B(2u+1) —=y)da + (1+ B)* b () (v* —2(n+2)y + 6(2u+1))d5
From (2.9) and (2.11), we get
U = —Vvi (213)
and also s o
k-t
201+ B (s) 2+ 1) —y)ag = I .14
By adding (2.10) and (2.12), we obtain
1 1
21+ B2 (s)(v? — (2u+3)y +3(2u+1))d5 = S (ua +va)ktic — ; (ktie — (¥ +2)6) (uf +vf).  (2.15)
Substituting the value of (u% + v%) from (2.14) in (2.15), we get
241+ B2 2(s) [(v2 — (204 3)y +3(2u + 1)K tic + (2(n + 1) — )T’ ‘
which gets (2.1), on using Lemma 1.8.
Subtracting (2.12) from (2.10) and using (2.13), we obtain
(1+B)"d(s) kty(up —v2)
= + . 2.17
ST T2 2T A 2R () BRu+ D) 217
Then in view of Lemma 1.8 and (2.16), (2.17) yields (2.2).
Using (2.16) in (2.17), for 6 € R, we get
|d3 — 8d3] = K[ty (T(5)+ L )u + (T(é)— ! >v
o H1+2B)"(s)Bu+ 1) —y) ) 41+2B)d(s)Bu+1) —v) ) |’
where )
(1+B)*d(s)
T(§) = (e —8) e
A1+ B2 (s) [(vE = (2u+3)y +3(2p + 1)K tic + (2(n+1) — ¥)2Til]
In view of (1.4), we conclude that
k[ ty] 1
ds— 52 < {2(1+2(5]“¢(S)E<3(2u+1)v)’ 0<IT8) < A2 o) BT 177"
4k |tk||T(6)|/ |T(5)| > 112" ¢ (s)B2p+1)—7)
which gets (2.3) with | as in (2.4). This ends the proof. O

We now present few interesting observations of our result.

Corollary 2.2. If the function g € SRKx (v, B,n, &(s), px), then

kvk [ty
(14 B)™d(s)\/1(v2 =3y +3)ktk + (2 —v)? Tl

|do| <
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ld3| <

1 kltk|+ K2 ]
(1+2B)"d(s) [3—v (¥?> =3y +3)Kk?tx + (2 — )Ty

and for some & € R,

: )(k\tkl) 5 ‘1 1+22[3 me <T
3V +2R) P (s)” (I+B) b (s) ’
|ds —5d%| < 1382 ‘1_ (14+26)"5 °
(B2 (s) 1_ Lﬁ‘% >

A+2B) M (V2 =3y +3) Kt 2—Y)Z Tkl d (s 1+B)d(s) L

where
1 2 2 Tk
=— —3y+3)+(2—7)? | 5| ) -
=gy (02 av )+ 2oy g

Remark 2.3. Corollary 10 and Corollary 23 of [27] are particular cases of Corollary 2.2, when ¢(s) =1
n =0 and y = 1. Further, we get the results of Giiney et al. [26, Corollaries 1 and 4], if we allow k = 1.

Corollary 2.4. If the function g € SRLx(u, 3,1, &(s), pk), then

iyl < kv/k [ty
(14 B)™d(s) /B2 + 1)Kty + 4(p + 1)2T |
1 Klty] Kt
lds| < + 5 5
(1+2B)"d(s) |32n+1) ' B2+ 1)kt +4(n+ 1)2Ty|

and for 6 € R,

Kty 1_ _(142B)"s <J
’ 32u+1)(1+2B) " (s)” d(s)A+p)| X J2r
|d3 —6d5| < k3t2‘1— (1+28)™s ‘
s)(1+p)2n 1 _(1+2p)"8 ]
(1+2p)" \3(2u+1)k2tk+4(u+1)2Tk\¢>(s)' d(s)A+p)| = %
where
] -t 3(2u+1) +4(pn+1)2 T
2730+ 7 H Kt | )
Corollary 2.5. If the function g € SRMx (u, B,n, &(s), pi), then
kvk [ty
|d2‘< 5 5 s
b(s)(1+B)™/I(4n+ Dkt + (20 + 1)2Ty|
] < 1 [ Kty K2 }
T () (128 (2B +1) 4+ 1kt + (2u+ 1)
and for & € R,
B SR Q L= o g < Js
2Br+ ) (1+2B) " (s)’ e | S Ja
da—8a8l < 4 gy stz e
(1+B)2" p(s) 1— s(1+2p)" >J
(123 )™ (4p+1) K2t + (2p+1)2 T [ d (s) d(s)(1+p) | = I3
where
1 Tk
= —— (dp+1D)+Q2u+1)? || ).
= s (( LD+ (20+1) kztk)

Remark 2.6. Corollaries 10 and 23 of Giiney et al. [27] are particular cases of Corollary 2.5, when ¢(s) =1,
n =0 and p = 0. Further, we get the results of Giiney et al. [26, Corollaries 1 and 4], if we allow k = 1.
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Corollary 2.7. If the function g € SRNx (v, u, px), then

ol < kv/k [ty
VI =v(2u+3) +32u+ 1)Kt + (2(n+ 1) —v)? Tyl
lds| < [ kit kot
B2+ —y I —y(2u+3) +32p+ 1)Kt + (2(n+ 1) —v)2Tidl ] 7
and for 5 € R
Kty
s — 52| < 4 PTGy ]’ 1=28l<J,
3 21 X K3t2 [1-35] -8 >]
[(y2—y (2p+3)+3(2p+1) ) k2t + (2(p+1) =y )2 Tic | =

where ] is as in (2.4).

3. Estimates for the family SRBs (v, T, B, n, d(s), pk)

We derive the initial Taylor-Maclaurin coefficients and the Fekete-Szego inequality for functions in

SRBs (v, T, B,m, $(s),pk) in the following theorem.
Theorem 3.1. Let 0 <y <1, t>1 B >0,andn € Ny. Ifg € SRBs (v, T, B,n, d(s),px), then

ol < kv/k [t
21 X s
d(s)(1+B)™VI(V2+ 2T+ 1) (T —¥))K? ti + (21— ¥)? Ty
SRR " Y
TS o)1 +2B) [Br—y) 2+ 2T+ DTyt + 21— ¥)2Til ]’
and for § € R,
k [ty o s(1+2B)"
, | mernesreny 1= Fmrem S
|ds — 8d5| < k3t2)1_ 5(1+2p)™ ’
kT o(s)(1+p)2™ n— s(1+2p)" >0
(123 (v2+ (2T+1) (T—y) ) k2 tie+ (2T—Y) 2 Ti b (5) d(s)(1+p)2n! = =

where

Y24+ (2t4+1)(t—7v) + (2t —v)? ( Tk )’

(3t—v) k2 ty

Proof. Suppose g € SRBx (v, T, B,n, $(s),pk). Then from Definition 1.4, we have

z[(Dge(2))1"
(1—=v)z +vDRgo(z)

=pk(ulz)),z€D

and

an nt
w[(DRfe(w))’] (@), w €D,

(1—y)w +vDjfy (@)
On account of (2.5), (2.6), (3.5), and (3.6), we have

(14 B (s) (2T~ v)dy = “11%,

(14+2B)™d(s)(3t—vy)ds + (1+ B)*d*(s)(v* — 27y + 2t(t—1))d3

1 LL% LL% 2 2
= *2 - *2 — +2
(uz > ktk + (k )t ,

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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vkt

—(1+B)"d(s) 21— y)do = =, (3.9)
—(1+2B)™(s)(Bt—y)ds + (14 B)*™d*(s) (> — 2(T+ 1)y +21(T +2))d3
1 (3.10)

B)
vi vio 2
=5 (v2—2> ktk+z(k +2)t5.

Now by following the proof of Theorem 2.1 with respect to (2.9)-(2.12), the results (3.1)-(3.3) of this

theorem are obtained from (3.7)-(3.10). O

We now present few interesting observations of our result.

Corollary 3.2. If the function g € SRPx (7, 3,n, ¢(s), px), then

kv/klt]
$(s)(1+ B2+ 1) TK2 ty + 47Ty |
1 Kty Kt ]
d(s)(T+2B)™ | 3t 2T+ 1)TK? ty + 42Ty

|do| <

|d3| <

and for 6 € R,

Kty 1— 1+2(3) <0
2 3T(1+2B )" (s)” s)(1+p)2m 1,
|ds — 8d5| < katz‘ __s(+2p)n ‘
(s)(1+p)2m 1— 1+2f5) > Q
(1r2p)™ |(2T+1)Tk2tk+4Tsz\d) ) (1+p)2 1s
where
1 Ty
Q== 2t+1)+47t|—1 ).
1 3<(T+ )+ Tkztk>
Corollary 3.3. If the function g € SRNs (T, B, n, &(s), pk), then
|d2| < k\/]z|tk|
$(s)(1+ B)ny/It2t— D2ty + 21— 1)2Ty |
] < 1 Kty Kt
IS ()12 | Br—1) | T2t — DK%ty + (2T — 1)2Ty|
and for & € R,
Kty 5(142p)™
) Ge-DT+26)0 (5’ ‘1_ Bloep| S Q2
|ds — 8d5| < k3t2‘ _ s(142p) ‘
(s)(1+p)2" 1_ 1+2f3) >0
(1+2@)|t(2T— 1)k2tk+(2T 12T b (s s)(1+p)2" 2
where
1 Ty
Q= ——F— 2t —1 21 —1
2(%_”<ﬂ1 )+ (20— 1) WW)

Remark 3.4. The results of Corollary 3.3 coincide with Theorem 2.3 of Magesh et al. [31] for k = ¢(s) =

and n = 0. Further, if we allow T =1, then we get the results of [26, Corollaries 1 and 4].
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Corollary 3.5. If the function g(z) € SRQx (v, T, px), then

dyl < kvVK [ty]
I+ 2T+ D) (t—v)K t + (21— v)2Ti|
lda| < [ Kty It
E1Bt—y) 12+ 2T+ Dt —v)) Rt + (2T —v)2Til |7
and for 8 € R

it 1-8/<Q

d3 — 8d3| < {%_yl K342 |1 5|

K 1-38>0

[(v2+(2T+1) (T—v))K? ti+ (21— )2 Ti | i

where Q is as in (3.4).

4. Conclusion

Two special families of regular bi-univalent functions are introduced by using Al-Oboudi type op-
erator connected with a modified sigmoid activation function and k-Fibonacci numbers. Bounds of the
first two coefficients |d,|, |d3| and the celebrated Fekete-Szegt functional have been fixed for each of the
two families. Through corollaries of our main results, we have highlighted many interesting new conse-
quences.

The special families examined in this research paper using Al-Oboudi type operator could inspire
further research related to other aspects such as classes using g-derivative operator, meromorphic bi-
univalent function classes linked with Al-Oboudi differential operator and classes using integro-differential
operators.
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