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Abstract
The existence and uniqueness of the fixed point theorem for self mapping meeting certain contractive conditions in partially

ordered E metric spaces with non-normal positive cone E+ of a real normed space E with empty interior are investigated in this
research.
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1. Introduction

Over the last few decades, fixed point theory in normed spaces has been applied to a wide range of
optimization problems, dynamical systems, economy, fractals, computer science, variational inequalities
and many other fields. In 1911 Luitzen E. Brouwer published a famous paper discussing results on fixed
point theory [11]. Many of its proofs were later adapted in a topological sense. Banach, 1922, presented
a method for finding the fixed point of a self operator in complete metric spaces in a systematic manner
[7]. Later, a great deal of work on variants and generalizations was published to improve the Banach
contraction principle by modifying the topology of the space or acting on the contraction requirement
[1, 6, 8, 12, 17, 21, 23].

Huang and Zhang presented the notion of cone metric space with a fresh point of view in which
Cauchy and convergent sequences were analyzed in terms of the interior points with respect to the cone
partial ordering [16]. Many mathematicians followed Huang’s lead and focused on fixed point problems
in such spaces (see [2–4, 14–19] and the references therein).

Rezapour and Hamlbarani [22] extended the notion of K-metric spaces and convergence in an ordered
Banach space X with a solid cone E+ without normality assumptions. Beg et al. established the con-
cept of topological vector space-valued (tvs-valued) cone metric space in 2009, [10], to convey the above
mentioned principles in a more extended framework.

To introduce the concept of E-metric space, the authors in [5] changed the definition of cone metric
space replacing ordered Banach space with ordered vector space. Most fixed point issues in cone metric
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spaces are embedded in solid cones, which are cones with non empty interior. Unfortunately there were
just a few results that took non-solid cones into account [9, 20].

Fortunately, by embedding non-solid cones that contain semi-interior points in E-metric spaces, Basile
et al. [9] established the concept of the semi-interior point and took fixed point results in E-metric spaces
into consideration. Embedding such cones in the setting of E-metric spaces, Mehmood et al. [20] and
Huang [14], obtained some fixed theorems in 2019.

As the examples in [9] illustrate, the class of cones with semi-interior point and empty interior is wider
than the one with nonempty interior. Moreover, fixed points results for ordered normed spaces also hold
for this wider class of cones with semi-interior points, which is quite fascinating.

In this article, we study and prove some fixed point results in normed spaces with reference to a new
class of cones, namely cones with semi-interior points, generalizing some of the existence results in [5, 20].

In the situation of cone metric spaces, a number of articles have recently appeared proving some
fixed-point theorems of generalized contractive mappings. The following definitions were introduced by
Huang [16] are presented in particular.

Definition 1.1 ([16]). Let E+ be a closed and convex nonempty subset of the real normed space E and 0E
be the zero of E. If the following conditions are satisfied,
(1) if y ∈ E+ and α > 0, then αy ∈ E+;
(2) if y ∈ E+ and −y ∈ E+, then y = 0E,

then E+ is called a positive cone.

Definition 1.2 ([16]). If E+ is the positive cone of a real normed space E, then a partial order ” 4 ” on E
is defined as: for x, z ∈ E, x 4 z if and only if z− x ∈ E+. Clearly 0E 4 z ∈ E+ if and only if z ∈ E+.

Definition 1.3 ([5]). A real vector space E with a partial order ” 4 ”is called an ordered vector space if the
following conditions hold:
(1) x,y, z ∈ E and x 4 z imply x+ y 4 z+ y;
(2) λ > 0,y ∈ E and 0E 4 y imply 0E 4 λy.

Definition 1.4 ([16]). If E+ is the positive cone of a normed ordered space E, then E+is called:
(1) solid if int(E+) 6= φ;
(2) normal if there exists a constant K > 0 such that, for x, z ∈ E, and 0E 4 x 4 z, then, ‖x‖ 4 K ‖y‖.

The definition of an E-metric space is given as follows.

Definition 1.5 ([5]). Let X 6= φ be a set and E be an ordered vector space over the set of real numbers. A
function dE : X×X→ E is called an ordered E-metric on X, if for all x,y, z ∈ X, we have
(1) dE(x, z) < 0E and dE(x, z) = 0E if and only if x = z;
(2) dE(x, z) = dE(z, x);
(3) dE(x, z) 4 dE(x,y) + dE(y, z).

The pair
(
X,dE

)
is, then known as E-metric space.

Now, consider a normed ordered space E and (E,dE) be the E-metric space. Let x ∈ E and c ∈ int(E+).
Let us denote by B (x0, c) ⊂ E, the open ball with radius c and center x0,

B (x0, c) =
{
y ∈ E; dE (y, x0)� c

}
.

The definitions of convergent and Cauchy sequences in the E-metric space are given below, assuming
int(E+) 6= φ.

Definition 1.6 ([5]). If (X,dE) is an E-metric space, then
(1) a sequence (xn) in X is said to be convergent to a point x ∈ X if for any c ∈ int(E+), there exists a

positive integer K such that dE(xn, x)� c; for all n > K, simply we write lim
n→∞xn → x, or xn → x;

(2) a sequence (xn) in X is said to be Cauchy if for any c ∈ int(E+), there exists a positive integer N such
that dE(xn, xm)� c, for all n,m > N.
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2. Generalized E-metric space

Let E be a real ordered normed space ordered by it’s positive cone E+. If B+ = B∩E+, where B is the
closed ball of E of radius 1, a point x0 ∈ E is called a semi-interior point in E+ if there exists a positive real
number r > 0 such that x0 − rB+ ⊆ E+. It is easy to see that any interior point is a semi-interior point.
Let (E+)	 = {y ∈ E+ : y is a semi-interior point}. Then a partial order relation ” ≪ ” can be defined on
E+ as if x, z ∈ E+, then x≪ z if and only if z− x ∈ (E+)

	. Clearly x ∈ (E+)
	 iff 0E ≪ x.

The following result (proposition 2.2 in [9]) is a useful characterization of semi -interior points.

Proposition 2.1 ([9]). Let E+ be the cone of the ordered space E. Then the point y0 is a semi-interior point of E+

iff there exists a positive real number b such that by0 is an upper bound of B+, the positive part of B.

In this section omitting the assumption of non-solid cones of the main results in the literature, we
present the notion of semi-interior points of a cone in E-metric spaces providing some nontrivial examples
to insure the existence and applications of this notion.

The following example (example 2.3 in [9]) shows that there exists an ordered normed space E ordered
by a generating closed cone E+ with (E+)

	
= φ and int(E+) = φ.

Example 2.2 ([9]). Let X = {(xn), xn 6= 0 for finitely many terms} endowed with the norm ||x|| = max{|xn| :
n ∈ N}. If E is ordered by the point-wise ordering, then the positive cone E+ = {a ∈ E : a(i) > 0 for any
i} does not have any semi-interior point. If y = {(i)} ∈ (E+)

	, then B+ is bounded above by ky for some

positive number k. Since ej ∈ B+, ej(i) =
{

0, i 6= j
1, i = j , we have that y(j) > 1

kej(j) =
1
k > 0 for any j. This

is a contradiction. Hence (E+)
	
= φ does not have semi-interior points.

Clearly, interior points of E+ are semi-interior points of E+ but the converse is not true shown by the
example (example 2.5 in [9]).

Example 2.3 ([9]). Let Xn = R2 ordered point-wise and endowed with norm ‖.‖n , where

||(x,y)||n =

{
|x|+ |y|, if xy > 0,
max{|x|, |y|}− n−1

n min{|x|, |y|}, if xy < 0.

It is easy to show that the unit ball of Xn, Bn is the polygon Dn with vertices (−n,n) , (−1, 0) , (0,−1) ,
(n,−n) , (1, 0) , (0, 1) .

Let E =
{

x = (xn)n∈N, xn = (x1
n, x2

n) ∈ Xn and ‖xn‖n 6 mx,mx > 0 depends on x
}

. Suppose that E
is ordered by the use of E+ = {y = (yn) ∈ E : yn ∈ R2

+ for any n} and normed by ‖y‖∞ = sup
n∈N

‖yn‖n .

Let X = E+ − E+ be the subspace of E generated by E+ ordered by X+ = E+. Now if 1 =(yn) ∈
X,yn = (1, 1) for every n, then 1 cannot be an interior point of X+. In fact, if for any positive integer k,
let x = (xn) of X with xm = (−2, 2) and xn = (0, 0) for any n 6= m. It is easy to show that ‖x‖∞ = 2

m and
1 + x /∈ X+. Hence 1 + λB+ * X+, for any λ > 0. Hence 1 cannot be an interior point of the space X+.
Similarly one can show that int(X+) = φ and the point 1 =(yn) is a semi interior point of X+.

The following Proposition (Proposition 2.4 in [9]) shows that under certain conditions semi-interior
point of a closed and generating cone is an interior point.

Proposition 2.4 ([9]). Let E be a Banach space and E+ be its closed generating cone. Then semi-interior points of
E+ are interior points of E+.

In particular, by Proposition 2.4, the space X in Example 2.3 is not complete.
Now we give the definitions of e-convergence and the e-Cauchy convergence criteria in the frame

work of the non-solid cone metric space E.

Definition 2.5 ([20]). Suppose that E is an ordered normed space such that (E+)	 6= φ and
(
X,dE

)
is an

E-metric space. Then
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(1) a sequence (ak) in X is said to be e-convergent if there exists a point x ∈ X and for every e ≫ 0E,
there exists an integer M > 0 such that dE(ak, x) ≪ e; for all k > M, simply we write lim

k→∞ak e
= x,

ak
e→ x;

(2) a sequence (ak) in X is said to be e-Cauchy, if for every e ≫ 0E, there exists an integer M > 0 such
that dE(xn, xk) ≪ e, for all n,k >M;

(3) if every e-Cauchy sequence in X is e-convergent, the space
(
X,dE

)
is said to be an e-complete metric

space.

3. Fixed point results

The authors of [5] updated the definition of cone metric space by introducing the notion of E-metric
space by substituting ordered Banach space with ordered vector space. Most of the fixed point results in
cone or E-metric spaces are embedded in solid cones.

Fortunately, Basile et al. [9] established the concept of the semi-interior point in 2017, and used it
to incorporate fixed point findings in E-metric spaces by embedding non-solid cones with semi-interior
points.

In this section we embed a class of cones with semi-interior point and empty interior to obtain certain
fixed point results in ordered normed spaces in the setting of E-metric spaces using some new contractions
that generalize some of the following results.

Theorem 3.1 ([20]). Let E be an ordered normed space such that (E+)	 6= φ and
(
X,dE

)
be an E-complete metric

space. Suppose S : X→ X is a self mapping that satisfies

dE(Sx,Sy) 4 αdE(x,y)

for some α ∈ [0, 1) and all x,y in X. Then for each x ∈ X, the iterative sequence (Snx)n>0 converges to the unique
fixed point of S.

Theorem 3.2 ([20]). Let E be an ordered normed space such that (E+)	 6= φ and
(
X,dE

)
be an E-complete metric

space. Suppose S : X→ X is a self mapping that satisfies

dE(Sx,Sy) 4 α
(
dE(Sx, x) + dE(Sy,y)

)
for all x,y ∈ X and some α ∈ [0, 1

2). Then for each x ∈ X, the iterative sequence (Snx)n>0 converges to the unique
fixed point of S.

Theorem 3.3 ([20]). Let E be an ordered normed space such that (E+)	 6= φ and
(
X,dE

)
be an E-complete metric

space. Suppose S : X→ X is a self mapping that satisfies

dE(Sx,Sy) 4 α
(
dE(Sx,y) + dE(Sy, x)

)
for all x,y ∈ X and some α ∈ [0, 1

2). Then for each x ∈ X, the iterative sequence (Snx)n>0 converges to the unique
fixed point of S.

Theorem 3.4 ([14]). Let E be an ordered normed space such that (E+)	 6= φ and
(
X,dE

)
be an E-complete metric

space. Suppose S : X→ X is a self mapping that satisfies

dE(Sx,Sy) 4 λ1d
E(x,y) + λ2d

E(x,Sx) + λ3d
E(y,Sy) + λ4d

E(x,Sy) + λ5d
E(y,Sx)

for all x,y ∈ X, where λj > 0 (j = 1, . . . , 5) and 0 6
5∑
i=1

λi < 1. Then

(1) for each x ∈ X, the iterative sequence (Snx)n>0 converges to the unique fixed point of S;
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(2) the Picard’s iteration is S-stable;
(3)
{
dE(yn,Syn)

}
is an e-sequence iff

{
dE(yn+1,Syn)

}
is an e-sequence.

We begin by our first main results.

Theorem 3.5. Let E be an ordered normed space such that (E+)	 6= φ and
(
X,dE

)
be an E-complete metric space.

Suppose T : X→ X is a self mapping that satisfies

dE(Tx, Ty) 4 hmax
{
dE(x,y),dE(Tx, x),dE(Ty,y),dE(Tx,y),dE(Ty, x)

}
for all x,y ∈ X and some h ∈ [0, 1

2). Then for each x ∈ X, the iterative sequence (Tnx)n>0 converges to the unique
fixed point of T .

Proof. Let x0 be an arbitrary point of X and (xn) be an iterative sequence defined by xn+1 = Txn = T
n+1
x0

with xn 6= xn+1 for all n ∈N. Then,

dE(xn, xn+1) = d
E(Txn−1, Txn)

4 hmax
{
dE(xn−1, xn),dE(Txn, xn),dE(Txn−1, xn−1),

dE(Txn, xn−1),dE(Txn−1, xn)

}
= hmax

{
dE(xn−1, xn),dE(xn+1, xn),dE(xn, xn−1),dE(xn+1, xn−1),

dE(xn, xn)

}
= hmax

{
dE(xn, xn−1),dE(xn+1, xn),dE(xn+1, xn−1)

}
4 hmax

{
dE(xn, xn−1),dE(xn+1, xn),dE(xn+1, xn) + dE(xn, xn−1)

}
.

Since h ∈ [0, 1
2) and dE(xn, xn−1) < 0E, it follows that both dE(xn, xn+1) and

dE(xn, xn−1) 6= max
{
dE(xn, xn−1),dE(xn+1, xn),dE(xn+1, xn) + dE(xn, xn−1)

}
.

Hence,

dE(xn−1, xn) + dE(xn, xn+1) = max
{
dE(xn, xn−1),dE(xn+1, xn),dE(xn+1, xn) + dE(xn, xn−1)

}
.

Thus
dE(xn, xn+1) 4 h

(
dE(xn+1, xn) + dE(xn, xn−1)

)
,

and

dE(xn, xn+1) 4
h

1 − h
dE(xn−1, xn).

Consequently if we put k = h
1−h , we get

dE(xn, xn+1) 4 kd
E(xn−1, xn) 4 k2dE(xn−2, xn−1) 4 · · · 4 kndE(x0, x1).

Now for n > m,

dE(xm, xn) 4 dE(xm, xm+1) + d
E(xm+1, xm+2) + d

E(xm+2, xm+3) + · · ·+ dE(xn−1, xn)

4
(
km + km+1 + km+2 + · · ·+ kn−1)dE(x1, x0)

= km
(
1 + k+ k2 + · · ·+ kn−m−1)dE(x1, x0)

= km
(

1 − kn−m

1 − k

)
dE(x1, x0).
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Now we are going to prove that (xn) is an e-Cauchy sequence. Let e≫ 0E be given, and take µ > 0
such that e− µB+ ⊆ E+, and an integer k1 such that km

(
1−kn−m

1−k

)
dE(x1, x0) ∈ µ2 B+ for all n,m > k1.

Therefore,

e− km
(

1 − kn−m

1 − k

)
dE(x1, x0) −

µ

2
B+ ⊆ e− µB+ ⊆ E+,

for all n,m > k1. Hence,

dE(xn, xm) 4 km
(

1 − kn−m

1 − k

)
dE(x1, x0) ≪ e.

This implies that the sequence (xn) is an e-Cauchy. But X is an e-complete metric space. Then there exists
x ∈ X such that xn converges to x. So for e ≫ 0E , we can choose k2 ∈ N, with dE(xn−1, xn) ≪ e

3 and
dE(x, xn−1) ≪

e
3 for all n > k2. Now

dE(Tx, x) 4 dE(Tx, xn) + dE(xn, x)

= dE(xn, x) + dE(Tx, Txn−1)

4 dE(xn, x) + hmax
{

dE(x, xn−1),dE(Txn−1, xn−1),
dE(Tx, x),dE(Tx, xn−1) + d

E(Txn−1, x)

}
4 dE(x, xn) + hmax

{
dE(x, xn−1),dE(xn, xn−1),

dE(Tx, x),dE(Tx, xn−1),dE(xn, x)

}
,

which must be studied as following cases.

Case 1: If the maximum occurs at dE(xn−1, x) or dE(x, xn), then

dE(Tx, x) 4
e

3
+ h

(e
3

)
≪ e.

Case 2: If the maximum occurs at dE(Tx, x), then

dE(Tx, x) 4 dE(xn, x) + hdE(Tx, x),

therefore,

(1 − h)dE(Tx, x) 4 dE(xn, x), dE(Tx, x) 4
1

1 − h
dE(xn, x) 4

(
1

1 − h

)
e

3
≪ e,

since 1
1−h < 2.

Case 3: If the maximum occurs at dE(xn, xn−1), then

dE(Tx, x) 4 dE(xn, x) + hdE(xn, xn−1)

4 dE(xn, x) + h
(
dE(x, xn−1) + d

E(x, xn)
)

4 (1 + h)dE(x, xn) + hdE(xn−1, x)

4 (1 + h)
e

3
+ h

e

3
=

1 + 2h
3

e≪ e,

since h < 1
2 .

Case 4: If the maximum is at dE(Tx, xn−1), then

dE(Tx, x) 4 dE(xn, x) + hdE(Tx, xn−1) 4 d
E(xn, x) + h

(
dE(x, xn−1) + d

E(Tx, x)
)

,

which implies that
(1 − h)dE(Tx, x) 4 dE(xn, xn) + hdE(x, xn−1).
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Hence,

dE(x, Tx) 4
1

1 − h
dE(x, xn) +

h

1 − h
dE(xn−1, x) 4

(
1

1 − h

)
e

3
+

(
h

1 − h

)
e

3
≪ e.

Since dE(x, Tx) ≪ ε
m for any ε

m ≫ 0E, and m ∈ N, it follows that ε
m − dE(x, Tx) ∈ E+ for all m ∈ N.

Therefore −dE(Tx, x) ∈ E+, and dE(x, Tx) ∈ E+. Hence dE(x, Tx) = 0E and x = Tx.
To prove uniqueness, let z ∈ X be such that z = Tz. Then consider

dE(x, z) = dE(Tx, Tz)

4 hmax
{
dE(x, z),dE(Tx, x),dE(Tz, z),dE(Tz, x),dE(z, Tx)

}
= hmax

{
dE(x, z),dE(x, x),dE(z, z),dE(x, z),dE(z, x)

}
= hmax

{
dE(x, z), 0E, 0E,dE(x, z),dE(z, x)

}
= hdE(x, z),

which implies dE(x, z) = 0E .

Corollary 3.6. Let E be an ordered normed space such that (E+)	 6= φ and
(
X,dE

)
is an E-complete metric space.

For e ≫ 0E and x0 ∈ X, set B(x0, e) =
{
x ∈ X : dE(x0, x) ≪ e

}
. Suppose T : X → X is a self mapping that

satisfies
dE(Tx, Ty) 4 hmax

{
dE(x,y),dE(Tx, x),dE(Ty,y),dE(Tx,y),dE(Ty, x)

}
for any x,y ∈ B(x0, e),h ∈ [0, 1

2) and dE(x0, Tx0) 4 (1 − h)e. Then T has a unique fixed point in B(x0, e).

Proof. Using Theorem 3.5 if we prove that B(x0, e) is e-complete, and Tx ∈ B(x0, e) for any x ∈ B(x0, e),
we are done. If {xn} is an e-Cauchy sequence in B(x0, e), then {xn} is an e-Cauchy sequence in X. But X is
e-complete. Hence for some x ∈ X, lim

n→∞xn e
= x. Thus dE(xn, x)→ 0E. Since the inequality

dE(x, x0) 4 d
E(x, xn) + dE(xn, x0)

implies that dE(x0, x) ≪ e and x ∈ B(x0, e), it follows that for every x ∈ B(x0, e),

dE(x0, Tx) 4 dE(Tx0, x0) + d
E(Tx0, Tx) 4 dE(Tx0, x0) + hmax

{
dE(x0, x),dE(x0, Tx),dE(x, Tx),

dE(x0, Tx0),dE(x, Tx0).

}
.

We have the following cases.

Case1: If
max

{
dE(x0, x),dE(x0, Tx),dE(x, Tx),dE(x0, Tx0),dE(x, Tx0)

}
= dE(x0, x),

then
dE(x0, Tx) ≪ (1 − h)e+ he = e.

Case 2: If
max

{
dE(x0, x),dE(x0, Tx),dE(x, Tx),dE(x0, Tx0),dE(x, Tx0)

}
= dE(x0, Tx),

then
dE(x0, Tx) 4 dE(Tx0, x0) + hd

E(x0, Tx)

or

dE(x0, Tx) 4
1

1 − h
dE(Tx0, x0) ≪

1
1 − h

(1 − h) e = e.

The other cases are similar. Hence Tx ∈ B(x0, e).
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Corollary 3.7. Let E be an ordered normed space such that (E+)	 6= φ and
(
X,dE

)
is an E-complete metric space.

Suppose that for some integer n > 0, the mapping T : X→ X satisfies

dE(Tnx, Tny) 4 hmax
{
dE(x,y),dE(x, Tx),dE(y, Ty),dE(x, Ty),dE(y, Tx)

}
for all x,y ∈ X, and h ∈ [0, 1

2). Then T has a unique fixed point in X.

Proof. Using Theorem 3.5, the point x0 is the unique fixed point of Tn. Since, Tn(Tx0) = T(T
nx0) = Tx0, it

follows that Tx0 is a fixed point of Tn. Hence x0 = Tx0.

Theorem 3.8. Let E be an ordered normed space such that (E+)	 6= φ and
(
X,dE

)
is an E-complete metric space.

Suppose T : X→ X is a self mapping that satisfies

dE(Tx, Ty) 4 hmax
{
dE(x,y),dE(x, Tx),dE(y, Ty),αdE(x, Ty) +βdE(y, Tx)

}
for all x,y ∈ X, and some h ∈ [0, 1

2) with α,β > 0, α+ β = 1. Then for each x ∈ X, the iterative sequence
(Tnx)n>0 converges to the unique fixed point of T .

Proof. Let x0 be an arbitrary point of X and (xn) be an iterative sequence defined by as xn+1 = Txn =

T
n+1
x0 with xn 6= xn+1 for all n ∈N. Then,

dE(xn+1, xn) = dE(Txn, Txn−1)

4 hmax
{
dE(xn, xn−1),dE(xn, Txn),dE(xn−1, Txn−1),

αdE(xn, Txn−1) +βd
E(xn−1, Txn)

}
= hmax

{
dE(xn, xn−1),dE(xn, xn+1),dE(xn−1, xn),

αdE(xn, xn) +βdE(xn−1, xn+1)

}
= hmax

{
dE(xn, xn−1),dE(xn, xn+1),βdE(xn−1, xn+1)

}
4 hmax

{
dE(xn, xn−1),dE(xn, xn+1),

β
(
dE(xn−1, xn) + dE(xn, xn+1)

) } .

Since h ∈ [0, 1
2), then dE(xn, xn+1) 6= max

{
dE(xn, xn−1),dE(xn, xn+1),

β(dE(xn−1, xn) + dE(xn, xn+1))

}
. Hence either

dE(xn, xn−1) = max
{
dE(xn, xn−1),dE(xn, xn+1),β(dE(xn−1, xn) + dE(xn, xn+1))

}
,

which implies
dE(xn+1, xn) 4 hdE(xn−1, xn),

and
dE(xn+1, xn) 4 hdE(xn, xn−1) 4 h

2dE(xn−1, xn−2) 4 · · · 4 hndE(x1, x0),

or

β
(
dE(xn−1, xn) + dE(xn, xn+1)

)
= max

{
dE(xn, xn−1),dE(xn, xn+1),β(dE(xn−1, xn) + dE(xn, xn+1))

}
.

Thus
dE(xn+1, xn) 4 hβ

(
dE(xn−1, xn) + dE(xn, xn+1)

)
,

and
dE(xn+1, xn) 4

hβ

1 − hβ
dE(xn, xn−1).

Consequently if k = hβ
1−hβ , we have

dE(xn+1, xn) 4 kdE(xn, xn−1) 4 k
2dE(xn−1, xn−2) 4 · · · 4 kndE(x1, x0).
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Now for n > m and δ = min(h,k),

dE(xm, xn) 4 dE(xm, xm+1) + d
E(xm+1, xm+2) + · · ·+ dE(xn−1, xn)

4
(
δm + δm+1 + δm+2 + · · ·+ δn−1)dE(x1, x0)

= δm
(
1 + δ+ · · ·+ δn−m−1)dE(x1, x0)

= δm
(

1 − δn−m

1 − δ

)
dE(x1, x0).

Now let us prove that (xn) is an e-Cauchy sequence. Let e ≫ 0E be given, and take µ > 0 such that
e− µB+ ⊆ E+, and an integer k1 such that δm

(
1−δn−m

1−δ

)
dE(x1, x0) ∈ µ2 B+ for all n,m > k1. Therefore,

e− δm
(

1 − δn−m

1 − δ

)
dE(x1, x0) −

µ

2
B+ ⊆ e− µB+ ⊆ E+,

for all n,m > k1. Hence

dE(xn, xm) 4 δm
(

1 − δn−m

1 − δ

)
dE(x1, x0) ≪ e.

This implies that the sequence (xn) is an e-Cauchy. But X is an e-complete metric space. Then the sequence
xn converges to some point x ∈ X. So for e ≫ 0E , we can choose k2 ∈ N, with dE(xn−1, xn) ≪ e

4 and
dE(x, xn−1) ≪

e
4 for all n > k2. Now

dE(x, Tx) 4 dE(x, xn) + dE(xn, Tx)

= dE(x, xn) + dE(Txn−1, Tx)

4 dE(x, xn) + hmax
{
dE(xn−1, x),dE(xn−1, Txn−1),dE(x, Tx),

αdE(xn−1, Tx) +βdE(x, Txn−1)

}
,

which must be studied as following cases.

Case 1: If the maximum occurs at dE(xn−1, x), then

dE(x, Tx) 4
e

4
+ h

(e
4

)
≪ e.

Case 2: If the maximum occurs at dE(x, Tx), then

dE(x, Tx) 4 dE(x, xn) + hdE(x, Tx).

Therefore,

(1 − h)dE(x, Tx) 4 dE(x, xn), dE(x, Tx) 4
1

1 − h
dE(x, xn) 4

(
1

1 − h

)
e

4
≪ e,

since 1
1−h < 2.

Case 3: If the maximum occurs at dE(xn−1, xn), then

dE(x, Tx) 4 dE(x, xn) + hdE(xn−1, xn)

4 dE(x, xn) + h
(
dE(xn−1, x) + dE(x, xn)

)
4 (1 + h)dE(x, xn) + hdE(xn−1, x)

4 (1 + h)
e

4
+ h

e

4
=

1 + 2h
4

e≪ e,

since h < 1
2 .
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Case 4: If the maximum is at αdE(xn−1, Tx) +βdE(x, xn), then

dE(x, Tx) 4 dE(x, xn) + h
(
αdE(xn−1, Tx) +βdE(x, xn)

)
4 dE(x, xn) + h

(
α
(
dE (xn−1, x) + dE (x, Tx)

)
+βdE(x, xn)

)
,

which implies that
(1 −αh)dE(x, Tx) 4 (1 +βh)dE(x, xn) +αhdE(xn−1, x).

Hence,

dE(x, Tx) 4
1 +βh

1 −αh
dE(x, xn) +

αh

1 −αh
dE(xn−1, x) 4

(
1 +βh

1 −αh

)
e

4
+

(
αh

1 −αh

)
e

4
≪ e.

Since dE(x, Tx) ≪ ε
m for any ε

m ≫ 0E and m ∈N, then ε
m − dE(x, Tx) ∈ E+ for all m ∈N. This implies

that −dE(x, Tx) ∈ E+, and dE(x, Tx) ∈ E+. Therefore dE(x, Tx) = 0E. Hence x = Tx.
To prove uniqueness, let y ∈ E be such that y = Ty. Then consider

dE(x,y) = dE(Tx, Ty)

4 hmax
{
dE(x,y),dE(x, Tx),dE(y, Ty),αdE(x, Ty) +βdE(y, Tx)

}
= hmax

{
dE(x,y),dE(x, x),dE(y,y),αdE(x,y) +βdE(y, x)

}
= hmax

{
dE(x,y), 0E, 0E, (α+β)dE(x,y)

}
= hdE(x,y),

which implies dE(x,y) = 0E .

Similarly one can prove the following theorem.

Theorem 3.9. Let E be an ordered normed space such that (E+)	 6= φ and
(
X,dE

)
is an E-complete metric space.

Suppose T : X→ X is a self mapping that satisfies

dE(Tx, Ty) 4 hmax
{
dE(x,y),dE(x, Ty),dE(y, Tx),αdE(x, Tx) +βdE(y, Ty)

}
for all x,y ∈ X, and some h ∈ [0, 1

2) with α,β > 0, α+ β = 1. Then for each x ∈ X, the iterative sequence
(Tnx)n>0 converges to the unique fixed point of T .
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