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Abstract
Autonomous differential equations of fractional order and non-singular kernel are solved. While solutions can be obtained

through numerical, graphical, or analytical solutions, we seek an implicit analytical solution.
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1. Introduction

Fractional calculus has resurfaced and gained momentum due to its potential in engineering systems,
multidisciplinary fields, biology, medicine, and applied sciences. Its wide range of applications includes
areas like linear anomalous diffusion equation and its characteristics [12], modeling biological phenom-
ena, respiratory tissue, and drug diffusion [13]. At the same time, fractional calculus has found its way to
sensors, analog filters and digital filters [14].

Solving differential equations plays a major role in Engineering, Physics, Biology, and other fields like
economics and medicine, see [4–6]. Consider the autonomous ordinary differential equations

dy

dt
= F(y(t)). (1.1)

The solution to (1.1), for the given initial condition y(t0) = y0, is

y(t) = y(t0) +

∫t
t0

dξ

F(y(ξ))
.

The logistic differential equation
y ′(t) = y(t)(1 − y(t)) (1.2)
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represents a special case of (1.1). It’s an autonomous ordinary differential equation with a wide range of
engineering applications. For the initial condition y(0) = 1/2, the logistic differential equation yields the
solution

y(t) =
1

1 + e−t
.

Recent advancements in calculus have allowed for different presentations of the autonomous equa-
tion (1.1). In particular, the fractional representations of the autonomous differential equation, see [15].
Contrary to the Riemann-Liouville fractional derivative, the initial conditions are properly defined. The
Caputo fractional derivative is defined as

(CaD
αf)(t) =

1
Γ(n−α)

∫t
a

f(n)(τ)dτ

(t− τ)α+1−n ,

where n− 1 < α 6 n. Recently, the global impact of the corona virus (COVID-19) and epidemic models.
In [11], the formulated fractional temporal SEIR, represents a state in which a disease is latent, measles
model is given by:

C
aD

α
t S = b− (β(t)I+ µ)S,

C
aD

α
t E = β(t)SI− (s+ µ)E,

C
aD

α
t I = σE− (ζ+ µ)I,

C
aD

α
t R = ζI− µR.

In this paper, we proceed to study the following fractional version of the autonomous differential
equation (1.1):

(CFDαy)(t) = F(y(t)), (1.3)

where CFDα is the Caputo-Fabrizio fractional derivative. We provide an example of a differential frac-
tional version of the exponential growth function. Our findings are an extension to the results found in
[15].

2. Preliminaries

Caputo and Fabrizio presented a definition of fractional derivative with a non singular kernel as
follows. For a real smooth function f and for α ∈ [0, 1], the Caputo-Fabrizio fractional derivative [10] is
given by

(CFDαf)(t) =

{ 1
1−α

∫t
0 e

− α
1−α (t−u)f ′(u)du, 0 6 α < 1,

f ′(t), α = 1.
(2.1)

According to this definition, the following are the Caputo-Fabrizio fractional derivatives for some
elementary functions.

Proposition 2.1. For f(t) = c, then (CFDαf)(t) = 0.

Proposition 2.2. For f(t) = t, then (CFDαf)(t) = 1−e−
αt

1−α

α .

Proposition 2.3. For f(t) = tr;<(r) > −1, then (CFDαf)(t) = 1
1−ae

− at
1−a ( a

1−a)
−r−1γ(r+ 1, at1−a), where γ is

the incomplete gamma function, see [1, 2].

Proposition 2.4. For f(t) = ebt, then (CFDαf)(t) =
b(e

at
a−1 −ebt)

a(b−1)−b .

The following proposition gives the Laplace transform of the Caputo-Fabrizio fractional derivative.
For advanced properties of Laplace transform, see [3].
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Proposition 2.5. Let CFDα be the Caputo-Fabrizio fractional derivative. The Laplace transform of (CFDαf)(t) is
1

α+s(1−α)(sF(s) − f(0));<(s) > α
α−1 , where F(s) is the Laplace transform of f(t).

Proof. Using (2.1), g(t) = (CFDαf)(t) satisfies

(1 −α)e
αt

1−αg(t) =

∫t
0
e
αu

1−α f ′(u)du. (2.2)

Differentiating both sides of (2.2) and simplifying we get:

(1 −α)g ′(t) +αg(t) = f ′(t). (2.3)

Taking Laplace transform for both sides implies:

(1 −α)sG(s) +αG(s) = sF(s) − f(0), (2.4)

where F(s) = Lt[f(t)](s) and G(s) = Lt[g(t)](s). Now, solving (2.4) for G(s), the result follows.

This result is read as
(CFDαf)(t) = L−1[

1
α+ s(1 −α)

(sF(s) − f(0))],

where L−1 is the inverse Laplace transform.

Example 2.6. In this example, we solve a fractional version of the exponential growth (decay) differential
equation y ′ = ky. Consider the differential equation

(CFDαy)(t) = ky(t). (2.5)

To solve this equation, take the Laplace transform for both sides of this equation to get:

1
α+ s(1 −α)

(sY(s) − y(0)) = kY(s).

Solving this equation for Y(s) implies that

Y(s) =
y(0)

((α− 1)k+ 1)s−αk
.

Therefore, the solution of (2.5) is y(t) = Ce
αkt

1−(1−α)k .

3. The solution of the autonomous fractional differential equation

Theorem 3.1. The solution of the autonomous fractional differential equation

(CFDαy)(t) = F(y(t)) (3.1)

is given implicitly as ∫y(t)
y(t0)

du

F(u)
− (1 −α) ln

( F(y(t))
F(y(t0))

)
= α(t− t0). (3.2)

Proof. Let y(t) be a solution of (3.1). Then the definition (2.1) gives:

1
1 −α

e−
α

1−αt

∫t
0
e
α

1−αuy ′(u)du = F(y(t)).

Equivalently, ∫t
0
e
α

1−αuy ′(u)du =
(

1 −α
)
e
α

1−αtF(y(t)).
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Differentiate both sides and simplifying we get:

y ′(t) =
(

1 −α
)
F ′(y(t))y ′(t) +αF(y(t)).

Rearrange the terms as:
y ′(t)

F(y(t))
−
(

1 −α
)F ′(y(t)y ′(t))

F(y(t))
= α.

Integrating both sides from t0 to t we get:∫t
t0

y ′(u)

F(y(u))
du−

(
1 −α

) ∫t
t0

F ′(y(u)y ′(u))

F(y(u))
du = α

∫t
t0

1du.

Using integration by substitution for the integrals in the left side we get the desired result.

Example 3.2. To solve (2.5), use (3.2) to get that

∫y(t)
y(t0)

du

ku
− (1 −α) ln

( ky(t)
ky(t0)

)
= α(t− t0).

Therefore,
ln(y(t)) − k(1 −α) lny(t) = kαt+C.

Hence,
(1 − k(1 −α)) ln(y(t)) = kαt+C.

This implies the solution of (2.5) is

y(t) = Ce
kαt

1−k(1−α) .

It yields same result as in Example 2.6.

Example 3.3. We construct the solution of the fractional logistic differential equation and plot for different
values of α,

(CFDαy)(t) = y(t)(1 − y(t)). (3.3)

According to (3.2), the solution is implicitly given as

∫y(t)
y(t0)

du

u(1 − u)
− (1 −α) ln

( y(t)(1 − y(t))

y(t0)(1 − y(t0))

)
= α(t− t0).

After simplifications, we will get:
yα(1 − y)α−2 = Ceαt,

where C is a constant which depends on α and the initial conditions t0 and y(t0). If we assume that
y(0) = 1/2, then the resulting solution is

yα(1 − y)α−2 = 41−αeαt.

The set of solutions for different values of α, along with the solution of the logistic differential equa-
tion (1.2) are shown by Figure 1.
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Figure 1: Solutions of the autonomous fractional differential equation (3.3) with α = 0.05, 0.5, 0.95, 1.

Example 3.4. We construct a solution to the fractional autonomous differential equation

(CFDαy)(t) = 1 + y2(t). (3.4)

According to (3.2), the solution is implicitly given as∫y(t)
y(t0)

du

1 + u2 − (1 −α) ln
( 1 + y2(t)

1 + y2(t0))

)
= α(t− t0).

After simplifications, we will get

arctan(y) − (1 −α) ln(1 + y2) = αt+C.

If we assume that y(0) = 0, then the resulting solution is

arctan(y) − (1 −α) ln(1 + y2) = αt.

The set of solutions for different values of α, along with the solution of the differential equation y ′ = 1+y2

are represented by Figure 2.

Figure 2: Solutions of the autonomous fractional differential equation (3.4) with α = 0.05, 0.5, 0.95, 1.
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4. Conclusion

By using the Caputo-Fabrizio fractional derivative, we have proved that solutions can be obtained for
different examples of the fractional autonomous differential equations. In addition, for initial conditions,
we presented sets of solutions for different values of α between 0 and 1. In particular, we arrived at the
same solution as [15].
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