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Abstract

This study is to discuss the pattern formations of a spatial epidemic model with cross-diffusion of the susceptible and
infected groups simultaneously. The infected cross-diffusion term described the situation that the infected was allowed to move
to areas with high density of the susceptible such as for work or study, especially after the pandemic. Turing analysis was
applied to the model and yielded the conditions for Turing instability corresponding to the model. The amplitude equations
were also given by the support of multiple-scale analysis, which then provided information about the stability of the patterns
near the Turing bifurcation point. Numerical simulations revealed that there were five types of patterns, such as the spots,
spots-stripes, stripes, stripes-holes, and holes. The holes indicated a disease outbreak in a region, while the spots showed non-
outbreak. Furthermore, numerical simulations were carried out by varying the cross-diffusion coefficients of the susceptible and
infected. The simulation results showed once the cross-diffusion coefficient of the infected was bigger than the susceptible, then
an outbreak in a region was triggered. The results of this study showed that the movement of infected had a significant role in
the spread of an infectious disease that could lead to another wave of pandemic. By using Turing analysis as a tool, as well as
predator-prey model as the basis of movement theory, this paper tries to fill in the gaps in the discussion about the movement
of infected people to areas with high density of the susceptible.
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1. Introduction

In 1952, Turing [38] discovered that in a reaction-diffusion system, a homogeneous steady state which
is stable to small temporal perturbation under the absence of diffusion becomes unstable in the presence of
diffusion term [30]. This phenomenon is known as Turing instability. This instability generates a pattern
on the spatial domain called Turing patterns. After this discovery, many researchers were inspired to
apply his concept to study the pattern formation in various fields such as physical, chemical, biological,
and ecological processes [9, 13, 21, 23, 32].

The study of the spread of infectious diseases through mathematical models has been around for a
long time. Recently, an epidemic model was developed by introducing spatial dependence through a
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reaction-diffusion system known as the spatial epidemic model. Many researchers have studied spatial
epidemic models with self-diffusion alone [2, 6, 35, 39, 40, 42, 44]. Cross-diffusion of the susceptible is
also applied to the spatial epidemic model. This term represents the tendency of the susceptible to stay
away from the infected since they are able to recognize the infected [4, 5, 12, 24, 37, 41, 43]. The results of
this study indicate that susceptible cross-diffusion has an influence on the spread of an infectious disease
and the pattern dynamics.

The diffusion term is also widely applied by researchers to predator-prey models with self-diffusion
only [8, 20, 27, 46, 49, 50] and with cross-diffusion as well [1, 3, 14–19, 28, 34, 45]. In order to describe
their behavior in nature, the predator-prey models in [3, 14, 28, 45] considered both of cross-diffusion of
the predator and prey simultaneously. They apply positive values to all diffusion coefficients. They con-
sidered the positive value of the prey cross-diffusion coefficient to indicate that the prey was approaching
a lower predator concentration. However, in most cases, predators choose to avoid the group defense
with large numbers of prey and prefer to capture them from smaller concentration groups. Therefore, the
predator cross-diffusion coefficient was also chosen as a positive value which means that predators tend
to spread towards lower prey concentrations [14].

When spatially heterogeneous interventions are considered, it is clearly important to represent the site
of infection and the pattern of transmission [31]. The infection will increase as the movement expands.
From biological point of view, people can also move to areas of high density of the susceptible because of
various reasons such as for work or study. However, it is risky to allow infected people moving freely to
areas with high density of the susceptible, especially after the pandemic. For an example, in the current
situation where people infected with the Coronavirus disease (Covid-19) who experience mild symptoms
can carry out daily activities in areas with high density of the susceptible or even travel to urban areas.
When people start to feel it is safe to travel, meet people, do routine work, even though they are still
infected, that’s the time when the pandemic can outbreak again like in India and Japan [22, 23].

Determining the end of the pandemic is crucial. A premature decision to declare that the pandemic
has reached its end can cause from dangerous to deadly euphoria in society. To prevent this to happen
again, there must be a study on the behavior patterns of people moving who are still infected, from one
place to another especially to areas with high density of the susceptible such as for work or study. As a
result, this study addresses a spatial epidemic model, not only with cross-diffusion of the susceptible as
in previous studies [4, 5, 12, 24, 37, 43], but also with cross-diffusion of the infected to illustrate the above-
mentioned situation. The diffusion coefficient can be positive, zero or negative [16, 37, 40]. A positive
value is applied to the cross-diffusion coefficient of susceptible denotes movement of the susceptibles in a
direction of lower density of infecteds which implies that susceptible tends to stay away from the infected
[4, 5, 12, 24, 37, 43]. Meanwhile, in contrast to the perspective of the predator-prey model in [14, 28, 45],
we apply a negative value to the cross-diffusion coefficient of the infected as it implies that the infected
move towards a higher density of susceptibles.

Another important work in this study is the amplitude equations, which are tools in understand-
ing pattern formation scenarios in reaction-diffusion systems near the threshold of the Turing bifurcation
parameter [7, 11]. The homogeneous steady state of the system becomes unstable because of small hetero-
geneous perturbations via Turing instability. The transition from a stationary-homogeneous-steady-state
to a spatially-heterogeneous-pattern near the Turing bifurcation boundary takes a significant long amount
of time [46]. Therefore, multiple scale perturbation analysis was used to derive the amplitude equations to
study the dynamics of this active slow mode [49]. These theoretical results are compared with numerical
simulations. Furthermore, patterns were observed for various values of the cross-diffusion coefficient, to
ascertain the effect of competition on susceptible and infected movements.

According to the introduction above, this study will focus on the Turing pattern of the spatial epidemic
model because of the variation of the cross-diffusion coefficient, especially the infected. This paper is
organized as follows. In the next section, we will present a spatial epidemic model with cross-diffusion of
susceptible and infected, followed by a Turing analysis in Section 3. In Section 4, the amplitude equations
are derived. Numerical simulations are carried out to verify the analysis, which is presented in Section 5.
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Finally, we briefly provide conclusions and remarks. The results of this study can be the basis of reliable
decision.

2. Mathematical model

Assume that an epidemic SI model, with logistic growth in the susceptible with cross-diffusion of the
susceptible and infected, is written as follows

∂S

∂t
= rS

(
1 −

S

K

)
−β

SI

S+ I
+DS∇2S+D1∇2I,

∂I

∂t
= β

SI

S+ I
− ηI+DI∇2I−D2∇2S,

(2.1)

with the positive initial conditions

S(x,y, 0) > 0, I(x,y, 0) > 0, (x,y) ∈ Ω.

The DS and DI are self-diffusion coefficients, while D1 and D2 are cross-diffusion coefficients of the
susceptible and infected, respectively. All diffusion coefficients are taken to be positive. Note that, the
sign in front of D2 is taken to be negative since this term implies that the infected tends to move towards
higher densities of the susceptible.

The Ω is a spatial domain in R2 and ∇2 = ∂2

∂x2 +
∂2

∂y2 is the Laplacian operator in two-dimensional
spaces [25, 36]. Here, S(x,y, t) and I(x,y, t) are the population densities of the susceptible and infected at
(x,y) at time t in Ω with the size L× L, respectively. The parameters r,β,η, and K are positive constants
that represent the intrinsic growth rate of S, the infection rate, the death rate of I, and carrying capacity,
respectively. Model (2.1) is evaluated under zero flux boundary condition

∂S

∂n
= 0,

∂I

∂n
= 0, (x,y) ∈ ∂Ω, (2.2)

where n is the outward unit normal vector of the smooth boundary ∂Ω. The notations ∂S
∂n and ∂I

∂n
represent the change of the number of S and I against normal vectors, respectively. This study focuses
on considering self-organization in generating the pattern, so that zero flux boundary condition is chosen
since the system is assumed to be closed, i.e., no incoming or outgoing population movement across the
boundary. Redefining

S∗ =
S

K
, I∗ =

I

K
, x∗ =

x

L
, y∗ =

y

L
, t∗ =

DIt

L2 ,

model (2.1) can be transformed into a dimensionless form. For convenience, removing the asterisks
notation in the dimensionless form of model (2.1), the following is obtained

∂S

∂t
= γf(S, I) + d∇2S+ ξ1d∇2I,

∂I

∂t
= γg(S, I) +∇2I− ξ2d∇2S,

(2.3)

where

α =
r

β
, δ =

η

β
, γ =

βL2

DI
, d =

DS
DI

, ξ1 =
D1

DS
, ξ2 =

D2

DS
,

with Ω = 1× 1, and

f(S, I) = αS(1 − S) −
SI

S+ I
, g(S, I) =

SI

S+ I
− δI.

The parameters α and δ are ratios of the growth and death rate to the infection rate, respectively. Mean-
while, parameter γ represents the relative strength of infection [30].
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In this study, ξ2 becomes an important parameter that gives different features. By controlling ξ2,
it means that the infected movement is restricted to the areas with high density of the susceptible. In
the case of ξ2 is zero, i.e., the model without cross-diffusion of the infected term, has been studied by
Sun et al. [37]. Furthermore, when ξ1 and ξ2 are both zeros then the model returns to the model with
self-diffusion case only. Thus, model (2.3) which is proposed in this study is more general since those
aforementioned cases are captured by this model.

3. Turing analysis

In the absence of diffusion, model (2.3) has two equilibrium points, E0(1, 0) and E1(S1, I1) with

S1 =
α+ δ− 1

α
and I1 =

(1 − δ)(α+ δ− 1)
αδ

, (3.1)

which correspond to the disease-free and endemic equilibrium, respectively. From (3.1), the existence
condition of the endemic equilibrium E1 is δ < 1 < δ+α. Furthermore, the basic reproduction number is
obtained by using the next generation method, namely R0 = 1

δ . Therefore, the existence conditions of E1
can be expressed as

1 < R0 < 1 +
α

δ
.

Considering model (2.3), by linearizing near the endemic equilibrium E1 and setting

U =

(
u

v

)
=

(
S− S1
I− I1

)
,

model (2.3) can be expressed as
∂U
∂t

= γJU + D∇2U,

with

J =
(
fS(S1, I1) fI(S1, I1)
gS(S1, I1) gI(S1, I1)

)
,

where J is the Jacobian matrix and fS is the partial derivative of function f with respect to S (analogous
to others), and the diffusion matrix

D =

(
d ξ1d

−ξ2d 1

)
.

For convenience, the negative sign of ξ2 is applied in the matrix D directly. Thus, from now on ξ2 is taken
to be positive in the next calculation. Assume a perturbation near the equilibrium point E1

u ∼ exp (λt) exp (ik · r), v ∼ exp (λt) exp (ik · r),

where λ is the growth rate of the perturbation in time t, i is the imaginary unit with i2 = −1, k = (kx,ky)
and r = (x,y) are the wave number vector and spatial vector in two-dimensional spaces. Note that k = |k|
is the wave number. Substituting S = S1 +u and I = I1 + v into model (2.3) and linearizing it by neglecting
higher order terms, the characteristic equation is obtained as follows

λ2 + a(k2)λ+ b(k2) = 0, (3.2)

where

a(k2) = (d+ 1)k2 + tr(J) = (d+ 1)k2 + γ(α+ δ− 1),

b(k2) = (ξ1ξ2d
2 + d)k4 − γ(dfIξ2 − dgSξ1 + dgI + fS)k

2 + γ2|J|,

tr(J), |J| are the trace and determinant of J, respectively.
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Proposition 3.1. Turing instability occurs when the following conditions are satisfied:

1. fS + gI < 0;
2. fSgI − fIgS > 0;
3. dfIξ2 − dgSξ1 + dgI + fS > 0;

4. (dfIξ2−dgSξ1+dgI+fS)
2

4d(dξ1ξ2+1) > |J|.

The proof of this proposition is given in Appendix A.
Generally, the Turing bifurcation occurs when

Im(λ(k)) = 0 and Re(λ(k)) = 0 at k = kc 6= 0. (3.3)

By applying conditions (3.3) to the eigenvalues λ(k2;α, δ,γ,d, ξ1, ξ2) in (3.2), and fixing other parameters,
Turing bifurcation occurs at

k2
c =

−γ
(
(δ2ξ1 + δ

2ξ2 − δ
2 − 2δξ1 + δ+ ξ1)d− (δ2 +α− 1)

)
2d(dξ1ξ2 + 1)

, (3.4)

with the bifurcation point ξ2 is

ξ2,T =
1
δ3d

(((ξ1 − 1)δ3 + δ2 + (2α− 3)ξ1δ− 2(α− 1)ξ1)d+ δ
3 + δ(α− 1) + 2

√
H2),

where
H2 = (ξ1 − 1)δ3 + ((α− 1)ξ1 −α+ 1)δ2 + (α− 1)ξ1δ+ (α− 1)2ξ1.

Figure 1: (a) Turing bifurcation diagram of model (2.3). Domain I is the Turing space on ξ1-ξ2 plane at k = kc which is given in
(3.4) with d = 0.05, γ = 2500, δ = 0.5, and α = 0.545; (b) The eigenvalues of the characteristic correspond to ξ2 in (a) with ξ1 = 1.
The blue-solid and red-dashed show the real and imaginary part of the eigenvalues, respectively.

Turing instability takes place for a pair of (ξ1, ξ2) within the Turing space (Domain I) in Figure 1
(a). Under this circumstance, all of the eigenvalues is purely real and one of them must be positive (see
Figure 1 (b)). When ξ2 crosses its bifurcation point (ξ2,T ) so that (ξ1, ξ2) lies on the Domain II, all of the
eigenvalues become negative purely real or a pair of complex conjugates with negative real part. As the
result, model (2.3) reaches the homogeneous steady state again.
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4. The amplitude equations

The study of pattern formation is possible with the help of amplitude equations by using the multiple-
scale perturbation analysis [46–49] since close to the onset of Turing bifurcation the dynamics of the

system changes very slowly. Let us perturb the endemic equilibrium E1 by writing U =

(
u

v

)
with

u = S− S1, v = I− I1, then linearizing model (2.3) near the E1, we obtain

∂

∂t
U = LU +

1
2

(
fuuu

2 + 2fuvuv+ fvvv2

guuu
2 + 2guvuv+ gvvv2

)
+

1
6

(
fuuuu

3 + 3fuuvu2v+ 3fuvvuv2 + fvvvv
3

guuuu
3 + 3guuvu2v+ 3guvvuv2 + gvvvv

3

)
, (4.1)

where L is a linear operator

L =

(
a11 + d∇2 a12 + dξ1∇2

a21 − dξ2∇2 a22 +∇2

)
.

Choosing ξ2 as the bifurcation parameter, we analyze the behavior of the controlled parameter close
to the onset ξ2 = ξ2,T . Thus, ξ2 can be expanded in the terms of the small perturbation variable ε along
with u and v as follows

ξ2 = ξ2,T + εξ2,1 + εξ2,2 + · · · ,

u = εu1 + ε
2u2 + ε

3u3 + · · · ,

v = εv1 + ε
2v2 + ε

3v3 + · · · .

(4.2)

Here, ε does not have specific physical or biological interpretation. At the same time, the linear operator
L can be also expanded as in the following expression

L = LT − ε

(
0 0

d∇2 0

)
ξ2,1 − ε

2

(
0 0

d∇2 0

)
ξ2,2 + · · · ,

where

LT =

(
a11 + d∇2 a12 + dξ1∇2

a21 − dξ2,T∇2 a22 +∇2

)
.

The multiple-scale analysis separates the dynamical behavior of the system according to the different time
scale or the spatial scale. Here, the time scales are separated as

t0 = t, t1 = εt, and t2 = ε2t, (4.3)

which each of the time scales can be considered as independent variables. Therefore, the derivatives with
respect to the time are converted to the following terms

∂

∂t
=

∂

∂t0
+ ε

∂

∂t1
+ ε2 ∂

∂t2
+ · · · .

In this present study, the solutions are described by a system of three pairs of active modes kj and
−kj, j = 1, 2, 3 with each mode makes angles of 2π/3. Under this circumstance, it satisfies the spatial
resonance and |kj| = kc [26, 49]. Thus, at the onset of the Turing instability the solution of model (2.3),
S = (S, I), can be expanded as

S = Us + U = Us +
3∑
j=1

U0(Aj exp(ikj · r) +Aj exp(−ikj · r)),

where Us = (S1, I1) is the uniform steady state and U0 is the eigenvector of the linearized operator L which
defines the direction of the eigenmodes in concentration space (i.e., the ratio of x and y). Meanwhile,
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Aj(t) and Aj(t) are the perturbation amplitudes associated with a constant wave number kj and −kj,
respectively.

The amplitude Aj(t) is a variable that changes slowly with respect to time t. Hence, the derivative
with respect to the time t0 which corresponds to the variable that changes fast does not have an effect on
the amplitude Aj [46, 48, 49]. Therefore ∂

∂t0
= 0 so that

∂Aj

∂t
= ε

∂Aj

∂t1
+ ε2∂Aj

∂t2
+ · · · . (4.4)

Up to the third order in perturbation, the spatiotemporal evolution of the amplitudes Aj(t) are described
by the following form

τ0
∂Aj

∂t
= µAj + q0AκA` − (q1|Aj|

2 + q2(|Aκ|
2 + |A`|

2))Aj, j 6= κ 6= `, j = 1, 2, 3, (4.5)

in which µ =
ξ2,T−ξ2
ξ2,T

is a normalized distance to onset. The form of (4.5) is general form for Turing
bifurcation, but the exact expressions of the coefficients are specific to the model [41, 45]. By further
calculations, the exact expressions of the coefficients for model (2.3) are given as

τ0 =
f+ g

k2
cgfdξ2,T

, q0 =
gg2 + f2

k2
cgfdξ2,T

, q1 = −
G1

k2
cgfdξ2,T

, q2 = −
G2

k2
cgfdξ2,T

.

Detailed calculation of the parameters can be found in Appendix B.

4.1. The amplitude stability
Assume that each of the amplitude equations may be expressed into a polar coordinate Aj(t) =

ρj(t) exp(iφj(t)), where ρj = |Aj| and φj represent the mode and corresponding phase angle, respectively.
Substituting Aj(t) into the amplitude equations (4.5) and separating the real and imaginary parts yield

τ0
∂φ

∂t
= −q0

ρ2
1ρ

2
2 + ρ

2
2ρ

2
3 + ρ

2
2ρ

2
3

ρ1ρ2ρ3
sinφ, (4.6)

τ0
∂ρj

∂t
= µρj + q0ρκρ` cosφ− q1ρ

3
j − q2(ρ

2
κ + ρ

2
`)ρj, (4.7)

for j = 1, 2, 3, with j 6= κ 6= ` and φ = φ1 +φ2 +φ3. From Equation (4.6), we obtain the stable solutions
which are given by φ = 0 with q0 > 0 or φ = π with q0 < 0. Applying these values and using the linear
stability analysis, the dynamical system (4.7) has the following solutions [10, 29, 42].

1. The stable homogeneous solution, ρ1 = ρ2 = ρ3 = 0, occurs if µ < µ2 = 0. In other words, the spatial
pattern occurs if it is unstable, i.e., when µ > µ2 = 0.

2. The stripes are given by

ρ1 =

√
µ

q1
, ρ2 = ρ3 = 0,

and it is stable if µ > µ3 =
q2

0q1
(q1−q2)2 and unstable if µ < µ3.

3. The hexagonal is given by ρ1 = ρ2 = ρ3 = ρ, that is

ρ =
|q0|±

√
q2

0 + 4(q1 + 2q2)µ

2(q1 + 2q2)
,

and exist when µ > µ1 = −
q2

0
4(q1+2q2)

. The solution

ρ =
|q0|+

√
q2

0 + 4(q1 + 2q2)µ

2(q1 + 2q2)

is stable if µ < µ4 =
q2

0(2q1+q2)

(q1−q2)2 , and otherwise unstable.
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4. The mixed states are given by

ρ1 =
|q0|

q2 − q1
, ρ2 = ρ3 =

√
µ− q1ρ

2
1

q1 + q2
,

with µ > q1ρ
2
1 which is always unstable.

5. Pattern selection

5.1. Numerical method

In this section, model (2.3) is solved numerically to confirm the theoretical analysis by discretizing the
space and time of the model. In practice, the continuous problem defined by a reaction-diffusion system
in two-dimensional is solved in a discrete domain with M×N lattice sites. In the discrete system the
Laplacian describing diffusion is calculated using finite differences, i.e., the derivatives are approximated
by differences over 4h which approach the derivative for 4h → 0. Meanwhile, the time evolution
is discretized with the step size 4t and can be solved by using the Euler method. It means that the
approximation of the next time step concentration value based on the change rate of the previous time
step concentration. Without losing of generality, it is also assumed that ∂Ω ∈ C2. In the present study,
model (2.3) is solved with a positive initial values near E1 with the small random perturbation and
boundary condition (2.2) with 4h = 0.01,4t = 1× 10−5 in a system size 1× 1. We perform extensive
numerical simulations by varying the values of ξ2 within the Turing space in Figure 1 (a). The simulations
are terminated until they show a behavior that does not experience the change its characteristics anymore.

5.2. The numerical vs the amplitude analysis

From a series of numerical simulations, there are five types of pattern discovered from the model,
namely the spots, spots-stripes, stripes, stripes-holes, and holes (Figure 2 (a)-(e), respectively). Compared
with the results of Sun et al. [37], the addition of cross-diffusion of infected term to the model [37] revealed
a richer type of pattern. The model in [37] only revealed two types of patterns, namely the spots-stripes
and stripes. In compliance with other results of the spatial epidemic models [5, 12, 24, 35, 37, 40, 44], we
also discover that the density distribution of the susceptible and infected always reveal the same patterns
with positive correlation. It indicates that the densities of the susceptible and infected move in tandem in
the same direction. Therefore, only the patterns of the infected are shown.

According to the amplitude stability analysis in the previous section, variation of µ is responsible for
the emergence of various patterns which is controlled by the cross-diffusion coefficient of the infected, ξ2.
Upon further calculations, with the set of parameters α = 0.545, δ = 0.5,γ = 2500,d = 0.05, and ξ1 = 1, it
yields µ1 = −2.121x10−8, µ2 = 0,µ3 = 0.0547, and µ4 = 0.164. When the value of ξ2 increases, a sequence
of patterns is performed by the model, i.e., the spots→ spots-stripes→ stripes→ stripes-holes→ holes.

In relation to the theoretical analysis, the µ of the spots, spots-stripes and stripes (Figures 2 (a)-(c))
are 0.9989, 0.6929, 0.2835 which are bigger than µ4. These simulations are not in accordance with the
theoretical results. The amplitude equations fail to explain the situation. However, the stripes-holes
in Figure 2 (d) (ξ2 = 8.5) satisfies µ3 < µ = 0.13001 < µ4 which according to the theoretical analysis
performs the mixture of stripes and holes. That is to say, the numerical simulation is in accordance with
the amplitude analysis. Moreover, the holes in Figure 2 (e) (ξ2 = 9.5) are also validated by the theoretical
analysis since it satisfies µ2 < µ = 0.0276 < µ3.

When ξ2 gets very close to its bifurcation point, the µ always satisfies µ2 < µ < µ3 so that the model
reveals the holes but it comes very slowly. Meanwhile, if ξ2 > ξ2,T , the solution of the system returns to
the homogeneous steady state, E1. Under this circumstance, the µ < µ2, therefore the solution becomes
stable and shows no pattern. This simulation result is also in accordance with the theoretical analysis.
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Figure 2: Patterns of the infected of model (2.3) where d = 0.05,γ = 2500, δ = 0.5,α = 0.545, ξ1 = 1 with various values of ξ2. (a)
ξ2 = 0.01, (b) ξ2 = 3, (c) ξ2 = 7, (d) ξ2 = 8.5, (e) ξ2 = 9.5.

5.3. The biological interpretation
In this subsection, we provide the biological interpretation of the five patterns of the model. In Figures

3-7, we show the examples of pattern formations by time evolution for each pattern. The spots (Figure 3),
represented by the yellow hexagons on a blue background, indicate that the high density of the infected
occurs only in certain areas, with almost no infection (or very low) at the rest of the region. This pattern
is obtained when small values are given to ξ2 which means that the infected has limited access to higher
density areas of the susceptible. From an epidemiological point of view, the region is safe from a disease
outbreak.

Figure 3: The spots of the infected of model (2.3) by the time evolution with d = 0.05,γ = 2500,α = 0.545, δ = 0.5, ξ1 = 1, and
ξ2 = 0.01.
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Figure 4: The spots-stripes of the infected of model (2.3) by the time evolution with d = 0.05,γ = 2500,α = 0.545, δ = 0.5, ξ1 = 1,
and ξ2 = 3.

Once the value of ξ2 increases, some spots will unite forming the stripes and will show the spots-
stripes as in Figure 4. This indicates that areas nearby the spots begin to incrementally increase the
density of the infected. The higher the movement of the infected to areas with the high density of the
susceptible, the more new infections occur in the new places, as it can be seen in Figure 5 where all the
spots merge each other forming the stripes. This situation indicates that disease starts to spread over to
wider areas.

Figure 5: The stripes of the infected of model (2.3) by the time evolution with d = 0.05,γ = 2500,α = 0.545, δ = 0.5, ξ1 = 1, and
ξ2 = 7.
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Figure 6: The stripes-holes of the infected of model (2.3) by the time evolution with d = 0.05,γ = 2500,α = 0.545, δ = 0.5, ξ1 = 1,
and ξ2 = 8.5.

Figure 7: The holes of the infected of model (2.3) by the time evolution with d = 0.05,γ = 2500,α = 0.545, δ = 0.5, ξ1 = 1, and
ξ2 = 9.5.

Meanwhile, the stripes-holes (Figure 6) show a worse situation than the three previous patterns, since
it describes a region that starts to experience an outbreak in many areas. This pattern is obtained when
the value of ξ2 is greater than the ξ2 value of the previous patterns, which means that the infected moves
to areas with a higher density of the susceptible faster than before.

Finally, when ξ2 gets bigger, then the model shows the holes. This pattern is dominated by the yellow
color in a spatial domain, which indicates that a high density of infected occurs in many areas in a region,
although there are some places that have a low density of the infected. Thus, from an epidemiological
point of view, the holes like in Figure 7 show the worst situation and indicate that a disease outbreak may
occur in a region [40, 42].
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Figure 8: The emergence location of the five typical patterns of model (2.3) within the Turing space with parameters γ =
2500,d = 0.05,α = 0.545, δ = 0.5. The signs ◦,×,+, ?, and � correspond to the spots, spots-stripes, stripes, stripes-holes, and
holes, respectively.

The emergence location for all possible patterns related to variation of ξ1 and ξ2 within the Turing
space are shown in Figure 8 which the signs ◦,×,+, ?, and � refer to the spots, spots-stripes, stripes,
stripes-holes, and holes, respectively. From Figure 8 we can observe that the holes revealed by the model
if the value of ξ2 are quite large. This means that infected people are allowed to move freely, especially to
areas of high density of the susceptible. Outbreaks can be prevented by controlling the movement of the
infected by setting a smaller value to ξ2 in the model. In this state, the pattern turns into the stripes-holes,
stripes, spots-stripes, and even the spots. Furthermore, if the value of ξ1 increases, then the model reveals
a pattern that indicates a better situation.

6. Conclusions

In this study, we consider and analyze a spatial epidemic model with cross-diffusion of the susceptible
and infected simultaneously under zero-flux boundary condition. The spatial pattern induced by cross-
diffusion was investigated analytically and numerically. First, we derived Turing instability conditions
for the model and Turing space corresponding to the bifurcation parameter, i.e, infected cross-diffusion
coefficient. Multiple scale analysis is used to derive the amplitude equations. From stability analysis of
the amplitude equations, the types of Turing pattern which emerge near the Turing bifurcation threshold
are found. Besides, an extensive numerical simulation was carried out to validate the analytic results and
revealed five types of patterns. Comparing to the results of Sun et al. in [37], the constructed model in
this study reveals richer patterns, not only the stripe and spots-stripes. The five patterns are the spots,
spots-stripes, stripes, stripes-holes, and holes. It means that the model shows more complex densities
distribution of the population spatially. Furthermore, analytic and numerical results are in compliance
when bifurcation parameter value near to the Turing bifurcation threshold.

On the other hand, we focus on the competition effects of cross-diffusion coefficients of the susceptible
and infected. If the cross-diffusion coefficient of the infected is much bigger than the susceptible, then it
may trigger the outbreak. That is to say, the infected moves faster to the areas with a high density of the
susceptible than susceptible stays away from the infected. Hence, this study shows further results, i.e.,
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cross-diffusion of the infected in this model confirms the importance of controlling the infected movement
to prevent the spread of an infectious disease to a wider area.

Nowadays, people all over the world are facing an infectious disease caused by the Coronavirus,
which has spread in many countries. In addition to medical treatment such as vaccines, restrictions on
the movement of infected people need to be carried out to prevent the spread of infectious diseases. Local
governments can issue restrictions on the movement of the infected especially to areas with high density
of the susceptible, such as self-quarantine or travel bans to other areas until they recover. In addition,
the cross-diffusion of the susceptible shows that when they have the awareness to stay away from the
infected, it is very helpful in breaking the chain of disease transmission. In this study, we chose India and
Japan as the samples, since those countries had been struck repeatedly from wave to wave.

Hopefully, the method and results will provide a contribution to enriching the study of pattern for-
mations in the spatial epidemic model, also as a basis for decision-making.
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Appendix A

Proof. In the absence of diffusion, in order to guarantee the stability, all of the eigenvalues of the Jacobian
matrix corresponding to E1 must be negative. This implies that the trace tr(J) < 0 and determinant |J| > 0.
Thus

fS + gI < 0, and fSgI − fIgS > 0. (6.1)

Turing instability occurs if E1 is linearly stable in the absence of the spatial variable but becomes
unstable in the presence of diffusion [30]. If the real part of the eigenvalues Re(λ(k2)) > 0 for some
k2 6= 0, then the instability occurs [9]. Equation (6.1) guarantees that a(k2) is positive, then the only
possibility to obtain Re(λ(k2)) > 0 for some k2 6= 0 is if b(k2) < 0. Therefore, the necessary condition is if

dfIξ2 − dgSξ1 + dgI + fS > 0, (6.2)

but not sufficient to obtain Re(λ(k2)) > 0. The minimum value of b(k2) is

b(k2)min = γ2
(
|J|−

(dfIξ2 − dgSξ1 + dgI + fS)
2

4d(dξ1ξ2 + 1)

)
, (6.3)

when

k2
min = γ

(dfIξ2 − dgSξ1 + dgI + fS)

2d(dξ1ξ2 + 1)
.

Thus, the sufficient condition to obtain b(k2) < 0 for some k2 6= 0 is

(dfIξ2 − dgSξ1 + dgI + fS)
2

4d(dξ1ξ2 + 1)
> |J|. (6.4)

Equations (6.1), (6.2), and (6.4) prove the Proposition 3.1.



A. Triska, A. Y. Gunawan, N. Nuraini, J. Math. Computer Sci., 27 (2022), 1–17 14

Appendix B

Substituting (4.2) and (4.3) into (4.1) and equating the coefficients of ε, ε2, and ε3, these three following
expressions are obtained

O(ε) : LT

(
u1
v1

)
= 0, (6.5)

O(ε2) : LT

(
u2
v2

)
=

∂

∂t1

(
u1
v1

)
+ ξ2,1

(
0 0

d 0

)
∇2
(
u1
v1

)
−

1
2

(
fuuu

2
1 + 2fuvu1v1 + fvvv

2
1

guuu
2
1 + 2guvu1v1 + gvvv

2
1

)
=

(
Fx
Fy

)
,

(6.6)

O(ε3) : LT

(
u3
v3

)
=

(
Gx
Gy

)
, (6.7)

where (
Gx
Gy

)
=

(
∂u2
∂t1

+ ∂u1
∂t2

∂v2
∂t1

+ ∂v1
∂t2

)
+ ξ2,1

(
0 0

d 0

)
∇2
(
u2
v2

)
+ ξ2,2

(
0 0

d 0

)
∇2
(
u1
v1

)
−

(
fuuu1u2 + fuv(u1v2 + u2v1) + fvvv1v2
guuu1u2 + guv(u1v2 + u2v1) + gvvv1v2

)
−

1
6

(
fuuuu

3
1 + 3fuuvu2

1v1 + 3fuvvu1v
2
1 + fvvvv

3
1

guuuu
3
1 + 3guuvu2

1v1 + 3guvvu1v
2
1 + gvvvv

3
1

)
.

(6.8)

Firstly, at O(ε) we have a linear system (6.5). Since LT is the linear operator of the system at the

Turing bifurcation threshold, then
(
u1
v1

)
is a linear combination of the eigenvectors corresponding to

the eigenvalue zero. Let (
u1
v1

)
=

(
Uj
Vj

) 3∑
j=1

exp(ikj · r)

+ c.c.,

with c.c. is the complex conjugate term. By solving (6.5) we obtain Uj = fVj so

(
u1
v1

)
=

(
f

1

) 3∑
j=1

Wj exp(ikj · r)

+ c.c., (6.9)

where Wj is the amplitude of the mode exp(ikj · r) under the first perturbation with j = 1, 2, 3, |kj| = kc
and

f =
k2
c − a22

a21 + k2
cdξ2,T

.

Secondly, at O(ε2), the solution of Equation (6.6) can be expanded into the form(
u2
v2

)
=

(
X0
Y0

)
+

3∑
j=1

((
Xj
Yj

)
exp(ikj · r) +

(
Xjj
Yjj

)
exp(2ikj · r)

)

+

(
X12
Y12

)
exp(i(k1 − k2) · r) +

(
X23
Y23

)
exp(i(k2 − k3) · r)

+

(
X31
Y31

)
exp(i(k3 − k1) · r) + c.c..

(6.10)
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Let L+
T be the adjoint operator of LT . According to the Fredholm solvability condition, the vector function

of the right-hand side (RHS) of (6.6) must be orthogonal to the eigenvectors of the zero eigenvalue of L+
T

to ensure the nontrivial solution of this equation. The eigenvectors of the operator L+
T are(

1
g

)
exp(ikj · r) + c.c.,

for j = 1, 2, 3 with

g =
a11 − dk

2
c

a21 + dk2
cξ2,T

.

The orthogonality condition is

(1,g)
(
F
j
x

FJy

)
= 0,

where Fjx and FJy are the coefficients of exp(ikj · r) term in Fx and Fy. For instance, substituting (6.9) to
(6.6) yields (

F1
x

F1
x

)
=

(
f

1

)
∂W1

∂t1
+ ξ2,1

(
0 0

d 0

)
(−k2

c)

(
f

1

)
W1 −

(
f2
g2

)
W2W3

with (
f2
g2

)
=

(
fuuf

2 + 2fuvf+ fvv
guuf

2 + 2guvf+ gvv

)
.

Using the solvability condition, the following relations are obtained

(f+ g)
∂W1

∂t1
= k2

cdfgξ2,1W1 + (f2 + gg2)W2W3,

(f+ g)
∂W2

∂t1
= k2

cdfgξ2,1W2 + (f2 + gg2)W3W1,

(f+ g)
∂W3

∂t1
= k2

cdfgξ2,1W3 + (f2 + gg2)W1W2.

(6.11)

Substituting (6.10) into (6.6) and collecting the coefficients of exp(ikj · r) and so on, yields following results(
X0
Y0

)
=

(
zx0
zy0

)
(|W|21 + |W|22 + |W|23), Xj = fYj,(

Xjj
Yjj

)
=

(
zx1
zy1

)
W2
j ,

(
X12
Y12

)
=

(
zx2
zy2

)
W2

1W2,(
X23
Y23

)
=

(
zx2
zy2

)
W2

2W3,
(
X31
Y31

)
=

(
zx2
zy2

)
W2

3W1.

Lastly, at O(ε3) we have Equation (6.7). Collecting the coefficients for exp(ik1 · r) from (6.8), namely(
G1
x

G1
y

)
, and using the Fredholm solvability condition as in O(ε2) case, we obtain

(1,g)
(
G1
x

G1
y

)
= 0,

and

(f+ g)

(
∂W1

∂t2
+
∂Y1

∂t1

)
= gfdk2

c(ξ2,1Y1 + ξ2,2W1) + (gg2 + f2)(Y2W3 + Y3W2)

+ (G1|W1|
2 +G2(|W2|

2 + |W3|
2)W1),

(6.12)
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here

f3 = fuuuf
3 + 3fuuvf2 + 3fuvvf+ fvvv,

g3 = guuuf
3 + 3guuvf2 + 3guvvf+ gvvv,

h1 = (guug+ fuu)f+ guvg+ fuv,
h2 = (guvg+ fuv)f+ gvvg+ fvv,

G1 = (zxo + zx1)h1 + (zyo + zy1)h2 +
1
2
(gg3 + f3),

G2 = (zxo + zx2)h1 + (zyo + zy2)h2 + (gg3 + f3).

The terms of
(
∂W2

∂t2
+
∂Y2

∂t1

)
and

(
∂W3

∂t2
+
∂Y3

∂t1

)
can be obtained by permutation of the subscript of W as

well. Considering equation (4.4), the amplitude equations Aj(t) can be expanded as

Aj(t) = εWj(t) + ε
2Yj(t) + · · · . (6.13)

Substituting (6.13) to (4.4) and using the solvability conditions (6.11) and (6.12), the amplitude equations
corresponding to Aj(t) for j = 1, 2, 3 is derived as given in (4.5).
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