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Abstract

This paper considers a deep analysis of a three-level explicit time-split MacCormack method, namely the locally one-
dimensional explicit MacCormack for the numerical solution of the two-dimensional nonlinear evolutionary advection-diffusion
equation subjects to suitable initial and boundary conditions. The splitting reduces the computational cost of the algorithm.
Under a suitable time-step restriction, both theoretical and numerical results on the stability and error estimates of the scheme
are deeply analyzed in L™(0, T; L?)-norm (m = 1,2, c0). The numerical experiments suggest that the proposed algorithm is easy
to implement, temporal second-order convergent and fourth-order accurate in space. This shows the utility and efficiency of the
considered method.
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1. Introduction and motivation

This work considers a new numerical scheme for predicting the transport phenomena governed by
the two-dimensional nonlinear time-dependent convection-diffusion-reaction equations. Such equations
model a broad range of phenomenons in physical, chemical and biological sciences [2, 4, 31, 38, 41].
Furthermore, they arise in Helmholtz equation for modeling exterior acoustics, viscoelastic constitu-
tive equations in modeling the extras stresses in non-Newtonian fluid flows and in a coupled mag-
netic/incompressible Navier-Stokes when computing the magnetic field [5, 9, 15]. For instance, chem-
ical spills, groundwater contamination from leaky underground storage tanks, transport chemistry in the
atmosphere or in combustion processes, turbulent flow modeling and active filtration or heat transport
are serious problems. Although it is possible to assess the danger of the spread of the pollution released
in the subsurface domain by the use of numerical simulations, it is worth noticing to mention that the
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ability to model unsteady flows and transport processes with complex physical interactions is particularly
important from the point of view of physical realism, but is a difficult task. Therefore, the construction of
accurate numerical methods for such problems in evolutionary cases presents a bigger challenge and less
number of works on the subject appears in the literature (see [6, 7, 13, 34]). In this paper, the governing
problem for the two-dimensional nonlinear nonstationary convection-diffusion-reaction equation is

d)t + qu) - CLAd) = f((l)), (X/y) € Q/ te (OIT]I (11)

with the initial condition B
d(x,y,0) = do(x,y), (xy)€Q, (1.2)

and the boundary condition

o(x,y,t) =0xy,t), (x,y €0Q, te(0,T], (1.3)

where ¢ is the unknown quantity, pu is the given convective term, and a > 0 represents the diffusive
parameter, f(¢) denotes the nonlinear reaction term and T > 0 is the final time. Furthermore, V and A are
the gradient and the laplacian operators, respectively, f € C(R) is a Lipschitz function, Q = (0,1) x (0,1)
represents the fluid region, 9Q) is the boundary of QO and ¢ designates %—‘1’. The initial condition ¢g and
boundary condition ¢ are assumed to be regular enough and satisfy the requirement ¢ (x,y,0) = ¢o(x,y),
for every (x,y) € 0Q), so that the initial-boundary value problem (1.1)-(1.3), admits a smooth solution (see
for instance, [12, 17, 43]).

In the literature, the goal is to obtain approximate solutions to nonlinear parabolic equations (1.1)-
(1.3) using fast and efficient numerical schemes. Especially, one is interested in long term effects, so
that the equations should be integrated over long time intervals. So, the use of some properties like the
mass conservation, positivity and small phase errors must lead to numerical solutions which should be
”qualitatively correct”. Sometimes, the parabolic equations in a convection-dominated flow can be strong,
local source terms. Thus, numerical algorithms are needed with good resolution of steep gradients. This
note deals with the three-level explicit time-split MacCormack method which is too much fast and efficient
than the two-step explicit MacCormack approach which in general, provides good resolutions of steep
gradients.

During the last decades, the original MacCormack algorithm has been considered as one of the mile-
stones of computational fluid dynamics [19-21, 39]. This technique provides good resolutions of steep
gradients. The first order time derivative is approximated at the predictor and corrector steps using
forward difference representation with alternate one-side differentiating for the first order space deriva-
tives. This is more convenient for systems of equations with nonlinear convective Jacobian matrices using
second order one-side explicit methods, such as Lax-Wendroff technique [14, 23]. For high Reynolds num-
bers flows where the viscous regions are too thin, the method becomes very slow and can diverge. To
overcome this difficulty, MacCormack develops a hybrid version of his scheme, the so called MacCormack
rapid solver algorithm. The rapid solver method is a coupled of explicit MacCormack and an implicit
scheme [18].

Most recently [24-30, 32, 33, 35-37, 40], the author applied the hybrid version of MacCormack and
three-level time-split MacCormack approaches in a search of efficient solutions for the linear/nonlinear
partial differential equations. More precisely, the rapid solver algorithm has been used for solving
both mixed Stokes-Darcy and two-dimensional unsteady incompressible Navier-Stokes equations while
the three-level time-split MacCormack was used in the numerical solutions of two-dimensional time-
dependent reaction-diffusion and coupled Burgers” equations. It is particularly important to recall that
the three-level time-split applies to nonstationary equations of the form: uy = Aj(u) + Az(u), where u
denotes %—‘t* and A; (j = 1,2) are differential operators, so that the subproblems uy = Aj(u), j = 1,2, are
each solved independently by the use of the explicit MacCormack method.

In [3, 8, 11, 22, 42] several approaches for the numerical solutions of the evolutionary advection-
diffusion equation with constant coefficients are analyzed. The common idea in the considered problems
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is to carry out discretizations in two separable phases: partial discretization for the stabilized finite el-
ement procedures and temporal integration by time-marching finite difference representations. Such
methods allow to combine various discretization schemes for the target model. Although some of these
techniques have been very efficient (second order convergent in time and fourth order accurate in space),
only the numerical studies have been considered in the literature. In the following, we analyze the three-
level time-split approach for the initial-boundary value problem (1.1)-(1.3). This study is motivated by:
(a) a deep analysis of the theoretical and numerical results; (b) the method is fast, efficient and easy to
implement (explicit, second order convergent in time and fourth order accurate in space); (c) the form of
the time step requirement: max {2}?—2“, %} < 1, where k is the time step and h denotes the space step.
Indeed, equations (1.1)-(1.3) can model nonlinear hyperbolic equations (case a = 0) and parabolic prob-
lem (case u = 0). For example, the time step restriction provided by the Fourier analysis for stability of
explicit schemes when solving two-dimensional linear parabolic equations is given by = fak <1, which is
well known in the literature as the CFL condition. Regarding the nonlinear convectlon—dlffuswn—reactlon
equations, the classical Von Neumann stability analysis is not in the standard sense, directly applicable;
(d) it comes from item (c) that the solution is advanced in each direction with the maximum allowable
time step. To explain this technique, we should consider the one-dimensional difference operators Ly (ky)
and Ly (ky), where k. and k, denote the time steps in the x-direction and y-direction, respectively. The
Ly (kx ) operator applied to ujj,

= Ly (ky )i (1.4)

1]’

is by definition equivalent to the two-step predlctor—corrector MacCormack formulation. The Ly (ky)
operator is defined in a similar manner, that is,

uf; = Ly (ky)ugs. (1.5)

These expressions make use of a dummy time index, which is denoted by the asterisk. Setting k, = k and
ky = %, where m is a positive integer, a high order convergent scheme can be constructed by applying
the Ly and Ly operators to u{‘j, in the following manner

= [ ()] L [ ()]

In the case where hy << hy, (hy and hy are the mesh sizes in the x-direction and y-direction, respectively),
we get interesting numerical schemes.

In the following, we consider the 1D difference operators L (k) and L (k) defined by equations (1.4)
and (1.5), respectively. Specifically, we set m = 1 and a second-order accurate scheme can be constructed
by applying the Ly and L operators to uj as follows
ult ™! = Ly (k/2) Ly (K)Ly (k/2)ufs. (1.6)

ij
Letting ky =k, ky = % and hy = hy := h, it comes from equations (1.4), (1.5), and (1.6) that

uiy = Ly (k/2)0ufj, uif = Le(k)ufj = Li(k)Ly (k/2)uj; and ulttl =1 y (k/2)0ufy

ij — L9/

To construct our algorithm, we should find explicit expressions of equations uj; = Ly(k/2)ujj and

i = Lx(k)u i This will allow to provide an explicit formula of the equation u{;H = Ly (k/2)uiy, Wthh
represents a “one-step time-split MacCormack algorithm”. For the sake of simplicity, we use notations:
u){lj = u{lj and [u+v]{‘). = u{‘j +v{;.

The goal of this work is to analyze the following items:

1. full description of a three-level time-split explicit MacCormack scheme for solving the nonlinear
time-dependent convection-diffusion-reaction problem (1.1)-(1.3);
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2. stability analysis of the method;

3. error estimates of the numerical scheme;

4. numerical experiments which provide the convergence rate, confirms the theoretical analysis and
shows the efficiency and effectiveness of the algorithm.

Items 1-4, represent our original contributions since as far as we know, there is no available works in
literature which solves the nonlinear convection-diffusion-reaction model (1.1)-(1.3), using a time-split
MacCormack method.

The paper is organized as follows. In Section 2, we present a detailed description of the three-level
time-split MacCormack method for solving the initial-boundary value problem (1.1)-(1.3). Section 3 stud-
ies the stability of the numerical scheme under the time-step restriction given above, while Section 4
considers a deep analysis of the error estimates and the convergence of the method. A wide set of nu-
merical examples which provide the convergence rate of the new algorithm and confirms the theoretical
result (on the stability) are presented and discussed in Section 5. We draw the conclusion and present our
future direction of works in Section 6.

2. Full description of the numerical scheme

This section considers a full description a three-level time-split MacCormack scheme for solving the
two-dimensional nonlinear time-dependent convection-diffusion-reaction equations (1.1)-(1.3).

Let N and M be two positive integers. Set k := At = &, h := Ax = Ay = 7, be the time step and
mesh size, respectively. Let t™ = kn, be the time used at the first step, t* be the starting time at the
second phase, t* € (t™,t"*!) and t** be the time considered at the third stage in a three-level time-split
MacCormack, t** € (t*,t"*1), forn =0,1,2,...,N—1, x; = ih, y; = jh, for 0 < i,j < M. Furthermore,
we define the discrete regions: Qi = {t",0 < n < N}, Qp = {(x1,9;),0 <1,j <M}, Qp = OrNQ and
00y, = ﬁh NoQ.

Suppose Uy, = {d){‘]. =¢(xHLy,t"),n=0,1,...,N; 0 < < MY}, be the space of grid functions defined
on Qp x Q. Set

* *k * +1 ok
septy = P09 s — 0 P onit = P59
Y k/2 Tk Yy T w2
n _ HM n _Am n
Ul = P, 705 ¥t = Tl 5™ _L‘bw (2.1)
i R v 2h W+l T T h
n n o n
Y G191 oo éxcl)”% Xd)l*zJ 2. n yd)lHl dyds ij—3
PO =TT B " ;8eh = h '

From the definition of the linear operators 6™ and 8V, it is easy to see that 8*¢{j = : (6)((1){‘+ s Sx i 4 ],>
27 27

and bY d){‘)- = (6 d)1 ! +6 d)“ ) The discrete norms are defined as follows

1
M-—1 2 M—1M~—1 2
o™z =h | > 16%P | I8xd™iz =h | > 3 IR, P
ij=1 j=1 1=0
1
M—1M—1 2 2
2 2 2
[Syd™lz=h{ > Y Bydl ] 18Rz = ZI5 Ul
j=0 i=1 i,j=1

where A = x or y. Furthermore, the scalar products are defined by

M—-1IM-1

2 2
( h Z d)u 1)1 < 6chn’ van >X_ h Z Z 5x¢?+%/j5xv?+%/j/

i,j=1 j=1 i=0
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and
M—1M—1
_n2
<y ¢ eVt >y=h2 > Y SydT, 10V, 1
j=0 i=1
The sobolev space H!(Q) endowed with the norm |- |;;1 (respectively, || - ||;;1) is defined as

1 1

(™M = ([8xd™ T2 + 18y d™[1F2)* and (@™l = (IO™ 72 + [15xP™ (172 + 18y d™[2) -
It is worth noticing to recall that a time-split MacCormack [27, 32] splits the two-step explicit MacCormack
method into a sequence of one-dimensional operations, thereby achieving a good stability condition. More
precisely, the splitting makes it possible to advance the solution in each direction with the maximum
allowable time step ([1], page 231).

Applying the Taylor series expansion for ¢ about (x;,y;,t™) at the predictor and corrector steps with
time step k/2 in an explicit MacCormack scheme we get

* Kk k? * Kk * k? *
¢35 = o + Ed)t)% + §¢2t)% +0(k%), ¢35 = o + E(I)t)ij + §¢2t)i]‘ +0(K). (2.2)
Using the definition of the operator L, (k/2), we can consider the equation

¢t + nudy — adyy = (), which can be rewritten as ¢y = —udy + adyy + f(P). (2.3)

From equation (2.3), the use of the chain rule provides

b2t = (ad)yy - ud)y +f(d)))t
= 2Py —2apdsy + 1oy — 1F(D))y + a(f(d))yy + [—rdy + adyy + () (d).

This fact combined with equation (2.2) gives

- k K2
d)fi = 11) + E[ad)yy —udy + f(d))]]:] + ) [a2¢4y —2apdsy + li2d)yy —p(f(d))y + alf(P))yy

+ by £ abyy + @) (@) +O06,
(2.4)
k2
+ g [P bay — 200y + 12 byy — (D)) + alf())yy

F [y + adyy +HO (0)] +00).

D]

k _
491] 5 E[ad)yy — uby + ()]

Expanding the Taylor series about (x,y;,t™) and (x4, y;, t*) with grid spacing h using both forward and
backward difference representations, it is not hard to see that

Oy =8yd;, 1 + O, bfy 55 =85 +0(h?), 3y 15 = 85 (5yd];, )+ O(h),
Py iy =8y +0(h?),  (F(0))55 =8y(F(@NT, 1 +O0(M),  (F(b))yy 45 = 85 (F($)F +O(n?), 5
Ol =0ydy; 1 +O(M), bl =85 +0(h), D3y =05 (5yd]; ;) +O(h),

Pryi5 = 8yd5 +0(M?), ()55 = 8y(F(P)F; 1 +O(M),  (F())Gy,i5 = 83 (F())F +O(h?).

In relation (2.5), the operators 6yw% and 651/\1% are defined by equation (2.1). Combining equations (2.4)
and (2.5), straightforward computations yield

k
b3 = f 2[a62 — udy ¢1)+1 + f(F)] + Kol + O(K® +kh), (2.6)
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and k
bf; = O + [a62 25— 5y¢jjf%+f(¢fj)] k*pf; + O(K® + kh), (2.7)
where
1
oty = 5 {003 (83, 0) —2au8} (8,67, )+ 126 6T — Sy (07, ) + a8} (F(o]}))
S 1—|—a62 B+ FOR)] £ {;)}, 08
_ 1 _ _ _ :
ol =3 { o%8 (85 0;) —2apdy (5y 7, 1)+ 285 0 — udy (F(9]; 1)) + ad (f($];))
+ [usy ],y +ask ok + (%) (05}

Now, we should find a simple expression of the terms (7, ) 1) d)* Y and 6% d)f) The application of the

Taylor series expansion about (xi, yj, t'™) with time step % using forward difference representation results
in

_ k k /
f(&F) = f(6F) + SNy + 00 =F(OF) + STy (6F) + O(Kk). (29)

But, it comes from equations (2.3) and (2.5) that

Py = —HOY 4 + ady i + F(OF) = —udy b7,y + a8y + f(d5) + O(h). (2.10)

A combination of equations (2.9) and (2.10) provides

—udy T, 1 + ady df + f( {;)} f'($5) + O(K? + kh). 2.11)

F(07) = H(6]) + 5

In addition, utilizing equation (2.6), it is not hard to see that

. k
BydT; 4 =8y0f 4+ E[aé; (8ydy; 4) - sy Y + Syf(df; )+ O(k%+kh), (2.12)

and
5 b5 =8 g[aég% ud3 (8, q)?H ) + 8% (f(d)] + O(K* + kh), (2.13)

Substituting equations (2.11)-(2.13) into (2.7), straightforward computations result in
LK a2 2 3
OF = % + (a6 — Uy b7y + )) +12 (B3 + 5;) + O(K® + kh), (2.14)

where .
o 254 2 252 2
oty = 7 { 0?8400} —2ans? (993 +u283 0l — by (1] 1))+ a8} () 015)
+ | -ndy ¢”+1 +as2 ol + (o3| £ (o3 } -
Plugging equations (2.6) and (2.14), simple calculations give

2

k k n N *
(‘1’1) + d)l)> 5 T3 (aéid)% —u8Yo} +f(oF)) + o (o} + 05 + pij) + O(k® +kh?), (2.16)
Sy BT T80T ) A
where &Y d)?j = 2R > 72 and pf; and p?j are defined by relations (2.8) and (2.15), respectively.

The second order infinitesimal term O(h?) in equation (2.16) comes from the Taylor expansion d)y){; =
SYdy + 0(h?).
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In similar way, to define the operator Ly (k), we should consider the following equation
bt + udpx —adpyxx =0, which is equivalent to ¢y = —pudx + adxx. (2.17)

Utilizing equation (2.17), it is not difficult to observe that

Gor = (—udy + ad)xx)t = uzd)Zx —2audszx + a2¢4x- (2.18)

Expanding the Taylor series about (xi,yi, t*) (where t* € (t™, tnt1), is the starting time at the next step
in a time-split MacCormack scheme) with grid spacing h using both forward and backward difference
representations we get

Y5 = Oxbi, 1 ; +O(h), Pl = 0305 +0(M%), b3y =83(8xd7, ;) +O(h),
d)Zx i)' = 64}((1); + O(h'z)l (bx 1] = 6Xd)** + O(h’)l d)xx 1] = 62 d);k)* + O(hz) (2.19)
P3Ti = BA(0xb"y ) +Oh), iy = 6id>;3* + O(hz),

where 6x¢$ 415 and 63(43% are defined by equation (2.1). Furthermore, the application of the Taylor
2

series at the predictor and corrector steps about (xi,yj, t*) with time step k using forward difference

representation provides

2 2

OFj =& + ko) + - dad)f; + O(K%), &5 = b + k) ij + = dau)i + 0. (2.20)
Combining equations (2.17), (2.18), (2.19), and (2.20), direct computations result in
b5 = bf + Kb d], s 5 + a8 di) +K2yi; + Ok + kh), (2.21)

and
b3 = b +k[—u2‘>x<bf%d + a8 di ]+ K*yi + O(K +kh), (2.22)

where
Vi = 5 [@282(820%) ~ 2au82 (5507, , ) +128205 ], vE = 5
ij x Ox @1 XXV 1 i 2

5 (26262077 — 2083 (8: 077, ) + 1280
2!]

We should find an explicit expression of terms 82 ¢ i and & (bi“i 1 Using equation (2.21), simple calcula-
27

tions yield B
5307 = 8% +KI-pdl (5], 4 ;) + a8y df)+ O(K? +kh),

and
Sxdi* 5 =007 —I—k[—uéid)i*j+a6§(6xd>i*_%’j)]+O(k2+kh).

This fact, together with relatlon (2.22) yield
&% = o7 +k (@807 —udeby_y ) +IE (75 + ) + O +Kh), (2.23)
where
Vi = W50l — 2083 (8 ) + a?51 ;.
A combination of equations (2.21) and (2.23) results in
2

| K
§(¢:j*+¢rj*):¢§j+k( KS* b3+ aBi ) + 5 (Vi + 75 + Vi) + 00 +kh?),  (224)
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where the second order error term O(h?) comes from the approximation
1
* * 2y * * 2
@ty = 8507 +0(N) = 2 (8x07,; ; + 8.7 ;) +O(n?).

Similarly, starting with the one-dimensional equation: ¢ + udy — adyy = (), expanding the Taylor
series about (xi,yj, t**) (Where t** is the time used at the last step in a time-split MacCormack technique)
at both predictor and corrector steps with time step k/2 and mesh size h, using forward and backward
difference representations, it is not difficult to show that

1 n+1 ntl ok #k k2 *ok Akk n+1
S (o5 +opt) = o ( KSY T + adh i + F(bF) + = (05 + 85 +057T) + 00 +kn?),
(2.25)
where
1
05 = = {0203 (63 6%) — 20183 (8, &%, ;) + K238 — ko, (F(9F, 1)) +ash () 026

ROy 0%+ asl bl + (0F)| 1 (0f) },
where we set « = xx,n+1 and

Aok 1 *ok ok *ok *ok
03 = 1 {0254 (Ol —ZGH‘SZ (0Y3) + Hzéid)' — pdy (f (d)m- )+ (152 (55

+ [usy o, + a8kl + 15| £ 05}

1
2

SydX oy dX
with SY¢f = kA E—

In order to provide a full description of a three-level explicit time-split MacCormack method for
solving the two-dimensional nonlinear time-dependent convection-diffusion-reaction equation (1.1) with
initial and boundary conditions (1.2) and (1.3), respectively, we should follow the ideas developed in
[21, 27, 32]. We must neglect the second order terms together with the error term O(k® +kh?) in equations
(2.16), (2.24), and (2.25). Furthermore, the terms ¢ *, and (1)’“rl are defined as the average of predicted

and corrected values,

'L]’ 'L] 4

5 + o5 b7

2 2 '

b3 = , O3 = , and ¢! 5 (2.27)

By definition, equations

bf; = Ly(k/2)b%, 0f =L(k)o}, and &F" =1, (k/2)03,
are equivalent to
15 = o5 + ];( uSY R + adl df + (b)),
b = bfj +k (—ud i + adiol), (2.28)
¢{§“=<I>i‘j*+k( Y i + ady 3 + f(d5)) -

From the definition of the operators Ly(k/2) and L.(k), it is not hard to observe that the operator
Ly (k/2)L(k)Ly(k/2) is symmetric. This fact, together with relations (2.16), (2.24), and (2.25) suggest
that the new method is a three-level approach, an explicit predictor-corrector scheme, second order ac-
curate in time and fourth order convergent in space. This theoretical result is confirmed by a wide set
of numerical examples (see Section 5). Furthermore, it comes from the definition of the linear operators
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78X, "8Y”, 782" and ”6% ” given in relation (2.1) that equation (2.28) can be rewritten as follows. For
n=0,1,..., N=1;

oY = OB + [hz(cbl]+1 208 + 0% 1) — o (91— df ) +FOF)], =01 M j=1..,M=1,  (229)
Kok * o * * . .
d)i] d)u +k [hZ (¢1+1,j _2‘1)%1‘]' + d)i,l,j) - ﬁ(cbpﬂ,j — d)ifl,j)} , 1=12,.... M-1;j=0,1,..., M, (2.30)
*k a 0k ok . .
Ot =t + [hz(tblm 205 + 635 1) — 3 (@550 — 63 ) @), =01 M j =1, M=1, @3]

subject to the initial and boundary conditions. Fori,j =0,1,..., M,

d)(z = d)O(XiIU)‘)/ d)lb = (Plb, d)nM = (p?Mz d)g] = (p(‘r)l)/ d)T]\l/l] = (PTI\I/[]z d)(]) n+1’
bry = Oy b (p}b“, bim = cp]}\ﬁl, bpr = @&“, by = ony, O = o™, (2.32)

n+1 _ _ _ N _ N
d’;kf\kA Pim d)iO = (Pwr d)iM = (PiMf d’o;' = (Poy damj = Pmy-

Equations (2.29)-(2.32) represent a detailed description of a three-level explicit time-split MacCormack
method applied to nonlinear convection-diffusion-reaction equations (1.1)-(1.3).

In the following, we analyze the stability, the error estimates and the convergence rate of the numerical
scheme (2.29)-(2.32), under the time step requirement

< .

where a > 0 and p are physical parameters given in equation (1.1). We assume that the analytical solution
& e L>(0,T; LZ(Q))D HL(0, T; H3(Q)) N H2(0, T; HY(Q)) N H2(0, T; L2(Q)) N L2(0, T; H*(Q)), that is, there is
a positive constant C, that does not depend neither on the time step k nor the mesh size h, so that

Nl oo 0,1:12(00)) + 1Dl 0,113 (0)) + bllhzo 1)) + IPl20,m512(0)) + Nll20TH00)) < C (234

To end this section, we state the following result (Lemma 2.1) which plays a crucial role in the proof of
the stability analysis of the numerical scheme (Theorem 3.1).

Lemma 2.1. Let d){‘- = ¢(xq,y5,t") be the numerical solution provided by the scheme (2.29)-(2.32), 63 =

q)(xl,y),t“) be the exact one and let e cb“ 511) be the error. We recall that 51 = ¢"+¢" and d) g Hb”

satisfy relations (2.16) and (2.24), respectzvely &35 and G35 are given by equations (2. 29) and (2. 30) respectzvely
Then, it holds

7

M—-1
a
a<&elj el > =h ) o (eliy; —2e el ;) e = —allee™(f (2.35)
ji—l
< dyell, el —h2Z 7 (el —2ely ey ) e = —afldye™ {2, (2.36)
ji=1
and
M—1
D (el —ely ) el =0. (2.37)
ji=1

Proof. Equations (2.35) and (2.36) are proved in [27].
Now, let prove equation (2.37). Firstly, it is easy to see that

n n n _ n n n_ _n
(efj41 —€ij—1)el; = eijr1ey — €4 €ij—1-
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Summing this up from1i,j=1,2,...,M —1, to get

M—1 M—1 M—1
n n n __ mn n n n n

Z (el 1—elly 1) el = z (el 1els —efiely_1) 2 eimeim—_1 — €i1€i0)- (2.38)

1j—1 Lj—1 im1

But, it comes from the boundary condition (2.32) that el},, = el = 0. Using this fact, equation (2.38)

becomes
M—1

Z (e?,jﬂ - e}:j—l) ej; =0.

ij=1
O]

With the above tools, we are ready to analyze the stability of the three-level time-split MacCormack
method (2.29)-(2.32) applied to the initial-boundary value problem (1.1)-(1.3).

3. Stability analysis of a three-level time-split MacCormack scheme

This section considers the stability analysis of the numerical scheme (2.29)-(2.32) for solving the two-
dimensional nonlinear unsteady convection-diffusion-reaction equations (1.1)-(1.3).

Theorem 3.1. Consider ¢ to be the numerical solution obtained from the scheme (2.29)-(2.32). Under the time step
restriction (2.33), the approximate solution ¢ satisfies

5
7CT ) )
Oglagle li2(q) < C+exp <9(C woa)(1+9(C p, a)) lE_O(Ck) )

where g(C,u,a) =1+ % + % + %, Cisa ;iositive constant independent of the time step k and the mesh size h,
wand a > 0, are two physical parameters and C is the constant given by equation (2.34).
Proof. Plugging equations (2.16), (2.27), and (2.29), straightforward computations result in
. k k2
el = el + ( 52el — psYell + () — (d>1])> S (PR 4P +05) 4003 +KkhY),  (B1)

where P (¢ =m,%) and 5{; are given by (2.8) and (2.15), respectively. From the definition of the linear
operator ”6%”, equation (3.1) can be rewritten as

. k/a u _
ejj = e + 5 (ﬁ(e{;ﬂrl —2e{jt+efj q)— ﬁ(e?,jﬂ —eii_q1) +f(d55) — f(fbg)) 62)
K2 N - '
+— (o5 + 05 + p3j) + O(K> + kh?).

2

Since the formulas can become quite heavy, for the sake of readability, we must neglect the terms of
higher order in time step k and mesh grid h. Because the aim of this section is to analyze the stability
of the numerical scheme, the truncation of the second order term and the infinitesimal term does not
compromise the result. This fact, together with equation (3.2) provides

y k/a L _
el = el + 5 oz lelyor =26 + ey 1) — (el —efy_) +F(0F) — F(B3)) (3.3)

Taking the square, equation (3.3) yields

(€70 — ely) + F(97) — F(B7)] ey

—n\2
el — efy_) + H(9F) —1(81))

(5,2 = (e} J+k[hz( Byen =260} +ely ) - (3.49)

kK? /a

4 " 2h
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Applying equality (a —b)(a +b) = a® — b?, together with inequalities (a +b)? < 2(a?+b?) and (a+b =+
¢)? < 3(a® +b%+c?), for any a, b, c € R, direct calculations give

(D1 —2eff +elj_1)? <2 [(e] n+1 +(e3j,1—e{;.)2], (3.5)
(el 1 —elj—1)? < 2 [(el1)* + (el 1)7], (3.6)
2a _ a
oo ey — 268+ ey 1) (F(O8) — F(B1)) < sy (ellar —2¢] +eby 1+ 5 (F0T) ~F@D)), 67)
(egj+1_e{}j—1)(e{tj+l 26 +el] 1):[ {14- eg)‘i‘(e%_e{}j_ﬂ]
x [(ef41 — (ef —ef1)] (3.8)
( 11 61])2—(65—65_1)2,
2 2
[ v _
Eepy i —ebyo) (FOB) = (7)) < gl — ey )2+ (flof) — F(5)) (3.9)

Since f € C!(RR) is a Lipschitz function, there exists a positive constant C independent of the time step k
and the grid spacing h so that

F(dF) — (P15 < Cledyl. (3.10)
Using estimate (3.10), it is not difficult to see that

n

n i \2
(o5 — F(&5)) e} < Cle})* and (f(6T) — (7)) < C3el)? (3.11)
From estimates (3.5)-(3.11), it holds

a u -n.1?
[ﬁ(el)+1 2ell +ely ) — 2h(e3j+1—e§j_1)+f(¢?j)—f(¢1j)}

2 2
2, @ 2
= a2 (€1 — i)+ et —2ef +ef )

n —n.\?2 ap . n n n n
+ (f( i) _f(d)ij)> - F(ei,jﬂ —ep;_q)(eqy 1 —2efj+eg;_q)

- 2 b
= ety — by a) (FO5) = F(@5)) + T el =265 +elyo) (f105) — (@5)) (3.12)
2 )’ |
< 2l]l'12'(e{}j+l_e€j—1)2+2]; [59(€U+1) +8y(ey %)} <2+h2> (f( %)_f(d)“))

a ap
+lenii —2efj +ely )2 - =F [6y(e{;+%)2—6y(egj_%)2}
2
o 2 2, 20 2 2 2
< 55 (R 2+ (el + S [Bulely, 2+ 8y (efy_))%| + €2 (24 5 ) (e])
3 ap

[y ler, )2+ 8y (el )7

+h7(21 [(€T541)% +4(efy)* + (el 1)?] + v

h
Combining equation (3.4) and estimate (3.12), straightforward calculations result in
(35)2 < (el)2 41 { g (ln — el )el} + 15 (el g —2efy +efly_y)ely + Cle})?}

21,2 2K2
ok 2 2 k 2 2
Tz {(egi“) + (e } AT [(59 1]+2) + (596317%)

apk? n )2 n \2]  C%k? o2 3ak? n 2
+ 28K [(%em) t(yer )|+ S (243 ()2 + 20 [(elya)? +alel + (el 7).
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Summing this up fromi,j =1,2,...,M —1, and rearranging of terms, we obtain

M—1 M—1 M—1 M—1

. pk
D2 (P ) (el D (elj—elya) hz Z el —2ef +ely q)ef +Ck 3 (ef)
i,j=1 i,j=1 i,j=1 i,j=1 i,j=1
C2k2 a M-t 2 Zkz 2
Ty <2+¥) 2 e+ G Z { etj1)? SH)}
i,j= i,j=1
M—1 M—1
3ak2 2 ] ak? sra n 2 n 2
T Zl[ Bj) +4(ef) +<e§i4)}+7(ﬁ+ﬁ> _Zl (5yei,j+%) +(5‘Jei,i—%) ’
1) V)=

which implies

2
+Ck [1+ LI (2+5)+ 9‘*} S (el (3.13)

Multiplying both sides of estimate (3.13) by h?, and using equations (2.36)-(2.37) of Lemma 2.1, it is not
hard to see that

W’k Ck ( a ) 4 9ak

2
T e 2Ch2} lelltz o

* (|2 2 2

ak (2ak pk
+5 (G + 5 ) 1 B

2ak  uk
N

2
wk  Ck a 9ak 2
+Ck [1+2Ch2+ . <2+h2)+2Ch2 €2

(3.14)

From the time step requirement (2.33), i.e., max {2}‘1‘2“, ”ﬂk} 1, it is easy to see that zﬁzk + HT 2, which

is equivalent to 1 — 1 ( 28k 4 BK) > 0. This fact, together with estimate (3.14) provide
q 2\ h 8 p

2
. w2 o C 9 Ck
e B < e e + O [1+ i+ 5+ o+ 5 18 B
(3.15)

Ck
= ”enH%Z(Q) + Ck [Q(C/ W, a)+ 2] Hen”%z(g),

where X
1 M9
g(Cwa) = 1+4C+8+4C

Similarly, using equations (2.24), (2.27), and (2.30), adapting the proof for |/e* ||2 ) by replacing % by k,
it not difficult to show that

e 1F21q) < lle"[IT2(q) +2Ck19(C, 1, @) + CK [€*Fa - (3.16)
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Finally, plugging equations (2.25), (2.27), and (2.31), following the proof for He*Hf_z( o) but replacing n
and * by *x and n + 1, respectively, it is easy to see that

le™ T2y < leIf2(q) + Ck [g(c, u,a) + 2] le**[1E2q)- (3.17)

In what follows, we must find a relationship between He“HHZLZ( o) and HenHsz( o) Combining esti-
mates (3.15), (3.16), and (3.17), direct computations yield

ck\1?
= {1 +3Cg(C, 1, a)k+ C*[3+59(C, 1, a)| k* + C3g(C, 1, a) [7+29(C, 1, a)?] ¥
9 5 1
+C [4 +49(C, 1, a)z] K+ 2 C9(C @)k + 5 Cog(C i, a)k6}|re“\|%2(m-
Summing this up fromn =0,1,2,..,p — 1, for any positive integer p satisfying 1 < p < N, it is easy to see

that
1eP132q) < lI€%l}2(q) + Ck {34(C, 1, @) + CB+5¢(C, 1, @)l k+ C*g(C, 1, a) [7+29(C, 1, a)*] K

39 213, O ~4 4 15 i [, (3.18)
+C |:4+49(C/ K, G.) :| k +§C Q(C/ K, (l)k +§C Q(C/ H, Cl)k, }Z||en|l_2(ﬂ)'
n=0
It comes from the initial condition given in (2.32) that e?j =0, for i, = 0,1,.., M. So ||eOH7i2 Q) = 0.

Applying the Gronwall Lemma, estimate (3.18) provides

1eP[122(0) < exp {Ckp [39(C, 1, @) + CB+59(C, 1, @)l k+ C*g(C, 1, a) [7+29(C, 1, @)?] K

(3.19)

9 5 1
+C3 <4 +4¢(C, 1, a)2> S Ec‘*g(c, w, a)k 4 Ec5g(c, I, a)kﬂ } .

Butp < N and k = &, so Ckp < CT. A combination of this inequality together with estimate (3.19) gives
Hep||2L2(Q) < exp {CT [3g(C, w,a)+ CB+5g(C,u a)lk+ ng(C, w, a) [7+ 2g(C, u, a)z] %

9 4 1
e <4 Tag(C, a)2> 4 2C(C a1 Cg(Cu a)kS] }

5
<exp {7CT9(C, b a) (1+9(C 1 a))’ Z(Ck)l} .
1=0

Taking the square root, it holds

5
7CT
lePlliz (o) < exp{zg(c, wa)(1+g(Cn, a))ZZ(Ck)‘}. (320)
1=0
Since |9 [12(0) — 4" lli2(q) < 197 = 6" l2(0) = €7 |i2(q), estimate (3.20) implies

5
— 7CT
197 l[2(0) < 167 lliz(0) +exp {2 9(C, @) (1+9(C, @) ) (Ck)l}.
1=0

This completes the proof of Theorem 3.1 thanks to estimate (2.34). O
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4. Error estimate of the numerical scheme

This section deals with the error estimates of the three-level explicit time-split MacCormack method
(2.29)-(2.32) applied to the nonlinear convection-diffusion-reaction problem (1.1)-(1.3). We assume that
the analytical solution ¢ satisfies inequality (2.34).

Firstly, we introduce the following discrete norms

1
2

N
lll[Leoo 20y = max [®"[izq), bz T2(0) = (kZ"d)n“%_z(Q)) ,
n=0

0<n<N

and

N
blliiorizia)y =k 6" lzq), for ¢ €U, (4.1)
n=0

where Uy, = {d){;, 0 <n < N;0<1i,j<Mjis the space of grid functions defined on Qy x Qy. This
discrete space is defined in Section 2.

Theorem 4.1. Suppose ¢ be the approximate solution provided by the three-level time-split MacCormack method
(2.29)-(2.32). Under the time step requirement (2.33), the error term e = ¢ — ¢, verifies

CT
el (o,1:12(0)) < (1+k+k*)?/CTh(k, h) exp {2(1 +k+ k2)5} (k+h?),

where C > 0, is a constant that does not depend on the time step k and the grid spacing h, and \P(k,h) =
1+K2+K+h2+ (14+K%)(14+h*+hd).

The proof of Theorem 4.1 requires some intermediate results (Lemmas 2.1, 4.2, and 4.3).

Lemma 4.2. Suppose v € H*(Q), be a function that satisfies vy, x,.,) € C°lxi, Xi41]. Then, it holds

1 h h? h° ,
ﬁ(vi“ —Vi) = Vit Vit Vet ﬁovm@f}), for i=0,1,...,M—1,
1 h h2 h3 3 .
E(VZx,i—o—l —Vox,i) = Vax,i + S Vi T Vaxi ﬁov6x(9§ h, for i=0,1,...,M—1,
1 h? ht 3 4 )
ﬁ(\)i+l —2vi+Vi1) —Vaxi = AT {Vex(eg ) +V6x(e£ ))] , for i=1,2,..., M—1,

?Uhege 3654) ?\/{ (xi2_1,x-1), G?) € (xi,Xit1) and vimy denotes the derivative of order m of v. Furthermore, for
1=249..., Y

241

1 1 1 2
m(vwz — 4V +6vi —4vi g +Vio) —Vaxi = h { [véx(ei ) +"6x(9£ ))} T 390

(3) (4)
720 [Véx(ei ) +v6x(ei )] } ’
2 4 3 1
where GE Ve (xi_a,xi1), 9£ Ve (xii1,x), 95 V€ (xi,xi41) and GE Ve (xip1,xi42)-

Proof. The proof of the first equation is obvious according to the Taylor series expansion about x; using
forward difference representation. For the proof of the other equations, we refer the readers to [27]. O

Lemma 4.3. The terms pgj and 6{; given by equations (2.8) and (2.15), respectively, can be bounded as
031, 105l 1351 < G |1+ Coh? + Can],

where C, 1 =1,2,3, are positive constant independent of the time step k and the grid spacing h.
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Proof. It comes from equation (2.8) that

1 _ _ _ _ _
oty = 5 { 263 (83 B7;) — 2018 (8,1 y) + K24 BF; — by (F(§1,1)) + adh (7))
| Oy Bl s + add by + ()| (5],
which is equivalent to

1 (p?/— R 2ap — — . n —
Pl =3 {hz (@851 =285 +8151) = 5 [ (P2 = 20051+ 65 ) — (B0 — 205 + 6151

a? /—n —n . n —n Wi, —n —n a . -—n —n
t (¢i,j+2 — 4541 +6dy —4dy; g+ q)i,j—2> h [f(d)i,jﬂ) - f(d)ij)} +ti [f(cbi,)'—i—l) —2f(dy;)
(@50 + [ (P50 =) + 15 (Pl =205 + dbya ) + F(@5)] (@5}

This fact together with Lemma 4.2, result in

1 -n H.zhz -n H2h4 4 Zau -
p?j ~ 3 {Hzcbzy,ij ¢4y 4~ 70 [4369 (xi, 0 ( )+ d)e,y (xi, ]( ))} h [d)Zy ij+1 — P2y i
h? /— — h* //— 3 - 4 4
+E (¢Zy,i,j+1 - d>2y,ij) 750 ((d)?l_, (x4, 9]-(+)1) + d):y (x4, 9)(+)1)> (¢6y (Xu Nt d)éy (xi,0; ))))]
_ 1 241 [—n
2 | g 2 ( ) o4
+a |:d)4y,ij + h (720 |:cb6y (Xl/ ) + q)6y( )i| + ﬁ |:d)6y (Xl/ ) + d)éy (XL/ ) ):|):|
—u (fod)ys; + 2 od)ay 45 + 3 0d)3y 45 + 4 od)yy i + 120 od)sy 45 + 720 od)ey (xi,6;7)
— |- ht (3) (4) —n h-n
a [fod))ﬁlylij + Efod))zy/ﬁ 70 (fod))6y (xi,0;7) + fod)gy, (xi, 6; ))} + [—u <d>y,ij + Ed)Zy,ii
h%2_n h3_n h* hb (3)
+ g%y,ij + ﬂd)éh_;,ij + m%g,u 720 —— gy (x4, 0; ))

--n h27n h4 ( (4 /o - om
+a| boyi+ Ed)zl,y,ij 750 (4369(7(1/ )+ (I)()y (xi,0; )) f(dyy)| + f(dy)f (dy;) o
Since ¢ (x, iy y5000 fod(x, -, t)]| i) € C%([yj,yj+1)), for every x € (0,1), t € (0,T)and j =0,1,2,...,
M—1, [[[dlllieoT12(0)) < C (according to estimate (2.34)), ' (the derivative of f) is continuous and

h <1+h? taking the modulus of p{g, there exist positive constants 61, 1 =1,2,3, which do not depend
on the time step k and the mesh grid h such that

p7] < Cp |1+ Coh?+ Gsh*|, forn=0,1,...,Nand 1,j =0,1,..., M.

In way similar, one proves the other estimates. This completes the proof of Lemma 4.3. O
Using Lemmas 2.1, 4.2, and 4.3, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Firstly, it is worth noticing to recall that the error term provided by the time-split
method (2.29)-(2.32) is given by e{; = {; — 53, where ¢ is the exact solution of equations (2.16), (2.24),
and (2.25) and ¢ represents the numerical solution given by the algorithm (2.29)-(2.32).

From equation (3.2), we know that

k /a —n K2

v R _
ety = el + 5 (3 (el — 26 +efly1) = (el 1 — efy_y) + F(0]) — F(&3)) + = (0% + P + )
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+ 0O(K> + kh?),
which can be written as
Kk n n Hon n n o n kz n ~n *
e = e+ 5 (hz( L1 —2e +efjq) — ﬁ(ei,jﬂ —eij_1) +(d55) — f(‘bij)) + 5 (pij + 04+ pij)

+ Cr(k3 +kh?),

where C; is a parameter which does not depend on the time step k and the grid spacing h, and whose
value can change from place to place, p{’; and 5{; are given by equations (2.8) and (2.15), respectively.
Performing simple calculations, it is not hard to see that

* o8 —
(e5;)% = (ef})? +k{h2( D1 —2ej +ely ) ey — ﬁ(e{fm—e?,j—l)eﬁ'JF(f(q’%)_f(d’g)) e?i}
o K3
+12 (o35 + 03 + p3j) el +2C (K + kh?)ely + = [h2( D541 —2eff +ely_q)

| -n ~ ®
— ﬁ(e{}jﬂ —epy_q) + f(d5) — f(d)ij)} (oT5 + P35 + pij) + Gk (pT + 0% +055) (k* +kh?) )

4
+ (P55 +05 + p) +C k[hz( U1 2e Fefyq)
— %(e{}m —el 1) +f(of) — (q;ij)} (k3 +kh?) + C2(k® + kh?)?

K’ ra i —n.12

+ vy [ﬁ(egﬂl 2ef +ei5_q) — Zh(e%“ —epj_1) +f(¢F) —f(d){lj)]
Applying the inequalities: (a b+ ¢)? < 3(a? +b?+¢?), (a £b)? < 2(a® +b?) and 2ab < a? + b?, for
every a,b,c € R, together with the time step restriction (2.33) (that is, 2ak < h? and |u/k < h), equation
(4.2) provides

« n n
(3512 < (5241 {5 (1 —2efy + el ) eff — o (efln — ey y)els + (FIOF) — (@) e }
5k3 N \2 5k 501 k4 . )2
+ 20 (P +0% + 05 )+ T (el 2020 N2 4 - (o8} + 8 + o) +2C3(0C + kh?)?
3k3 [a? )
2{}14(”“ 2ef; +etj—1)

a?

2
n k| a® (en
h4 i,j+1

2 2
[ 2 —
+R(e{}j+1—e{}jf1) + (f( %)_f(d)ij)) ]4—4

2

N2
(el — el + (o) — (@) —

ap

2
) h3( i1 —ebj—)(efj

—2e +e” 1

—n 2 n -
—2ef} +efly_y) — (el 1 —efly_y) (FIO3) — (@) + T3 (el g —2ef + el 1)(f(q>ﬁ)—f(q>ﬁ))],
which implies

* H -
(e35)* < (ely)? +k{h2 (ef1 —2efy +effj_q) elf — ﬁ(e{fm —eij_pef + (f( i) —f(di})) 6%}

15k3 N _ 5k 2 i X
+— 4 [(pu)z—i-(p%)z—i-(p%)z] +Z(e%)2+4cz(k5+kh4)+7 [(p%)2+(p%)2+(p>{j)2]
3k% [3 ” O
T []il [(e]41)* +4(el5)* + (efy_1)* +;W[(e{}j+l)2+(e€j_l)z]+ <f( %)_f((bij)) }

4 | h? 2h2

ap i n
el (e €ij+1— e{tjq)(e{fjﬂ —Ze{‘j + 63)-*1) - E(e{fjﬂ l] 1) ( ((131]) (d)ij))

a _ 2
(el —2efy +ely )2+ 5 (flof) — F(83)) } +4C2(KE + KPh).

k2 2 2 2 —n.\?
- {“ [(8yery 1)+ (Byel 2] + s [(efy ) + (el )2 + (Fo3) —F(@7))
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Utilizing estimates (3.5)-(3.11), this becomes

* H
(e35)2 < (B2 k{5 (B0 —2efy +efy_y) el — (el g — efy_y)ef} + CleBy)?

" 3];3 <i * k) (015 + (PF)* + (p%)%] +4CTk(K + k* + kh* + h*) + %(63)2

+ 32k3 [3],?42[(63)41)2 +4(el)? + (el )71+ ;};[(e{}jﬂ)z + (el )2 + Cz(e%)z}

" ]f {2}?22 [(6y egﬂ%)z 8y egj*%)z] * ZM; [(ely41)? + (efy_1)?] + C(el})* — % [(59 e25+%)2
(ol ]+ el el COE P Sl (e (el +c;1c22(e%)2}.

Since kh* < k2 4 h8, this implies

* a 88
()7 < (e85 + 1 {3 (el a —2e8 +efly 1) el — 5 (el 1 —elly 1)ef} + Clel)?

B 2h
3k3 /5 . - 5k
+ 5 <2+k) [(p5)*+ (Y + (p5)*] +4C3k(K2 + K* + K>+ h* + h¥) + 1 == (ely)?
3k3 [3a2 2
5 {]"’4[(6&4_1)2 +4(€%)2 + (e}:j_l)z] + 2%2[(6?,]'4-1)2 + (e?,j_ﬂz] + Cz(e%)z}

4 | h2 VY T+, ij—3 2h? h
2 3a n

c2
- (5yegj_%)2}+4uﬁ(e§j+1 1) 1) +C2( ) +ﬁ[( 1)+1) +4(ej ) + (e 1,]'_1)2}‘1‘(;2(3%)2}-

Now, using the time step restriction (2.33) together with Lemma 4.3, straightforward computations give

K2 (2a? p? ap
+{[(5 e )2+ (5yel )]+—[(e{}jﬂ)zﬂe{;,gz]+c2(eg)2—7[(5yegj+%)2

2 K 2
(e55)7 < (ef ) +k{h2 ( eij1 —2ef tefj 1) e{‘j—ﬁ(e{}jﬂ—e{;,l)e{;JrC(e%)}

9C2k3 5 R ~ 5k
21 (2+k) {1+C2h2+C3h4} +4CIK(K + K+ K+ ht+h®) + 1 — (e)?
3k |3 n ak
+Z

2
2], Wk 2 2, ak 2
(8yely 2] (el )2 (el ) (el T Byl )7 + Syl )
2

16a
k C2K2 3k C2k
g LeBi) + (el 0] + =5 (ef)? @“e{hﬂ)%ﬂe{;)h(e{tjfl)%?( 5) }

4[( 1]+1) +4( ) ( 1] 1) ] Zk[( 1]+1)2+(e§j,1)2}+k2C2(e ) :|+4 [(&Je?’”%)z (43)
} C2Kk?

Summing estimate (4.3) up from 1,j =1,2,..., M —1, and rearranging of terms we get

M—1 M—1 M e
Z (e?j)z s (e?j)z Y (elj 1 —2efj +efj q) ey — 2h Z (efj1—efj 1)es
Lj=1 ij=1 i,j=1 5o
ClkM_1 kM
. {(%eifﬂ%)zﬂ% 1 ] 2. Z el 1) +4(efs) + (el 1)?]
K = (4.4)
2 e 2 2 210\ M—1
nk 5 C2 C%k  3C%
*8a (1+3k) Z [(e{fjﬂ)z + (e{fjfl)z] +k <C+ iTE TSt (els)?
L=l ij=1

96%k3 2 5 ~ 1.2 ~ 42 2 21,2 4 5 4 8
M- (2 +k [1+C2h +C3h} FAC2K(M — 1)2(K2 + K4+ K5 + ht + hd).
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From the boundary condition (2.32), efy, = ejj, = 0, for i = 0,1,..., M. Using this, it is not difficult to
observe that

M—-1 —1 M—-1
n 2 2| _ n 2 n 2
3y [(%ewz) +(8ye]; ;) } = > (Byefy )P+ D (Byely )
i,j=1 i,j=1 i,j=1
M—-1M-1 M—-1M—-1 M—-1M—-1
n 2
S (6yei,j+%) + (dy 1)+2 =2 1)+2
i=1 j=0 i=1 j=0 i=1 ;:0

Furthermore, using inequality (1 + ézhz + 63h4)2 <3(1+ 6%h4 + ééhg), Lemmas 2.1 and 4.3, multiplying
both sides of inequality (4.4) by h? and performing simple calculations, we obtain

M— M—
R (e <h* ) (ef)* — akl|dye™|F2 o) + aklldye™|[f2 o) +4CTk(M —1)*h*(Kk? + k* + k° 4+ h* + h®)
i,j=1 ij=1

41 C? 3u2k Czk 3C2k? W2

+k[4+s+c il P
i,j=1

2762k3 N N

+ 21 < >1+C§h4+C§h8]
41 W ¢ 3wk Ck 3C2k2 "o

2
hZ elt) +k[4+8 +C+ o+t Z: )

i,j=1
27CA3 (5

+4C2Kk(IP+ K+ K+ ht 18 + 5 5

+ k) {1 +Cht 4+ éghﬂ ,
which is implies

le* 2200 < lle™122 ) + Cak {1+ k4132 ) + IR+ )T+ R+ 4124k 115+ ht 1S ), (45)

where we absorbed all the constants into a constant 64 > 0.
Analogously, it is not hard to show that

e 2200y < le* 22y + Csk { (14 k413 [Br ) + K21+ K1+ R+ 18 412+ 1+ 10+ Rt 418 L, (46)

where all the constants have been absorbed into a positive constant Cs, and

le™ 22 o) < e 1F2(q) +€6k{(1+k+k2 le* 12, +k2(1+k)(1+h4+h8)+k2+k4+k5+h4+h8} 4.7)

where we absorbed all the constants into a constant 66 > 0.
For the convenient of writing, we should set

B1(k,h) =1+k+k% and 0:(k,h) =kK*(1+Kk)(1+h*+h®) + K2+ Kk* + K>+ h* + hE. (4.8)
Combining estimates (4.5)-(4.8), straightforward calculations result in
le™ M E2 i) < le™iaq) +X {64 +Cs+Co+k [6465 + C(Cyq 4 Cs) + kCyC5Ce01 (K, h)} 01(k, h)}
+ el(k/h)HenH%Z(Q)
K {64 4+ Cs+ Gtk [6465 + CyC + C5Cy + kC4sCsCeb (K, h)} 0, (k, h)} 0, (k, h).
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Absorbing all the constants into a positive constant Cy, we get
”en+1 ||%_2(Q_) < HenH%Z(Q) + 67k { [1 +k (1 + kel (k/ h—)) e1 (k/ h)] e1(k'/ h) ||enH%_2(Q)
+ [+ k1461 (k, h)]01(k, h)] 82(k, h)}.

Summing this up fromn =0,1,2,...,p —1, for any positive integer p such that 1 < p < N, it is easy to
see that

p—1
P12y < 1€°0F2(q) + Cyk{ [1 4k (1401 (k,h)) 01 (k, h)] 01(k, 1) Y [le™F2q,
n=0 (4.9)

+p 1+ k[1+k061(k h)]01(k, h)]02(k, h)}.

It follows from the initial condition defined in (2.32), that e?j =0, for 0 < i,j < M. The application of the
Gronwall Lemma to estimate (4.9) yields

leP (122 ) < Crpkexp {€7pk [+ K (1460, (k h)) 6; (k)]0 (k, h)} [14+k[1+Kk0; (k)] 0;(k, )] 02(k, ).  (4.10)
Butp < Nand k = %, SO 67kp < 67T. This fact combining with inequality (4.10) gives
le”12(cr) < CrTexp { C7T [+ (1 -+ K01 (k, h) 03 (I, )] 03k, 1)} [1 4+ K 1+ K4 (k, h)] 03 (k, )] Bk, )2,

The square root of this provides

P 20y < \/CrT [+ K 14+ K8 (K, h)] 03k, h)]

T (4.11)
7
X exp {2 1+k(1+k01(k,h))01(k, h)]01(k, h)} 07(k, h).

Now, it comes from relation (4.8) that
0:(k,h) =k*(1+k)(1+h*+h®) + K2+ 10+ ht +h8 < (k+hh) 2P (K h),

where P(k,h) = 14+ k?+ k3 +h? + (1 +k)(1 + h* 4+ h8). Furthermore, 1+ k[1 +k0;(k,h)]10:(k,h) = 1+
k[1+(1+k+k)] (1+k+k*) < (1+k+k*)*and

[1+k(14+%01(k,h))01(k )] 01 (kh) = [T+k(1+k(1+k+K)) (1+k+Kk)] (1+k+k?) < (1+k+k>)5.

Finally, taking the maximum over p of estimate (4.11), for 0 < p < N, and applying equation (4.1), this
ends the proof of Theorem 4.1. O

5. Numerical experiments and convergence rate

In this section we construct exact solutions to the two-dimensional time-dependent nonlinear advection-
diffusion equation with constant coefficients (1.1)-(1.3). Furthermore, we consider another example de-
scribed in the literature [16] to demonstrate the efficiency and effectiveness of the proposed numerical
scheme in two-dimensional case. In each case we obtain satisfactory results, so our algorithm perfor-
mances provide good results for multidimensional problems. The predicted convergence rate from the
theoretical result is confirmed (see Section 2, page 8, paragraph below equation (2.28), lines 3-4). The
convergence rate is obtained by listing in Tables 1-6, the errors between the computed solution and the
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analytical one with different values of mesh size h and time step k, satisfying k = 7h. Finally, we look at
the error estimates of our proposed method for the parameter T =1and a = pu = 1.

In order to construct analytical solutions to the initial-boundary value problem (1.1)-(1.3), we should
assume that they can be expressed as ¢(x,y,t) = [1 + exp(ct + dx + by)]™, where « is a real number. By
simple calculations, it is not difficult to observe that

$(x,y,t) = acexp(ct + dx + by) [1 + exp(ct + dx + by)]o‘_1 , (5.1)
by (x,y,t) = adexp(ct + dx + by) [1 4+ exp(ct + dx + by)]* ', (5.2)
by (x,y,t) = abexp(ct 4 dx + by) [1 +exp(ct 4 dx + by)|* 1, (5.3)
and
$rr (x,y, 1) = od? exp(ct+dx +by) [1 + xexp(ct + dx + by)] [1 +exp(ct+ dx + by)]"‘*2 . (5.4)

In a similar manner
$yy (x,y,t) = ab? exp(ct+ dx +by) [1+ axexp(ct + dx + by)] [1 +exp(ct + dx + by)]o‘_2 . (5.5)

Combining equations (5.1)-(5.5), it is not hard to see that

B+ Py + by — (Prx + Byy) = xexplct + dx + by) (1 +exp(ct + dx +by)) ¥ {c+b+ d— (b2 +d?)

x [1+ aexp(ct+ dx+by)] (1 +exp(ct+dx+ by)fl }
Setting ¢ + b+ d = —(d? + b?), it holds

Py + by —|—$y — (byx —1—5%,) = —a(d* +b?) exp(ct + dx + by) (1 +exp(ct + dx + by))* ! 5
X {1 +[1+ axexp(ct+ dx+by)] [1 +exp(ct+ dx—l—by)]*l}. (6)

For o =1, equation (5.6) becomes
6’( +$X +$y - (axx +$yy) = _2(d2 + bz) eXp(Ct + dX+ by)

Assuming b # 0 and d? + b? = 1, this is equivalent to b> = 1 — d2. Since b?> > 0, this implies d*> < 1.
We can take d = —% and b = —%. Thus ¢ = —1 + +/2. The analytical solution is given by ¢(x,y,t) =
1+exp ((—1 +2)t— %x— %y), for every t € [0,1], (x,y) € [0, 1]2 and the function f is given by

f($¢) =2(1 — ). The initial and boundary conditions are determined by the exact solution.
Now, if « = —1, performing direct computations, equation (5.6) yields

B+ Py + by — (Prx + Byy) = 2(d? + b exp(ct + dx + by) [1 +exp(ct + dx + by)] .

For b # 0 and d? +b? = 1, the values d = —? and b = —% satisfy this equation. It comes from
equation c+b+d = —(d?+b?) that c = —1 + @ Thus, the exact solution is given by ¢(x,y,t) =

—1
[1 +exp ((—1 + @) t— ?X — %y)] , for any t € [0,1], (x,y) € [0, 1]2 and the function f is defined as

f(d) =2(1— $)$2. The initial and boundary conditions are given by this solution.

In this analysis, we assume that the mesh size h € {%, 1l =1,2,...,5 and time step k = 2L
1l =1,2,...,11. In addition, we set k = h? and we compute the error estimates: IE(D)l2(0,7;12),
IE(PI[ Lo (o,7:02) and [[[E(D)I]|1(p,1;12) related to the three-level time-split method to see that the algo-
rithm is stable, second order convergent in time and fourth order accurate in space. Furthermore, we

plot the L?-norm of the analytic solution, the numerical one and the errors versus n. From this study, we
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observe that the three-level time-split MacCormack method is efficient and effective than a broad range
of numerical schemes widely studied in the literature. Finally, when h varies in the given range, it comes
from Tables 1-6 that the error terms O(kP) + O(h®) are dominated by the h-terms O(h®) (or k-terms
O(kP)). So, the ratio r‘(;}, where m = 1,2, 00, of the approximate errors on two adjacent mesh levels Qjp
and Qy, is approximately (2h)®/h® = 29 where m refers to the L™(0, T; L>(Q)-error norm. Thus, we
can use T4 to estimate the corresponding convergence rate with respect to h. Define the norms for the

approximate solution ¢, the exact one ¢, and the errors E(¢), as follows

- % N ]
- -n
dlllz07,i2) = [k _NIO™E2] 1Dlz07i2) = [k 116" [172]
f f
L n=0 n=0
TN 3 N
- --n
IE@)z0702) = [KD_6™— \ZL;] , IE@)ti0712) =KD _[ld™ — & 2,
n=0 n=0
and
IIE(d |HL°°OTL2):Og1a<XN”¢ —¢" I2-

Test 5.1. Let Q be the unit square (0,1) x (0,1) and T be _the final time, T = 1. We assume that the
parameters a = u = 1, in such a way that the exact solution ¢ and the function f are given by

cl)(x,y,t):1+exp( 1+\/§t—£ —£ ), and f(¢) =2(1— ).

The initial and boundary Conditions are given by this solution We recall that the mesh size and time step:

11 1 1
h e {EI 227 273/ 274’ 275} and k € {27/ 237 27/ 257267 377 287 279/ ﬁ/ 211}

Table 1: Convergence rate O(h® + AtP) for time- -split MacCormack by r7* &7 under the time step restriction (2.33), i.e., max{2& o3 %} <
1, with varying time step k = At and mesh grid h = Ax = Ay and k = 1h2

EOIE % E@Me> [ 75 IECIE %
2-1]02720x10°1 | — |03240x10°'| — [02700x10° 1| —
27210.6200 x 10~2 | 4.3871 | 0.7500 x 10~2 | 4.3200 | 0.6100 x 102 | 4.4262
2-310.1600 x 102 | 3.8750 | 0.2000 x 10~2 | 3.7500 | 0.1600 x 102 | 3.8125
2% 10.4000 x 10~3 | 4.0000 | 0.5000 x 103 | 4.0000 | 0.4000 x 10— | 4.0000
27°10.1062 x 1073 | 3.7665 | 0.1302 x 103 | 3.8402 | 0.1049 x 103 | 3.8132

Table 2: Convergence rate O(h® + AtP) for time- -split MacCormack by r* b7 under the time step restriction (2.33), i.e., max{ 2 o3 %} <
1, with varying time step k = At and mesh grid h = Ax = Ay and k = h?.

NEOIE % IE(P)I][ > ¥ IE(P)I][ %
21 0.1109 — 0.1292 — 0.1095 —
272107120 x 10! 1.5576 0.1912 x 10° 0.6757 0.5130 x 101 2.1345
273103793 x 102 | 0.1877 x 1020 | 2.7815 x 10% | 0.6874 x 102" | 0.7240 x 10™° | 0.7086 x 10~20

Test 5.2. Now, let () be the unit square (0, 1)2 and T = 1. The diffusive term a is assumed equals 1 and
the parameter 1 = 1. The analytic solution ¢ together with the function f are defined as

-1
1+exp<<—1+\/§2+1)t—ﬁ —1y>] and () =2(1—§)$".

$(X/ Yy, t) - 2 >
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The initial and boundary conditions also are given by the exact solution . Similar to Test 5.1 we take

11 1 1
both mesh size and time step: h € {3, 2 2, 2—3, ?, 2—5} and k € {2—2, % 2—4, 21 %1 31 3 ?, 270’ 211}

Table 3: Analysis of convergence rates O(h® 4 AtP) for the three-level time-split MacCormack by Ty, with varying spacing h
and time step k, under the time step restriction (2.33), that is, max{%%, £} < 1and k = }h%.

h IE(D)I]|12 % IIE(D)]| Lo TS IE(D)I]| 11 o
2-1109100x102| — ]0.1680x10°'|] — [0.8500x102| —
2727102100 x 1072 | 4.3333 | 0.4400 x 1072 | 3.8182 | 0.21 x 10~ Z | 4.0476
2-310.5000 x 103 | 4.2000 | 0.1100 x 10~2 | 4.0000 | 0.5000 x 10—3 | 4.2000
27%10.1390 x 1073 | 3.5971 | 0.2820 x 103 | 3.9007 | 0.1378 x 103 | 3.6284
272 10.3520 x 10~ % | 3.9448 | 0.7050 x 10—* | 4.0000 | 0.3490 x 10—* | 3.9484

Table 4: Analysis of convergence rates O(h® + AtB) for the three-level time-split MacCormack by rR}, with varying spacing h

and time step k, under the time step restriction (2.33), that is, max{%, %} < 1land k =h2.
NEOIE % E@Me> [ 75 IE®)I][ %
271103350%x10 | — [04840x10 '] — [ 0318x10°F | —
272 [0.1110 x 10~ | 3.0180 | 0.2000 x 10~! | 2.4200 | 0.1030 x 10T | 3.0874
273 [ NaN x 10%°! — Inf x 1051 — [ NaNx 105t | —

Test 5.3. finally, let O be the unit square (0,1) x (0,1) and T = 1. Assuming that a = u = 1, the exact
solution ¢ is given in [16] by
d(x,y,t) = exp(—t)xy(1 —x)(1—y).

The function f(¢) = —¢ +exp(—t) x(1 —x)(3 —2y) +y(1 —y)(3 —2x)], the initial and boundary condi-
tions are given by the exact solution ¢.

Similar to both Tests 5.1 and 5.2 both time step and grid spacing are chosen such that: k {21—2, 2%, 2%, %,
21—6, %, 21—8, 21—9, 510, 211} and h € {i' ¥, f, ?, ﬁ} We compute the error estimates: E(¢) related to a three-level
time-split MacCormack approach to see that the method is second order convergent in time and fourth
order accurate in space. Furthermore, we plot the errors together with the energies versus n to see the

efficiency and effectiveness of the considered algorithm.

Table 5: Convergence rates O(h® + AtP) for time-split MacCormack by 1, with varying spacing h and time step At and k = %hZ.
h IE(P)] 2 Tﬁ, (I[E(D)]| Lo S [E(P)l 2 Tﬁ,
271107900x102| — [0.1140x10° '] — [07600x10° 2| —
2721 0.1400 x 10~2 | 5.6429 | 0.2000 x 102 | 5.7000 | 0.1400 x 102 | 5.4286
273103257 x 1073 | 4.2984 | 0.4412 x 1073 | 4.5331 | 0.3155 x 10 | 4.4374
27%10.7920 x 10~* | 4.1124 | 0.1072 x 1073 | 4.1157 | 0.7660 x 10—* | 4.1188
2751 0.1966 x 10~* | 4.0285 | 0.2662 x 10~* | 4.0270 | 0.1902 x 10—* | 4.0273

Table 6: Convergence rates O(h® + AtP) for time-split MacCormack by rIT', with varying spacing h and time step At and k = h2.

h [E(P)][ 2 % (I[E(D)]| Lo S [E(P)I]] 1 o
271102690 x 10! — 0.3670 x 101 — 0.2590 x 101 —
2-110.3800 x 102 7.0789 0.4900 x 102 7.4898 0.3800 x 102 7.8158
271 ] 0.663 x10™® | 0.573 x 10720 | 0.481 x 10° | 0.102 x 10~2° | 0.130 x 10"® | 0.292 x 10—
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The analysis discussed in Section 4, has shown that the numerical scheme is first order convergent
in time and fourth order accurate in space. If the result provided in Section 2, page 8, is to believe, this
suggests that the time-split MacCormack scheme is inconsistent. Fortunately, we observe from Tests 5.1-
5.3, precisely Figures 1-3, and Tables 1-3, that the three-level time-split MacCormack approach is stable,
second order accurate in time and fourth order convergent in space under the time step restriction (2.33),
which confirms the theoretical result provided in Section 2, page 8. Thus, the considered method is fast
and efficient.

exa.sol.(H), num.sol.(G), err(E), h=2"" exa.sol.(H), num.sol.(G), err(E), h=272 Num. Sol. after 20 iterations with h=22  Exact Sol. after 20 iterations with h=2"2
1 1
X

05 H 05 H
* G * G
+ E + E
oHH— O-HHHHHHHHHRHRHHHRHR R 0.5
0 0.5 1 0 0.5 1 00
0< t<1 0< t<1
exa.sol.(H), num.sol.(G), err(E), h=2"3 exa.sol.(H), num.sol.(G), err(E), h=2"* Error after 20 iterations with h=2"2 Num. Sol. after 60 iterations with h=2"2

0.8 0.8
MM%

0.02 3
0.6 0.6
0.4 H 0.4 H 0.01 2

* G * G
o2f + E o2f + E 0 !
.
05
05

0 0 00

0 05 1 0 0.5 1
o<tst o<tst
Figure 1: Stability and convergence of a three-level time-split MacCormack method: a = p = 1, d(xy,t) = 1+

exp ((—1 +V2)t— %x— %y) and f(¢) =2(1—¢).

Error after 400 iterations with h=2"*

Exact Sol. after 60 iterations with h=2" x 107 Error with h=2"3

0.5 05
00

Num. Sol. after 400 iterations with h=2* Anal. Sol. after 400 iterations with h=2"*

Figure 2: Stability and convergence of a three-level time-split MacCormack approach: a = p = 1, ¢(x,y,t) = 1+

exp ((—1 V2t — Yx— %1,) and £(¢) = 2(1— ).
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Exact Sol. after 60 iterations with h=2"2 %107 Error with h=2"3 Computed Sol. after 30 iterations, h=22 Exact Sol. after 30 iterations, h=2"2
5 0.04
0.02
g i
0.5 05 1 0.5 0.5 !
0o 00
Num. Sol. after 400 iterations with h=2"* Anal. Sol. after 400 iterations with h=2"* X107 Error with h=2"2 Computed Sol. after 120 iterations with h=2"3
2 0.04
1 0.02
i i
05 o5 05 05
0o 0o

Figure 3: Stability and convergence of a three-level time-split MacCormack method: a = u =1, ¢ = exp(—t)xy(1 —x)(1—y),
f=—¢+exp(—t) x(1—x)(3—2y)+y(1—y)(3—2x)].

Error after 500 iterations with h=2"*

Anal. Sol. after 120 iterations with h=2"> x10™ Error with h=2"3
0.04 4 x107*
0.02 2 1
; 9
05 05
00

Num. Sol. after 500 iterations with h=2"# Exact Sol. after 500 iterations with h=2"*

0.04

0.02 AN
5SS
Y 74052 %S NN
oL AZEESEIIN
SN
00

Figure 4: Stability and convergence of a three-level time-split MacCormack method: a = p =1, ¢ = exp(—t)xy(l —x)(1 —y),
f=—d+exp(—t) x(1—-x)(3—2y) +y(1—y)(B3—2x)].

2

exa.sol.(H), num.sol.(G), err(E), h=2"" exa.sol.(H), num.sol.(G), err(E), h=2"" Num. Sol. after 25 iterations with h=2"2 Exact Sol. after 25 iterations, h=22
3 3

;M
> >
6 ;
1 1 * G
+ E o
o O - . 0.5 : 05
0 0.5 1 0 0.5 1 o<y<t 0.0 pcxe o<yst 0 0 pcxct
o< t<t Ost<1
exa.sol.(H), num.sol.(G), err(E), h=2"% exa.sol.(H), num.sol.(G), err(E), h=2~* x107° Error Num. Sol. after 50 iterations with h=2"2
3 2 —
4
15
G —
] 1 H 2
H * G
1 * G
0
L E 0.5 + E ¢
o 0 0.5 0.5 :
0 0.5 1 0 0.5 1 o<y<st 00 0<x< 1 Oo<y<1 00 0<x< 1
o< <1 0< <1
Figure 5: Stability and convergence of a three-level time-split MacCormack method: a = p = 1, ¢(xyt) =

[rexp (-1+257) 1= Px—y)| " and (@) =201 - 9P,
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N It
Exact Sol. after 50 iterations with h=2"3 Error after 200 iterations with h=2

-3 Error
0.8 2 x 10~
0.6 1

0.4
1

-0

0.5 05 0.5 05

0<y<1 0 o0

Figure 6: Stability and convergence of a three-level time-split MacCormack method: a = p = 1, d(xy,t) =

[1+exp (<14 %52) 1= Fx— 1) and 1@) = 20— F)F~

6. General conclusion and future works

In this work, we have presented a detailed analysis of the stability, error estimates and convergence
rate of a three-level explicit time-split MacCormack scheme for solving the two-dimensional nonlinear un-
steady advection-diffusion equation with constant coefficients (1.1) subjects to suitable initial and bound-
ary conditions (1.2)-(1.3). Our study has shown that the considered method is stable, consistent, second
order accurate in time and fourth order convergent in space under the time step requirement (2.33). This
theoretical analysis is confirmed by a wide set of numerical evidences (Figures 1-6 and Tables 1-3). Nu-
merical experiments also suggest that the proposed algorithm is: (1) more efficient and effective than
a broad range of numerical schemes for solving the initial-boundary value problem (1.1)-(1.3); (2) fast
and robust tools for the integration of general systems of hyperbolic/parabolic partial differential equa-
tions. Thus, our future works will analyze an approximate solution of the two-dimensional unsteady
advection-diffusion equation with sink/source terms using the new approach.
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