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Abstract

An HIV infection model with time delay in which uninfected cells become infected cells is analysed. We studied conditions
under which steady states will be asymptotically stable. We also examined that for endemically infected equilibrium a critical
value of time delay may occur. The steady state will be asymptotically stable when delay is less than a critical value. Else the
uninfected cells, infected cells, free virus, and CTLs may undergo cyclic oscillations. We estimate the delay length to maintain
stability. Numerical simulations are done to aid mathematical findings.
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1. Introduction

Population dynamics of immune response requires the help of mathematical models and cannot be
explained only with molecular techniques. In HIV and hepatitis B virus (HBV) infection, mathematical
models of drug dynamics have provided estimates for the turnover rates of infected cells and free viruses.
Here viral reproduction and immune response dynamics are expressed by simple mathematical models
with the smallest number of essential assumptions. Antibodies, cytokines, natural killer cells, and T cells
are essential components of a normal immune response to a virus. Cytotoxic T lymphocytes (CTLs) play
a critical part in antiviral defence by attacking virus-infected cells. It is believed that they are the main
host immune factor that limits the extent of virus replication in life and this determines virus load. The
clearest evidence for the role of these cells comes from the passive transfer of immune CTLs, to mice and
humans. There is circumstantial evidence for the control of viruses by CTLs in natural infection with
HIV-1, HTLV-1, HBV, and Epstein-Barr virus. CTL response and viral load are likened to each other in a
density-dependent fashion. A strong CTL response may reduce viral load, but the resulting small virus
load will provide less stimulation and in time the CTL response will decline.

We now summarise previous findings to describe the immunological response to HIV infection with
and without time delays. Wein et al. [34] studied a system often non-linear differential equations model.
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They performed steady-state and dynamic analysis of the model and used the results to assess what
happens when therapy is switched to a less intensive maintenance regime. Ding and Hulin [8] showed
with a mathematical derivation that the two viral decay rates are monotone functions of the treatment
effects of the antiviral therapies. They derived formulas for the relationship between the viral decay rates
and treatment effect. These formulas may be used to study what factors affect the viral decay rates.
The patient’s viral load may rebound due to drug resistance and in such a case, it would be difficult to
estimate viral decay in plasma viruses. Nowak et al. [28] provided mathematical models for designing
the treatment of HIV and suggested that HIV should be hit as early as possible and as hard as possible.
By these models, one can understand the effect of antiviral treatment on the decline of infected cells
and the emergence of drug-resistant viruses. Ding et al. [8] used a mathematical model to interpret the
correlations regarding the viral decay rates. They evaluated the relationship between viral decay rates and
treatments for efficacy in two infected cell compartments. Phillips [30] suggested that the sharp decline
in virus concentration is due to a limited number of cells susceptible to HIV infection. Stafford et al.
[32] illustrated that CTL destructs infected target cells and the decline in the virus is also due to cytokine
suppression of viral replication. These could account for declines of viral load. Callaway and Perelson
[4] presented three mathematical models for HIV-1 infection. In one the rate that governs infected cells
clearance is a function of infected cell density. In the other two, the authors made use of heterogeneities
in drug efficacy. They claimed that if these models reflected reality many patients should have cleared the
virus, contrary to observation. Bajaria et al. [1] developed mathematical models and explored mechanisms
describing differences in disease progression based on the differential interaction of HIV-1 with CD4+

T cells. During disease progression, they presented simulations of structured treatment interruption
(STI). Huang et al. [16] proposed mathematical models and methods to be useful in AIDS clinical trial
simulations. Using the viral dynamic model they evaluated the effect of time varying drug exposure and
drug susceptibility to the antiviral response. They developed a viral dynamic model with time-varying
drug efficacies, which is a system of non-linear differential equations, to describe the antiviral responses.
The two thresholds were shown to predict viral outcome. Using Lyapunov functions global stability of
the Nowak-Bangham models [27] were studied by Korobeinikov [19].

Time delays of one type or another have been incorporated into biological models by many authors.
Tam [33] in a three variables virus replication model assumed time lag between viral particles and infected
cells. The author confirmed Nowak and Bangham [27] statement that the introduction of delay does not
disturb stability. Herz et al. [14] discussed a mathematical model containing uninfected cells, infected
cells, and plasma virus. They introduced time delay in the infection of a cell and virus production. This
model predicts that plasma virus declines after a time lag. Kumnungkit [20] examined the three variables
model by Nowak and Bangham [27] using the delay between infected cells and viral emission. Hopf
bifurcation analysis was done using delay as a bifurcation parameter. Huang et al. [17] investigated a
viral infection model consisting of target cells, infected cells, and free viruses respectively with two-time
delays. Using Lyapunov functions global stability conditions were found. They discussed the effects of
delays. Motivated by the work of Nowak and Bangham [27]. Li et al. [22] studied a two-time delays
model. The first time delay τ1 represents viral entry into a targeted cell and the production of new
viruses is delayed by τ2. Constructing suitable Lyapunov functions, conditions for global stabilities were
studied for an infection-free equilibrium. They established that delays τ1 and τ2 will not produce Hopf
bifurcation. Zhu et al. [36] analyzed an HIV infection model with a delay in CTL response. They studied
the effects of time delay on the dynamics of the model. Balasubramaniam et al. [2] dealt with an HIV
infection model of CD4 T-cells. They considered a logistic growth of uninfected cells and used time delay
in the immune response. They found bifurcation about the infected steady state and derived formulae
to determine the direction and stability of bifurcating periodic solutions. Li et al. [21] analyzed the
dynamics of a delayed CTL response HIV infection model. Using Lyapunov function they discussed the
global stability of infected and uninfected equilibrium. They also investigated Hopf bifurcation at infected
equilibrium with CTL response. Geetha and Balamuralitharam [12] examined the dynamics of an infected
mathematical model having a delay in CTL response. They described the existence of Hopf bifurcation
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with delay in CTL response and estimated the maximum delay value to maintain stability.
In this paper, the existence and stability of the equilibrium of Nowak and Bangham [27] model is

considered after introducing time delays in uninfected cell and virus particles. Tam [33] investigated a
similar model but excluded the consequences of an immune response on the virus load. CTLs have an
important role in antiviral defence by attacking virus-infected cells and they mainly determine the virus
load. Our model includes the effect of CTLs in the system and has four delay differential equations.
We explained that under certain conditions on the coefficients, the steady state is asymptotically stable
for all delay values. However, for endemically infected equilibrium if the conditions on coefficients are
not satisfied, then there is a critical value of the time delay. The steady state is asymptotically stable
when the delay is less than the critical value and unstable when the delay is greater than the critical
value. When delay passes through the critical value then there is a Hopf bifurcation at the steady state.
Thus we explained that uninfected cells, infected cells, free viruses, and CTLs undergo cyclic fluctuations
for some parameter values. Further, we find the maximum delay for the interior equilibrium to remain
asymptotically stable.

2. Immune response to reduce virus load with time delay

The following model developed by Nowak and Bangham [27] describes the immune response against
the infected cells.

dx

dt
= γ− dx−βxv,

dy

dt
= βxv− ay− pyz,

dv

dt
= ky− lv,

dz

dt
= cyz− bz.

(2.1)

Here x(t) represents uninfected cell, y(t) represents infected cell, v(t) represents virus particles, β is the
rate of production of the infected cell, k is the rate by which infected cell produced virus particles, γ
is the constant influx of uninfected cell, l is the death rate of virus particles, a is the death rate of the
infected cell and d is the death rate of uninfected cell. The variable z denotes the magnitude of the CTLs
response. That is the abundance of virus-specific CTLs. The rate of CTLs proliferation in response to an
antigen is given by cyz. In the absence of stimulation, CTLs decay at a rate bz. Infected cells are killed by
CTLs at a rate pyz. This dynamic is derived from the kinetic interaction between CTLs and infected cells.
The parameter c denotes the CTLs responsiveness to the growth rate of specific CTLs after encountering
infected cells. The parameter p specifies the rate at which CTLs kill infected cells. In the model, there is
a minimum level of infected cells necessary to stimulate the CTLs response. If cy > b, the CTLs response
will increase. The system (2.1) has three types of equilibrium points. They are:

1. Ē0 = (γd , 0, 0, 0), uninfected steady state which always exits.

2. Ē1 =

(
al

kβ
,
kγβ− adl

kaβ
,
kγβ− adl

alβ
, 0
)

. This equilibrium exists if kγβ > adl.

3. Ē2=

(
γlc

dlc+βkb
,
b

c
,
kb

lc
,

βγkc

p(dlc+βkb)
−
a

p

)
. This equilibrium exists if

βγkc

dlc+βkb
>a or βγkc>

adlc+βkba.

In this paper, we incorporate a time delay which helps to bring the model close to reality. The infected
cells at time t are not given by density βxv but by the density of infected cells that are newly infected at
time t− τ. The population dynamics of the interaction of uninfected cells, infected cells, virus particles,
and CTLs cells can be described by the following system of differential equations.

dx

dt
= γ− dx−βxv,

dy

dt
= βx(t− τ)v(t− τ) − ay− pyz,

dv

dt
= ky− lv,

dz

dt
= cyz− bz.

(2.2)



Q. J. A. Khan, E. Balakrishnan, N. K. Al Sinani, J. Math. Computer Sci., 26 (2022), 196–209 199

All the variables and parameters have the same meaning as given in (2.1). The positive constant τ repre-
sents the length of the delay in hours. Here γ, d, a, b and c are cells per cubic millimeter of blood per
day, k and l are virions per cubic millimeter of blood per day, and β is cell/virion per cubic millimeter of
blood per day.

We consider a small perturbation about the equilibrium point, i.e., x = x̄+ u1, y = ȳ+ u2, v = v̄+ u3,
z = z̄ + u4 where x̄, ȳ, v̄, z̄ are the equilibrium values of x,y, v, z, respectively. The stability matrix for
system (2.2) is 

−d−βv̄− λ 0 −βx̄ 0
βv̄(t− τ)e−λτ −a− pz̄− λ βx̄(t− τ)e−λτ −pȳ

0 k −l− λ 0
0 cz̄ 0 cȳ− b− λ

 .

2.1. Stability of Ē0

The characteristic equation of the linearized system of Ē0 = (γd , 0, 0, 0) is

(d+ λ)(b+ λ)
{
(a+ λ)(l+ λ) − kβx̄e−λτ

}
= 0,

which can be simplified to get (d+ λ)(b+ λ)
{
λ2 + (a+ l) + al− kβx̄e−λτ

}
= 0. The eigenvalues λ = −d

and λ = −b are always negative. The other eigenvalues are given by the solutions of

λ2 + (a+ l)λ+ al− kβx̄e−λτ = 0. (2.3)

The quantity of interest is the sign of the real parts of the solution λ of the above equation that
determines the stability of Ē0. We have proved in a previous section that when τ = 0, Ē0 is stable if
kβx̄ < al. We shall derive conditions on the parameters to ensure that the steady state of the delay model
is still stable. Using Rouche’s Theorem 9.17.4 as stated in [7] and the continuity in τ, the equation (2.3)
has roots with positive real parts if and only if it has purely imaginary roots from which we then shall be
able to find conditions for all eigenvalues to have negative real parts.

Let λ = u+ iv and substituting into (2.3), we obtain the following equations:

−v̂2
1 + al = kβx̄ cos(τ̂1v̂1), v̂1(a+ 1) = −kβx̄ sin(τ̂1v̂1),

where τ̂1 be such that u(τ̂1) = 0 and v(τ̂1) = v̂1. Squaring and adding both equations, we get v̂4
1 + v̂

2
1(m

2 −
2al) + (a2l2 −N2) = 0. Here m = a+ l and kβx̄ = N. Letting ω = v̂2

1, the above equation can be rewritten
as

ω2 +ω(m2 − 2al) + (a2l2 −N2) = 0.

The roots of the above equation will be

ω1,2 =
−(m2 − 2al)±

√
(m2 − 2al)2 − 4(a2l2 −N2)

2
.

Here m2 > 2al and a2l2 > N2. i.e., a2l2 > k2β2x̄2, is the condition of stability of Ē0 when τ = 0. Hence,
neither ω1 nor ω2 is positive. Thus both the roots will not be positive. Hence we have established that
there is no v̂1 such that iv̂1 is an eigenvalue of the characteristic equation (2.3). Therefore, the real parts of
all the eigenvalues of (2.3) are negative for all delays where τ > 0. Thus we summarize the above results
in the following theorem.

Theorem 2.1. If kβx̄ < al, then steady state Ē0 is asymptotically stable for all τ > 0.

2.2. Stability of Ē1

The characteristic equation of the linearized system of Ē1 =
(
al
kβ , kγβ−adlkaβ , kγβ−adlalβ , 0

)
is

(cȳ− b− λ)
[
(−d−βv̄− λ)

{
(a+ λ)(λ+ l) −βkx̄e−λτ

}
−β2x̄v̄ke−λτ

]
= 0.

The eigenvalue λ1 = cȳ− b < 0 if ȳ < b
c . The other three eigenvalues will be the roots of the following
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cubic equation

λ3 + λ2(a+ l−A) − λ(Aa+Al− al+ ale−λτ) + e−λτ(Aal+βv̄al) −Aal = 0, (2.4)

where A = −d−βv̄. This can be rewritten as

λ3 + a1λ
2 + a2λ+ a3 = e−λτ(T2λ+ T3), (2.5)

where a1 = a+ l−A, a2 = al−Aa−Al, a3 = −Aal, T2 = al, and T3 = −Aal−βv̄al.
Let λ = u+ iv, substituting in equation (2.5) and taking the real and imaginary parts separately, gives

(u3 − 3uv) + a1(u
2 − v2) + a2u+ a3 = e−τu [(T2u+ T3) cos(τv) + (T2v) sin(τv)]

(3u2v− v3) + 2a1uv+ a2v = e
−τu {(T2v) cos(τv) − (T2u+ T3) sin(τv)}

}
(2.6)

respectively. Let τ̂1 be such that u(τ̂1) = 0 and v(τ̂1) = v̂. Then the equation (2.6) reduces to

−a1v̂
2
1 + a3 = T3 cos(τv̂) + T2v̂1 sin(τv̂1) and − v̂3

1 + a2v̂1 = −T3 sin(τv̂1) + T2v̂1 cos(τv),

respectively. Adding up the squares of both the equations gives

v̂6
1 + v̂

4
1(a

2
1 − 2a2) + v̂

2
1(a

2
2 − 2a1a3 − T

2
2 ) + (a2

3 − T
2
3 ) = 0. (2.7)

This equation can be written as

h(ω) = ω3 + b1ω
2 + b2ω+ b3 = 0 (2.8)

where ω = v̂2
1, b1 = a2

1 − 2a2, b2 = a2
2 − 2a1a3 − T

2
2 and b3 = a2

3 − T
2
3 . Equation (2.8) gives

dh

dω
= 3 ω2 + 2 b1ω+ b2 = 0. (2.9)

The roots of equation (2.9) can be expressed as

ω1,2 =
−b1 ±

√
b2

1 − 3b2

3
,

where b1 = a2
1 − 2a2 > 0. If b2 > 0, then

√
b2

1 − 3b2 < b1. Hence, neither ω1 nor ω2 is positive. Thus
both the roots will not be positive. If we assume b3 > 0 then equation (2.7) has no positive roots. Hence
we have established that there is no v̂1 such that iv̂1 is an eigenvalue of the characteristic equation (2.4).
Therefore, the real parts of all the eigenvalues of (2.4) are negative for all delay τ > 0. We summarize the
above results in the following.

Theorem 2.2. If ȳ < b
c b3 > 0 and b2 > 0, then infected steady state Ē1 is asymptotically stable for all τ > 0.

2.3. Stability of Ē2

The equilibrium Ē2 is Ē2 =
(

γlc
dlc+βkb , bc , kblc , βγkc

p(dlc+βkb) −
a
p

)
and the characteristic equation of the

linearized system is given by

λ4 + k1λ
3 + k2λ

2 + k3λ+ k4 = e−τλ(T2λ
2 + T3λ), (2.10)

where k1 = −A−D+ l, k2 = AD−Al−Dl+ cpȳz̄, k3 = ADl− cpȳz̄A+ clȳz̄, k4 = −Aclpȳz̄, T2 = kβx̄,
T3 = −Akβx̄−β2kx̄v̄, A = −d−βv̄, and D = −a− pz̄.
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Let λ = u+ iv where u = u(τ) and v = v(τ). Substituting in equation (2.10) we get

u4 + 4u3vi− 6u2v2−4uv3i+ v4 + k1(u
3 + 3u2vi− 3uv2 − v3i) + k2(u

2 + 2uvi− v2) + k3(u+ iv) + k4

= e−uτ
[
(cos(τv) − i sin(τv))(T2(u

2 − v2) + T2uvi+ T3(u+ iv))
]

.

The real and imaginary parts are given by

u4 − 6u2v2 + v4 + k1(u
3 − 3uv2) + k2(u

2 − v2) + k3u+ k4

= e−uτ
[
cos(τv)(T2(u

2 − v2) + T3u) + sin(τv)(2uvT2 + vT3)
]

4u3v− 4uv3 + k1(3u2v− v3) + 2uvk2 + k3v

= e−uτ
[
cos(τv)(2uvT2 + T3v) − sin(τv)(T2(u

2 − v2) + uT3)
]

 (2.11)

respectively. Let τ∗1 be such that u(τ∗1) = 0. Then equation (2.11) reduces to

v∗4
1 − k2v

∗2
1 + k4 = (−v∗2

1 T2) cos(τ∗1v
∗
1) + (v∗1T3) sin(τ∗1v

∗
1),

−v∗3
1 k1 + v

∗
1k3 = (v∗1T3) cos(τ∗1v

∗
1) + (v∗2

1 T2) sin(τ∗1v
∗
1).

(2.12)

On simplification after squaring and adding the above two equations in (2.12) we get

v∗8
1 + v∗6

1 (−2k2 + k
2
1) + v

∗4
1 (2k4 + k

2
2 − 2k1k3 − T

2
2 ) + v

∗2
1 (−2k2k4 + k

2
3 − T

2
3 ) + k

2
4 = 0. (2.13)

It was shown in the previous section that Ē2 is stable when τ = 0. Hence the sign of the real parts of
the roots of the equation

λ4 + k1λ
3 + (k2 − T2)λ

2 + (k3 − T3)λ+ k4 = 0

have negative real parts according to the Routh-Hurwitz criterion. We can see from equation (2.13) that
left hand side is positive for v∗1 = 0. Therefore there will be either zero, two, or four positive real roots.
We assume that v∗1 is the biggest positive root of the equation (2.13) and it can be proved that v∗1 is a
simple root. Since v∗1 is a simple root, this equation is analytic. Thus by the analytic version of the implicit
theorem [5] that u(τ) + iv(τ) is defined and analytic in a neighbourhood of τ = τ∗1 .

Theorem 2.3. Let v∗1 be the biggest positive simple root of equation (2.12). Then iv(τ∗1) = iv∗1 is a simple root of
equation (2.10) and u(τ) + iv(τ) is differentiable with respect to τ in the neighborhood of τ = τ∗1 .

To establish Hopf bifurcation at τ = τ∗1 as stated in [5] and referred to by [11, 13, 18], we need to show
that

du

dτ
|τ=τ∗1 6= 0.

Differentiating the equations in (2.11) with respect to τ and keeping v(τ∗1) = v
∗
1 and u(τ∗1) = 0 gives

du

dτ

[
−3k1v

∗2
1 + k3 − cos(τ∗1v

∗
1)(T3 + τ

∗
1T2v

∗2
1 ) + sin(τ∗1v

∗
1)(τ

∗
1T3v

∗
1 − 2T2v

∗
1)
]

+
dv

dτ

[
4v∗3

1 − 2k2v
∗
1 + cos(τ∗1v

∗
1)(2T2v

∗
1 − τ

∗
1T3v

∗
1) − sin(τ∗1v

∗
1)(T3 + T2v

∗
1)
]

= (T3v
∗2
1 ) cos(τ∗1v

∗
1) + (T2v

∗3
1 ) sin(τ∗1v

∗
1)

(2.14)

and

du

dτ

[
−4v∗3

1 + 2k2v
∗
1 − cos(τ∗1v

∗
1)(2T2v

∗
1 − τ

∗
1T3v

∗
1) + sin(τ∗1v

∗
1)(T3 + T2v

∗
1)
]

+
dv

dτ

[
−3k1v

∗2
1 + k3 − cos(τ∗1v

∗
1)(T3 + τ

∗
1T2v

∗2
1 ) + sin(τ∗1v

∗
1)(τ

∗
1T3v

∗
1 − 2T2v

∗
1)
]

= (v∗2
1 T3) cos(τ∗1v

∗
1) + (v∗3

1 T2) sin(τ∗1v
∗
1),

(2.15)
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respectively. Equations (2.14) and (2.15) can be rewritten as

J1
du

dτ
+ J2

dv

dτ
= F, −J2

du

dτ
+ J1

dv

dτ
= G, (2.16)

where

J1 = −3k1v
∗2
1 + k3 − cos(τ∗1v

∗
1)(T3 + τ

∗
1T2v

∗2
1 ) + sin(τ∗1v

∗
1)(τ

∗
1T3v

∗
1 − 2T2v

∗
1),

J2 = 4v∗3
1 − 2k2v

∗
1 + cos(τ∗1v

∗
1)(2T2v

∗
1 − τ

∗
1T3v

∗
1) − sin(τ∗1v

∗
1)(T3 + T2v

∗
1),

F = (T3v
∗2
1 ) cos(τ∗1v

∗
1) + (T2v

∗3
1 ) sin(τ∗1v

∗
1),

G = (v∗2
1 T3) cos(τ∗1v

∗
1) + (v∗3

1 T2) sin(τ∗1v
∗
1).

Solving equations in (2.16) for dudτ at τ = τ∗1 gives

du

dτ
=

v∗1

 (R− T3 cos(τ∗1v
∗
1) − 2T2v

∗
1 sin(τ∗1v

∗
1)) (−k1v

∗3
1 + k3v

∗
1)

+

{S+ 2T2v
∗
1 cos(τ∗1v

∗
1) − T3 sin(τ∗1v

∗
1)} (v

∗4
1 − k2v

∗2
1 + k4)


J21 + J

2
1

, (2.17)

where R = −3k1v
∗2
1 + k3 + τ

∗
1(v

∗4
1 − k2v

∗2
1 + k4) and S = 4v∗3

1 − 2k2v
∗
1 − τ∗1(−k1v

∗3
1 + k3v

∗
1). Using equation

(2.12), the equation (2.17) can be rewritten as

du

dτ
=
v∗2

1

[
4v∗6

1 + v∗4
1 (3k2

1 − 6k2) + v
∗2
1 (2k2

2 + 4k4 − 4k1k3 − 2T 2
2 ) + (k2

3 − 2k2k4 − T
2
3 )
]

J21 + J
2
1

.

Let ξ = v∗2
1 , then

v∗8
1 + v∗6

1 (k2
1 − 2k2) + v

∗4
1 (k2

2 + 2k4 − 2k1k3 − T
2
2 ) + v

∗2
1 (k2

3 − 2k2k4 − T
2
3 ) + k

2
4

can be written as

Φ(ξ) = ξ4 + ξ3(k2
1 − 2k2) + ξ

2(k2
2 + 2k4 − 2k1k3 − T

2
2 ) + ξ(k

2
3 − 2k2k4 − T

2
3 ) + k

2
4,

and therefore

dΦ

dξ
= 4ξ3 + 3ξ2(k2

1 − 2k2) + 2ξ(k2
2 + 2k4 − 2k1k3 − T

2
2 ) + (k2

3 − 2k2k4 − T
2
3 ).

If v∗2
1 is the last positive single root of equation ξ = v∗2

1 = 0, then

dΦ

dξ
|ξ=v∗2

1
> 0 giving

du

dτ
|τ=τ∗1 =

v∗2
1

J21 + J
2
1

dΦ

dξ
|ξ=v∗2

1
> 0.

If equation (2.13) has no positive real roots, then u(τ) 6= 0 for any τ. As the equilibrium point Ē2 is locally
asymptotically stable when τ = 0, the roots of the characteristic equation have negative real parts when
τ = 0. Hence if λ(τ) = u(τ) + iv(τ) is a root of equation (2.10) are continuous functions of τ, we must have
u(τ) < 0 for all τ and thus the endemic equilibrium is locally asymptotically stable for all τ.

3. Maximum delay to preserve stablity

Let x(t) = x̄+ u1, y(t) = ȳ+ v1, v(t) = v̄+w1 and z(t) = z̄+ s1. Linearizing the system (2.2) at the
co-existing equilibrium Ē2 gives
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du1

dt
= γ− d(x̄+ u1) −β(x̄+ u1)(v̄+w1),

dv1

dt
= β(x̄+ u1(t− τ))(v̄+w1(t− τ)) − a(ȳ+ v1) − p(ȳ+ v1)(z̄+ s1),

dw1

dt
= k(ȳ+ v1) − l(v̄+w1),

ds1

dt
= c(ȳ+ v1)(z̄+ s1) − b(z̄+ s1).

(3.1)

At equllibrium γ− dx̄− βx̄v̄ = 0, βx̄v̄− aȳ− pȳz̄ = 0, kȳ− lv̄ = 0, and cȳz̄− bz̄ = 0. Therefore equation
(3.1) becomes

du1

dt
= (−d−βv̄)u1 + (−βx̄)w1,

dv1

dt
= βv̄u1(t− τ) − av1 − pz̄v1 +βx̄w1(t− τ) − pȳs1,

dw1

dt
= kv1 − lw1,

ds1

dt
= (cz̄)v1 + (cȳ− b)s1.

(3.2)

Taking Laplace transform of equation (3.2) gives

sL{u1(t)}− u1(0) = (−d−βv̄)L{u1(t)}+ (−βx̄)L{w1(t)},
sL{v1(t)}− v1(0) = βv̄L{u1(t− τ)}− aL{v1(t)}− pz̄L{v1(t)}+βx̄L{w1(t− τ)}− pȳL{s1(t)},
sL{w1(t)}−w1(0) = kL{v1(t)}− lL{w1(t)},
sL{s1(t)}− s1(0) = (cz̄)L{v1(t)}+ (cȳ− b)L{s1(t)},

where

L{u1(t− τ)} =

∫∞
0

e−stu1(t− τ)dt =

∫τ
0

e−stu1(t− τ)dt+

∫∞
τ

e−stu1(t− τ)dt.

Let t = t1 + τ. Then

L{u1(t− τ)} =

∫ 0

−τ
e−s(t1+τ)u1(t1)dt1 +

∫∞
0

e−s(t1+τ)u1(t1)dt1 = L1
(
e−sτ

)
+ e−sτL{u1(t1)}.

Similarly,

L{v1(t− τ)} = L2
(
e−sτ

)
+ e−sτL{v1(t1)} and L{w1(t− τ)} = L3

(
e−sτ

)
+ e−sτL{w1(t1)},

where

L1 =

∫ 0

−τ
e−st1u1(t1)dt1 =

∫ 0

−τ
e−stu1(t)dt,

L2 =

∫ 0

−τ
e−st1v1(t1)dt1 =

∫ 0

−τ
e−stv1(t)dt,

L3 =

∫ 0

−τ
e−st1w1(t1)dt1 =

∫ 0

−τ
e−stw1(t)dt.

If L{u1(t)}, L{v1(t)}, and L{w1(t)} have roots with positive real parts, then inverse Laplace transform of
L{u1(t)}, L{v1(t)}, L{w1(t)}, and L{s1(t)} will have terms which increases exponentially with time. Thus
Ē2 is locally asymptotically stable if and only if all roots of L{u1(t)}, L{v1(t)}, L{w1(t)}, and L{s1(t)} have
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negative real parts. Using Nyquist criterion [10, 12], Ē2 will be asymptotically stable if it satisfies the
following two conditions

ReG(iω0) = 0, (3.3a)
ImG(iω0) > 0, (3.3b)

where, using (2.10),
G(λ) = λ4 + k1λ

3 + k2λ
2 + k4 = e−τλ(T2λ

2 + T3λ)

and ω0 is the largest positive root of (3.3a). Equating the real and imaginary parts gives

ω4
0 − k2ω

2
0 + k4 = −T2ω

2
0 cos(τω0) + T3ω0 sin(τω0), (3.4a)

−k1ω
3
0 > T3ω0 cos(τω0) + T2ω

2
0 sin(τω0). (3.4b)

Using equation (3.4b) we get |k1|ω
2
0 − T2ω0 − |T3| 6 0 since | cos(τω0)| 6 1 and | sin(τω0)| 6 1. If ωL > ω0,

then

ωL =
T2 ±

√
T 2

2 + 4|k1||T3|

2k1
.

To find the length of maximum delay so that stability can be preserved, we rewrite the equations (3.4a)
and (3.4b) as

ω4 − k2ω
2 + k4 = −T2ω

2 cos(τω) + T3ω sin(τω), (3.5a)

−k1ω
3 > T3ω cos(τω) + T2ω

2 sin(τω), (3.5b)

respectively. Using equation (3.5b) we get

ω2 < −
T3

k1
cos(τω) −

T2

k1
ω sin(τω). (3.6)

Using inequality (3.6) and equation (3.5a) we obtain[
T3

k1
cos(τω) +

T2

k1
ω sin(τω)

]2

> ω2 (k2 − T2 cos(τω)) + T3ω sin(τω) − k4.

This is simplified and rearranged to get(
T3

k1

)2

+ T2ω
2 − k2ω

2 + k4 > T3ω sin(τω) + T2ω
2(1 − cos(τω))

+

(
T3

k1

)2

sin2(τω) −

(
T2

k1

)2

ω2 sin2(τω) −
|T2||T3|

k2
1
ω sin(2τω).

(3.7)

Now, using sin(τω) 6 τω, (1− cos(τω)) = 2 sin2 (τω
2

)
6 τ2ω2

2 and ω0 6 ω 6 ωL, the inequality (3.7) will
be transformed into∣∣∣∣∣T2ω

4
L

2
−

(
T2

k1

)2

ω4
L +

(
T3

T1

)2

ω2
L

∣∣∣∣∣ τ2 +

∣∣∣∣T3ω
2
L − 2

|T3||T1|

k2
1
ω2
L

∣∣∣∣ τ 6
∣∣∣∣∣
(
T3

k1

)2

− k2ω
2
L + T2ω

2
L + k4

∣∣∣∣∣ . (3.8)

Inequality (3.8) can be expressed as
A1τ

2 +A2τ−A3 6 0,

where

A1 =

∣∣∣∣∣T2ω
4
L

2
−

(
T2

k1

)2

ω4
L +

(
T3

T1

)2

ω2
L

∣∣∣∣∣ ,
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A2 =

∣∣∣∣T3ω
2
L − 2

|T3||T1|

k2
1
ω2
L

∣∣∣∣ ,
A3 =

∣∣∣∣∣
(
T3

k1

)2

− k2ω
2
L + T2ω

2
L + k4

∣∣∣∣∣ .
Let τ̂ be the positive root of

A1τ
2 +A2τ−A3 = 0.

That is,

τ̂ =
−A2 ±

√
A2

2 + 4A1A3

2A1
.

Now we summarize the above discussion in the following theorem.

Theorem 3.1. If Nyquist criterion is satisfied and 0 < τ < τ̂, then τ̂ will be the maximum length of delay for which
the stability will be preserved.

4. Numerical results

In this section we give some numerical results to illustrate the findings on the existence of Hopf
birfurcation. The parameter values γ = 1.8, β = 10, k = 1, c = 9, p = 4, d = 0.02, a = 4, l = 4, and b = 1
satisfy the condition βγkc > adlc+βkba which ensures the existence of Ē2, and the endemically infected
equilibrium is Ē2 = (x̄, ȳ, v̄, z̄) = (6.045, 0.111, 0.028, 2.778). Equation (2.13) has 4 real positive roots
and 4 complex roots, and v∗1 = 0.7541 is the biggest positive simple root and τ∗1 = 2.48.

The behavior of x(t), y(t), v(t), and z(t) versus time are given in Figure 1 for τ = 2.4 and Figure 2
for τ = 2.6 . Figures 3 and 4 give the behavior for varying τ. These illustrations show that the endemic
equilibrium Ē2 is asymptotically stable for 0 < τ < τ∗1 and the system (2.2) undergoes Hopf bifurcation at
τ = τ∗1 , when the chosen parameters satisfies the condition for the existence of Ē2.
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Figure 1: Solutions to (2.2), when τ = 2.4.
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Figure 2: Solutions to (2.2), when τ = 2.6.

Figure 3: Solutions to (2.2) for varying τ.
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Figure 4: Hopf bifurcation - τ = 2.6.

5. Conclusions

Over the past decades, several mathematical models have been developed to explain the immunolog-
ical response to infection with human immunodeficiency virus (HIV). Different phenomena have been
described through these models. In considering the outcome of infection by many viruses, the abun-
dance of the virus that is the viral load is always an important factor. For instance, in HIV-1, the viral
load is correlated with the pathogenicity disease stage and progression of the disease. It is found that in
most virus infections cytotoxic T lymphocytes (CTLs) play a crucial part in antiviral defense by attacking
virus-infected cells. They are believed to be the main host immune factor that limits the extent of virus
replication, and these determine the viral load.

The model considered here explores the relationship between antiviral immune responses, viral load,
and virus diversity. The model contains four variables, uninfected cells, infected cells, free virus particles,
and the cytotoxic lymphocytes. Infected cells are produced from uninfected cells and free virus interac-
tions. The cytotoxic lymphocytes (CTLs) play a crucial part in antiviral defence by attacking virus-infected
cells, and they are believed to be the main host immune factor that subsequently determines virus load.
Infected cells production may lag by the intracellular time delay between the infected cell and emission of
viral partials. In this model, it is assumed that the recruitment of infected cells and time t is not given by
density βx(t)v(t), but rather by the density of cells that were newly infected at time (t− τ) and are still
alive at time t. In other words, the rate of growth of infected cells for the equation y becomes a delay-
differential equation while the other equations remain unchanged. The delay effect is able to incorporate
the more realistic physiology associated with the time lag between uninfected cells and the emission of
viral particles. We determine how much the stability of equilibrium is affected by the introduction of time
delay. We studied conditions governing parameters values of the model. With these conditions, we are
able to restrict the values of the parameters which are chosen so that the model remains stable. Using
Nyquist criterion, we get the maximum length of delay to maintain stability.
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