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Abstract

In this paper, we propose a new generalization of metric spaces by the unification of two novel notions, namely F-metric
spaces and bipolar metric spaces, under the name F-bipolar metric spaces. Further, in this newly generalized notion we provide
a binary topology and prove some fixed point results. As applications of our result, we prove the existence and uniqueness of
solution of integral equation and the existence of a unique solution in homotopy theory. We also give some non-trivial examples
to vindicate our claims. Our fixed point results extend several results in the existing literature.
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1. Introduction and Preliminaries

In 1906, metric space theory was initiated by Fréchet [6]. Since then, many authors have generalized
the notion of metric spaces, by weakening some conditions and modifying the metric function (see, for
instance, [1, 3–5, 10, 18]). In metric space and its generalizations we consider the distance between points
of a single set, however the question of distance can arise between elements of two different sets. Such
problems of measuring distance can be encountered in various fields of mathematics and other sciences.
In 2016, to encounter such cases, the concept of bipolar metric space was introduced by Mutlu and Gürdal
[11] and after that some fixed point and coupled fixed point theorems were tested under contractive
conditions for covariant and contravariant mappings (see, for instance, [11–17]). Recently, Kishore et al.
[9] proved some common fixed point theorems in bipolar metric spaces along with some applications.

Definition 1.1 ([11]). Let X, Y 6= φ and d : X× Y → [0,+∞) be a mapping. Then d is called a bipolar
metric on X× Y if the following properties are satisfied for all (x,y), (x

′
,y
′
) ∈ X× Y:

(B1) x = y, if d(x,y) = 0;
(B2) d(x,y) = 0, if x = y;
(B3) d(x,y) = d(y, x), if x,y ∈ X∩ Y;
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(B4) d(x,y) 6 d(x,y
′
) + d(x

′
,y
′
) + d(x

′
,y).

Then the triple (X, Y,d) is called a bipolar metric space.

Example 1.2. Let X be the class of all singleton subsets of R and Y be the class of all nonempty compact
subsets of R. We define d : X× Y → R as d(x,A) = |x− inf(A)|+ |x− sup(A)|. Then the triple (X, Y,d) is
a complete bipolar metric space.

Definition 1.3 ([11]). Let (X1, Y1,d1) and (X2, Y2,d2) be bipolar metric spaces. A function f : X1 ∪ Y1 →
X2 ∪ Y2 is called a covariant mapping, if f(X1) ⊆ X2 and f(Y1) ⊆ Y2. Similarly, a function f : X1 ∪ Y1 →
X2 ∪ Y2 is called a contravariant mapping, if f(X1) ⊆ Y2 and f(X2) ⊆ Y1. These mappings are denoted as
f : (X1, Y1,d1)⇒ (X2, Y2,d2) and f : (X1, Y1,d1)� (X2, Y2,d2), respectively.

Definition 1.4 ([11]). Let (X, Y,d) be a bipolar metric space. The points of the sets X, Y, and X ∩ Y are
called left points, right points, and central points, respectively.

A sequence of left points is called a left sequence and a sequence of right points is called a right
sequence. A sequence is a simple term for a left or a right sequence.

A sequence (an) is convergent to y, if lim
n→∞d(an,y) = 0, where (an) is a left sequence and y is a right

point. Similarly, a sequence (bn) is convergent to x, if lim
n→∞d(x,bn) = 0, where (bn) is a right sequence

and x is a left point.
A sequence of the form (xn,yn) on the set X× Y is called a bisequence on (X, Y,d). A bisequence is

called convergent, if both the left sequence (xn) and the right sequence (yn) converge. If (xn) and (yn)
converge to a common point, then (xn,yn) is called biconvergent.

A bisequence (xn,yn) such that lim
n,m→∞d(xn,ym) = 0 is called a Cauchy bisequence. If every Cauchy

bisequence converges in a bipolar metric space, then it is called a complete bipolar metric space.

In 2018, the concept of F-metric spaces was proposed by Jleli et al. [7]. To coin the notion of such
abstract spaces the authors used a particular class of auxiliary functions which is defined below.

Definition 1.5 ([7]). Let F be the set of functions f : (0,∞)→ R satisfying the following:

(F1) f is non-decreasing, i.e., 0 < s < t⇒ f(s) 6 f(t);
(F2) for every sequence tn ⊂ (0,∞), we have

lim
n→∞ tn = 0⇔ lim

n→∞ f(tn) = −∞.

Using such functions, the authors generalized the notion of metric spaces and initiated the notion of
F-metric spaces as follows:

Definition 1.6 ([7]). Let X be a non-empty set, and let D : X× X → [0,∞) be a given mapping. Suppose
that there exists (f,α) ∈ F× [0,∞), such that for all (x,y) ∈ X×X:

(a) D(x,y) = 0⇔ x = y;
(b) D(x,y) = D(y, x);
(c) for every N ∈N,N > 2, and for every (µi)

N
i=1 ⊂ X with (µ1,µN) = (x,y), we have

D(x,y) > 0⇒ f(D(x,y)) 6 f

(
N−1∑
i=1

D(µi,µi+1)

)
+α.

Then D is said to be an F-metric on X, and the pair (X,D) is said to be an F-metric space.

The definitions of completeness, convergence, and Cauchy sequence in this setting can be found in [7].
In 2011, Jothi et al. [8] introduced the notion of binary topology to define a topology between two sets.
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In this article, we unify the notions of F-metric spaces and bipolar metric spaces and introduce a new
generalized notion named as, F-bipolar metric space. We also show that every bipolar metric space and
F-metric space is an F-bipolar metric space but the converse is not true in general. Next, we define a
topology τFb on F-bipolar metric spaces using the concept of balls. Further, we give some fixed point
theorems which are extensions and generalizations of the Banach contraction principle [2] in the setting
of F-bipolar metric spaces, along with an application to integral equation.

2. F-bipolar metric space

Now we introduce the definition of F-bipolar metric space.

Definition 2.1. Let X and Y be two non-empty sets and d : X× Y → [0,∞) be a given mapping. Suppose
that there exists (f,α) ∈ F× [0,∞), such that for all (x,y) ∈ X× Y:

(D1) d(x,y) = 0⇔ x = y;
(D2) d(x,y) = d(y, x) if x,y ∈ X∩ Y;
(D3) for every N ∈N,N > 2, and for every (µi)

N
i=1 ⊂ X and (νi)

N
i=1 ⊂ Y with (µ1,νN) = (x,y), we have

d(x,y) > 0⇒ f(d(x,y)) 6 f

[
N−1∑
i=1

d(µi+1,νi) +
N∑
i=1

d(µi,νi)

]
+α.

Then d is said to be an F-bipolar metric on the pair (X, Y) and (X, Y,d) is said to be an F-bipolar metric
space.

Remark 2.2. Taking Y = X, N = 2n, µi = u2i−1, and νi = u2i in the above definition we get a sequence
(ui)

2n
i=1 ∈ X with (u1,u2n) = (x,y), such that condition (c) of Definition 1.6 holds. Thus every F-metric

space is an F-bipolar metric space but the converse is not true in general.

Remark 2.3. Let (X, Y,d) be an F-bipolar metric space. Throughout this paper, we shall use Definitions 1.3
and 1.4 in a similar way as used in bipolar metric spaces.

Example 2.4. Let X = {1, 2} and Y = {2, 7}. Define a metric d : X× Y → [0,∞) by

d(1, 7) = 10, d(1, 2) = 6, d(2, 7) = 2, d(2, 2) = 0.

(X, Y,d) is not a bipolar metric space (since 10 = d(1, 7) > d(1, 2) + d(2, 2) + d(2, 7) = 8, therefore, (D3) is
not satisfied). It can be easily seen that d satisfies (D1) and (D2). Now, we consider only three cases for
(D3).

Case-I:
d(1, 2) > 0⇒ ln(d(1, 2)) 6 ln(d(1, 7) + d(2, 7) + d(2, 2)) = ln 6 6 ln 12,

(D3) is satisfied with α = 0 and f(t) = ln t ∈ F.

Case-II:
d(2, 7) > 0⇒ ln(d(2, 7)) 6 ln(d(2, 2) + d(1, 2) + d(1, 7)) = ln 2 6 ln 16,

(D3) is satisfied with α = 0 and f(t) = ln(t) ∈ F.

Case-III:
d(1, 7) > 0⇒ ln(d(1, 7)) 6 ln(d(1, 2) + d(2, 2) + d(2, 7)) = ln 10 6 ln 8 +α,

(D3) is satisfied with α > 1 and f(t) = ln(t) ∈ F.
Therefore, d satisfies all the properties of an F-bipolar metric. Hence, (X, Y,d) is an F-bipolar metric

space.

Remark 2.5. The above example shows that an F-bipolar metric space need not to be a bipolar metric space.
Clearly, F-bipolar metric space is a generalization of bipolar metric space.
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3. Topology on F-bipolar metric spaces

Definition 3.1. Let X and Y be any two non-empty sets. A binary topology from X to Y is a binary
structure M ⊆ P(X)×P(Y) that satisfies:

(a) (φ,φ) and (X, Y) ∈M;
(b) (A1)∩A2,B1 ∩B2) ∈M whenever (A1,B1), (A2,B2) ∈M;
(c) if {(Aα,Bα) : α ∈ ∆} is a family of members of M, then (∪α∈∆Aα,∪α∈∆Bα) ∈M.

Definition 3.2. Let (X, Y,d) be an F-bipolar metric space. Let x ∈ X be an arbitrary element. Then for
r > 0, BR(x, r) = {y ∈ Y : d(x,y) < r} is called a right ball in (X, Y,d).

Definition 3.3. Let (X, Y,d) be an F-bipolar metric space. Let y ∈ Y be an arbitrary element. Then for
r > 0, BL(y, r) = {x ∈ X : d(x,y) < r} is called a left ball in (X, Y,d).

Definition 3.4. Let (X, Y,d) be an F-bipolar metric space. A subset P of Y is said to be right Fb-open if
for every y ∈ P, there is some r > 0, such that:

y ∈ BR(x, r) ⊆ P.

Definition 3.5. Let (X, Y,d) be an F-bipolar metric space. A subset O of X is said to be left Fb-open if for
every x ∈ O, there is some r > 0, such that:

x ∈ BL(y, r) ⊆ O.

Definition 3.6. Let (X, Y,d) be an F-bipolar metric space. Let A ⊆ X and B ⊆ Y. Then A× B is called
Fb-open if A is left Fb-open and B is right Fb-open.

We say that a subset C×D of X× Y is Fb-closed if (X\C)× (Y\D) is Fb-open. Let us denote by τFb
the family of all Fb-open subsets of X× Y. Then it is easy to prove the following result.

Proposition 3.7. Let (X, Y,d) be a F-bipolar metric space. Then τFb is a binary topology on X× Y.

Proposition 3.8. Let (X, Y,d) be a F-bipolar metric space. Then for any non-empty subset A× B of X× Y, the
following statements are equal.

(a) A×B is Fb-closed.
(b) For any sequence (xn,yn) ∈ A×B, we have

lim
n→∞d(xn,y) = lim

n→∞d(x,yn) = 0 , (x,y) ∈ X× Y =⇒ (x,y) ∈ A×B. (3.1)

Proof. Assume that A× B is Fb-closed and equation (3.1) holds. Since, A× B is Fb-closed =⇒ (X \A)×
(Y \B) is Fb-open, i.e., X \A is left Fb-open and Y \B is right Fb-open. So, for every x ∈ X \A there exists
some r1 > 0 and some y ∈ Y, such that BL(y, r1) ⊆ X \A.

Similarly for every y ∈ Y \B there exists some r2 > 0 and some x ∈ X, such that BR(x, r2) ⊆ Y \B.

=⇒ BL(y, r1)∩A = BR(x, r2)∩B = φ.

On the other hand by equation (3.1), there exists some N1,N2 ∈N, such that d(xn,y) < r1 for all n > N1
and d(x,yn) < r2 for all n > N2. Taking N = max{N1,N2}, we get xn ∈ BL(y, r1) and yn ∈ BR(x, r2) for
all n > N, which implies that (xN,yN) ∈ [BL(y, r1)∩A]× [BR(x, r2)∩B], which is a contradiction. Hence,
we deduce that (x,y) ∈ A×B, i.e. (a) =⇒ (b).

Conversely, assume that (b) is satisfied. Let (x,y) ∈ (X \A)× (Y \ B). We have to prove that there are
some r1, r2 > 0, such that

BL(y, r1) ⊂ X \A and BR(x, r2) ⊂ Y \B.

On the contrary, suppose that for every r1, r2 > 0, there exists xr1 ∈ BL(y, r1) ∩A and yr2 ∈ BR(x, r2) ∩ B.
=⇒ for any n ∈ N∗, there exists xn ∈ BL(y, 1

n) ∩A and yn ∈ BR(x, 1
n) ∩ B. Then, (xn,yn) ∈ A× B and

lim
n→∞d(xn,y) = lim

n→∞d(x,yn) = 0. By (b), this implies that (x,y) ∈ (A× B) which is a contradiction to

(x,y) ∈ (X \A)× (Y \B). Hence, A×B is Fb-closed, i.e., (b) =⇒ (a).
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Definition 3.9. Let (X, Y,d) be an F-bipolar metric space. Let {xn} be a left sequence in X. We say that {xn}
is convergent to y ∈ Y if for every right Fb-open subset Oy of Y containing y, there exists some N ∈ N

such that xn ∈ Oy, for all n > N. In this case, we say that y is the limit of {xn}.

Definition 3.10. Let (X, Y,d) be an F-bipolar metric space. Let {yn} be a right sequence in Y. We say that
{yn} is convergent to x ∈ X if for every left Fb-open subset Px of X containing x, there exists some N ∈N

such that yn ∈ Px, for all n > N. In this case, we say that x is the limit of {yn}.

The following result follows immediately from Definition 3.9 and the definition of τFb .

Proposition 3.11. Let (X, Y,d) be an F-bipolar metric space. Let {xn} be a left (or right) sequence in X and y ∈ Y.
Then the following conditions are equivalent.

(1) {xn} is Fb-convergent to y;
(2) lim

n→∞d(xn,y) = 0.

Similarly, we can do for a right sequence.
Remark 3.12. In F-bipolar metric space a convergent sequence may have multiple limits just as in bipolar
metric spaces.

Definition 3.13. In an F-bipolar metric space a bisequence (xn,yn) is said to be Cauchy bisequence, if for
each ε > 0, there exists a number n0 ∈N, such that for all positive integers n,m > n0,d(xn,ym) < ε.

Definition 3.14. An F-bipolar metric space (X, Y,d) is called complete, if every Cauchy bisequence in this
space is convergent.

4. Fixed point theorems

Theorem 4.1. Let (X, Y,d) be a complete F-bipolar metric space and let g : (X, Y,d) ⇒ (X, Y,d) be a covariant
contraction. Then the mapping g : X∪ Y → X∪ Y has a unique fixed point.

Proof. Given that g is a covariant contraction, then there exists k ∈ (0, 1) such that

d(g(x),g(y)) 6 kd(x,y), ∀(x,y) ∈ X× Y. (4.1)

Let x0 ∈ X and y0 ∈ Y. For each n ∈ N, define g(xn) = xn+1 and g(yn) = yn+1. Then (xn,yn) is a
bisequence in (X, Y,d). Let (f,α) ∈ F× [0,∞) be such that (D3) is satisfied. Let ε > 0 be fixed. By (F2),
there exists δ > 0 such that

0 < t < δ =⇒ f(t) < f(ε) −α. (4.2)

Now,

d(xn,yn) = d(g(xn−1),g(yn−1)) 6 kd(xn−1,yn−1) 6 · · · 6 knd(x0,y0). (4.3)

Also,

d(xn+1,yn) = d(g(xn),g(yn−1)) 6 kd(xn,yn−1) 6 · · · 6 knd(x1,y0). (4.4)

From (4.3) and (4.4), we get

m−1∑
i=n

d(xi+1,yi) +
m∑
i=n

d(xi,yi) 6
kn

1 − k
[d(x0,y0) + d(x1,y0)] , where m > n.

Since lim
n→∞ kn

1 − k
[d(x0,y0) + d(x1,y0)] = 0, there exists N ∈N, such that

0 <
kn

1 − k
[d(x0,y0) + d(x1,y0)] < δ , n > N.
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For m > n > N, using (F1) and equation (4.2), we get

f

(
m−1∑
i=n

d(xi+1,yi) +
m∑
i=n

d(xi,yi)

)
6 f

(
kn

1 − k
[d(x0,y0) + d(x1,y0)]

)
< f(ε) −α. (4.5)

From (D3) and equation (4.5), we get d(xn,ym) > 0. Therefore

f(d(xn,ym)) 6 f

(
m−1∑
i=n

d(xi+1,yi) +
m∑
i=n

d(xi,yi)

)
+α < f(ε).

Similarly, for n > m > N, d(xn,ym) > 0, we have

f(d(xn,ym)) 6 f

(
n−1∑
i=m

d(xi+1,yi) +
n∑
i=m

d(xi,yi)

)
+α < f(ε).

Then by (F1), d(xn,ym) < ε, for all m,n > N. Therefore, (xn,yn) is a Cauchy bisequence. Since, (X, Y,d)
is complete, (xn,yn) converges and thus biconverges to a point µ ∈ X∩ Y and g(yn) = yn+1 → µ ∈ X∩ Y
guarantees that 〈g(yn)〉 has a unique limit. Also continuity of g =⇒ 〈g(yn)〉 → g(µ). Thus, g(µ) = µ,
i.e., µ is a fixed point of g. If ν is any fixed point of g, then g(ν) = ν =⇒ ν ∈ X∩ Y and by equation (4.1)
we have d(µ,ν) = d(g(µ),g(ν)) 6 kd(µ,ν), where 0 < k < 1. Therefore

d(µ,ν) = 0.

Thus, µ = ν, i.e., g has a unique fixed point.

Example 4.2. Let X = N∪ {0} and Y = 1
n ∪ {0}. Define d : X× Y → [0,∞] as

d(x,y) =

{
2, if (x,y) = (2, 1),
|x− y|, otherwise.

Then the triple (X, Y,d) is an F-bipolar metric space for f(t) = ln t and α > 2. The covariant mapping
g : X∪ Y → X∪ Y, defined as

g(z) =

{
0, z ∈ X\{0, 1},
1, z ∈ Y,

satisfies the inequality d(g(x),g(y)) 6 kd(x,y), for some k ∈ (0, 1). Hence, by Theorem 4.1, g must have
a unique fixed point, which is 12 ∈ X∩ Y.

Theorem 4.3. Let (X, Y,d) be a complete F-bipolar metric space and let g : (X, Y,d)� (X, Y,d) be a contravariant
contraction. Then the mapping g : X∪ Y → X∪ Y has a unique fixed point.

Proof. Given that g is a contravariant contraction⇒ there exists k ∈ (0, 1) such that

d(g(y),g(x)) 6 kd(x,y), ∀(x,y) ∈ X× Y. (4.6)

Let x0 ∈ X and for each n ∈ N, define g(xn) = yn and g(yn) = xn+1. Then (xn,yn) is a bisequence in
(X, Y,d).
Let (f,α) ∈ F× [0,∞) be such that (D3) is satisfied. Let ε > 0 be fixed. By (F2), there exists δ > 0 such
that

0 < t < δ =⇒ f(t) < f(ε) −α. (4.7)
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Now,

d(xn,yn) = d(g(yn−1),g(xn))
6 kd(xn,yn−1)

= kd(g(yn−1),g(xn−1))

6 k2d(xn−1,yn−1)

...

6 k2nd(x0,y0), n ∈N.

(4.8)

Also,

d(xn+1,yn) = d(g(yn),g(xn)) 6 kd(xn,yn) 6 · · · 6 k2n+1d(x0,y0), n ∈N. (4.9)

From (4.8) and (4.9), we get

m−1∑
i=n

d(xi+1,yi) +
m∑
i=n

d(xi,yi) 6 (k2n + k2n+2 + ... + k2m)d(x0,y0) + (k2n+1 + k2n+3 + · · ·+ k2m−1)d(x0,y0)

6 k2n
∞∑
n=0

knd(x0,y0) =
k2n

1 − k
d(x0,y0), m > n.

Since, lim
n→∞ k2n

1−kd(x0,y0) = 0 =⇒ there exists N ∈N, such that

0 <
k2n

1 − k
d(x0,y0) < δ, n > N.

For m > n > N, using (F1) and equation (4.7), we get

f

(
m−1∑
i=n

d(xi+1,yi) +
m∑
i=n

d(xi,yi)

)
6 f

(
k2n

1 − k
d(x0,y0)

)
< f(ε) −α. (4.10)

From (D3) and equation (4.10), we get that d(xn,ym) > 0 implies

f(d(xn,ym)) 6 f

(
m−1∑
i=n

d(xi+1,yi) +
m∑
i=n

d(xi,yi)

)
+α < f(ε).

Similarly, for n > m > N, d(xn,ym) > 0 implies

f(d(xn,ym)) 6 f

(
n−1∑
i=m

d(xi+1,yi) +
n∑
i=m

d(xi,yi)

)
+α < f(ε).

Then by (F1), d(xn,ym) < ε, for all m,n > N. Therefore, (xn,yn) is a Cauchy bisequence. Since, (X, Y,d)
is complete, (xn,yn) converges and thus biconverges to a point µ ∈ X ∩ Y. So 〈xn〉 → µ, 〈yn〉 → µ and
the contravariant map g is continuous, we get

〈xn〉 → µ implies that 〈yn〉 = 〈g(xn)〉 → g(u)

and combining the above with 〈yn〉 → µ gives

g(µ) = µ.

Now to show the uniqueness of the fixed point suppose ν is another fixed point of g, i.e., g(ν) =
ν, which implies that ν ∈ X∩ Y. By equation (4.6) and (D3), we get

d(µ,ν) = d(g(µ),g(ν)) 6 kd(ν,µ) = kd(µ,ν), which implies that d(µ,ν) = 0,

which gives that µ = ν. Therefore, g has a unique fixed point.
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Example 4.4. Let X = {7, 8, 17, 19} and Y = {2, 4, 9, 17}. Define d : X× Y → [0,∞] as the usual metric,
i.e., d(x,y) = |x− y|. Then the triple (X, Y,d) is an F-bipolar metric space. The contravariant mapping
g : X∪ Y → X∪ Y, defined as

g(z) =

{
17, z ∈ X∪ {9},
19, otherwise,

satisfies the inequality d(g(y),g(x)) 6 kd(x,y), for some k ∈ (0, 1). Hence, by Theorem 4.3, g must have
a unique fixed point, which is 17 ∈ X∩ Y.

Theorem 4.5. Let (X, Y,d) be a complete F-bipolar metric space and given two contravariant contractions F,G :
(X, Y,d)� (X, Y,d) satisfying

d(Fy,Gx) 6 k[d(x,Gx) + d(Fy,y)], for all (x,y) ∈ X× Y,

where k ∈ (0, 1
2). Then the mapping F,G : X∪ Y → X∪ Y has a unique common fixed point.

Proof. Let x0 ∈ X and y0 ∈ Y, then for each non-negative integer n, define

Fx2n = y2n, Gx2n+1 = y2n+1, Fy2n = x2n+1, Gy2n+1 = x2n+2.

Then (xn,yn) is a bisequence in (X, Y,d). Let (f,α) ∈ F× [0,∞) be such that (D3) is satisfied. Let ε > 0
be fixed. By (F2), there exists δ > 0 such that

0 < t < δ =⇒ f(t) < f(ε) −α. (4.11)

Now,

d(x2n+1,y2n+1) = d(Fy2n,Gx2n+1) 6 k[d(x2n+1,Gx2n+1) + d(Fy2n,y2n)]

6 k[d(x2n+1,y2n+1) + d(x2n+1,y2n)],

Hence, d(x2n+1,y2n+1) 6
k

1 − k
d(x2n+1,y2n).

Also,

d(x2n+1,y2n) = d(Fy2n, Fx2n) 6 k[d(x2n, Fx2n) + d(Fy2n,y2n)] 6 k[d(x2n,y2n) + d(x2n+1,y2n)],

So, d(x2n+1,y2n) 6
k

1 − k
d(x2n,y2n).

Since k ∈ (0, 1
2) and k

1−k = λ (say), then λ ∈ (0, 1). So, d(x2n+1,y2n+1)6λ4n+2d(x0,y0) and d(x2n+1,y2n)6
λ4n+1d(x0,y0). Now, we can get that for any n ∈N,

d(xn+1,yn+1) 6 λ
2n+2d(x0,y0) and d(xn+1,yn) 6 λ2n+1d(x0,y0)

=⇒ d(xn,yn) 6 λ2nd(x0,y0), (4.12)

and d(xn+1,yn) 6 λ2n+1d(x0,y0). (4.13)

From (4.12) and (4.13), we get

m−1∑
i=n

d(xi+1,yi) +
m∑
i=n

d(xi,yi) = (λ2n+1 + λ2n+3 + ... + λ2m−1)d(x0,y0) + (λ2n + λ2n+2 + · · ·+ λ2m)d(x0,y0)

= λ2n[1 + λ+ λ2 + · · ·+ λ2m−2n−1]d(x0,y0)

6
λ2n

1 − λ
d(x0,y0), m > n.
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Since, lim
n→∞ λ2n

1−λd(x0,y0) = 0, there exists N ∈N, such that

0 <
λ2n

1 − λ
d(x0,y0) < δ , n > N.

For m > n > N, using (F1) and equation (4.11), we get

f

(
m−1∑
i=n

d(xi+1,yi) +
m∑
i=n

d(xi,yi)

)
6 f

(
λ2n

1 − λ
d(x0,y0)

)
< f(ε) −α. (4.14)

From (D3) and equation (4.14), we get d(xn,ym) > 0

=⇒ f(d(xn,ym)) 6 f

(
m−1∑
i=n

d(xi+1,yi) +
m∑
i=n

d(xi,yi)

)
+α < f(ε).

Similarly, for n > m > N, d(xn,ym) > 0

=⇒ f(d(xn,ym)) 6 f

(
n−1∑
i=m

d(xi+1,yi) +
n∑
i=m

d(xi,yi)

)
+α < f(ε).

Then by (F1), d(xn,ym) < ε, for all m,n > N. Therefore, (xn,yn) is a Cauchy bisequence. Since,
(X, Y,d) is complete, the bisequence converges and thus biconverges to some µ ∈ X ∩ Y such that
lim
n→∞ xn = lim

n→∞yn = µ. 〈Fx2n〉 = 〈y2n〉 → µ ∈ X ∩ Y implies that 〈Fx2n〉 has a unique limit µ. 〈xn〉 →
µ implies that 〈x2n〉 → µ. Now, continuity of F implies that 〈Fx2n〉 → Fµ. Therefore Fµ = µ.

Similarly, 〈Gy2n+1〉 = 〈x2n+1〉 → µ ∈ X ∩ Y (since 〈xn〉 → µ) =⇒ 〈Gy2n+1〉 has a unique limit.
〈yn〉 → µ implies that 〈y2n+1〉 → µ. Now, continuity of G implies that 〈Gx2n+1〉 → Gµ. Therefore
Gµ = µ. So, Fµ = Gµ = µ, i.e., G and F have a common fixed point.

Now, we will prove the uniqueness of the common fixed point. Let ν ∈ X ∪ Y be another common
fixed point of F and G such that Fν = Gν = ν ∈ X∩ Y, then

d(µ,ν) = d(Fµ,Gν) 6 k[d(ν,Gν) + d(Fµ,µ)] = k[d(ν,ν) + d(µ,µ)] = 0,

that implies d(µ,ν) = 0, i.e., µ = ν. Therefore, F and G have a unique common fixed point.

Corollary 4.6. Let (X, Y,d) be a complete F-bipolar metric space and given a contravariant contraction F :
(X, Y,d)� (X, Y,d) satisfying

d(Fy, Fx) 6 k[d(x, Fx) + d(Fy,y)], for all (x,y) ∈ X× Y,

where k ∈ (0, 1
2). Then the mapping F : X∪ Y → X∪ Y has a unique fixed point.

Proof. By taking F = G in Theorem 4.5, we get that F has a unique fixed point.

5. Applications

5.1. Integral equations
We prove the existence and uniqueness of solution of integral equation.

Theorem 5.1. Let us consider the integral equation

φ(x) = f(x) +

∫
X∪Y

P(x,y,φ(y))dy , where x ∈ X∪ Y,

where X∪ Y is a Lebesgue measurable set. Suppose that:
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(i) P : (X2 ∪ Y2)× [0,∞)→ [0,∞) and f ∈ L∞(X)∪ L∞(Y);
(ii) there is a continuous function γ : X2 ∪ Y2 → [0,∞) such that

|P(x,y,φ(y)) − P(x,y,ψ(y))| 6 k.γ(x,y)|φ(y) −ψ(y)|, for (x,y) ∈ X2 ∪ Y2;

(iii) ‖
∫
X∪Y γ(x,y)dy‖ 6 1, i.e. supx∈X∪Y

∫
X∪Y |γ(x,y)|dy 6 1.

Then the integral equation has a unique solution in L∞(X)∪ L∞(Y).
Proof. Let A = L∞(X) and B = L∞(Y) be two normed linear spaces, where X, Y are Lebesgue measurable
set and m(X ∪ Y) < ∞. Consider d : A × B → [0,∞) to be defined by d(g,h) = ‖g − h‖∞, for all
g,h ∈ A × B. Then (A,B,d) is a complete F-bipolar metric space. Define the covariant mapping I :
L∞(X)∪ L∞(Y)→ L∞(X)∪ L∞(Y) by

I(φ(x)) =

∫
X∪Y

P(x,y,φ(y))dy+ f(x) , where x ∈ X∪ Y.

Now, we have

d(I(φ(x)), I(ψ(x))) = ‖I(φ(x)) − I(ψ(x))‖

=

∣∣∣∣∫
X∪Y

P(x,y,φ(y))dy−
∫
X∪Y

P(x,y,ψ(y))dy
∣∣∣∣

6
∫
X∪Y

|P(x,y,φ(y)) − P(x,y,ψ(y))|dy

6 k
∫
X∪Y

γ(x,y)|φ(y) −ψ(y)|dy

6 k‖φ(x) −ψ(x)‖
∫
X∪Y

γ(x,y)dy

6 k‖φ(x) −ψ(x)‖ sup
x∈X∪Y

∫
X∪Y

γ(x,y)dy

6 k‖φ(x) −ψ(x)‖
= k.d(φ(x) −Ψ(x)).

Therefore it follows from Theorem 4.1 that I has a unique fixed point in A∪B.

5.2. Homotopy

Now, we study the existence of a unique solution in homotopy theory.

Theorem 5.2. Let (C,D,d) be a complete F-bipolar metric space, (A,B) be an open subset of (C,D) and (A,B) be
a closed subset of (C,D) s.t. (A,B) ⊆ (A,B). Suppose H : (A∩B)× [0, 1]→ C∪D be an operator satisfying the
following conditions:

(i) x 6= H(x, κ) for each x ∈ ∂A∪ ∂B and κ ∈ [0, 1] (here ∂A∪ ∂B is the boundary of A∪B in C∪D);
(ii) d(H(x, κ),H(y, κ)) 6 αd(x,y) for all x ∈ A,y ∈ B, κ ∈ [0, 1] and α ∈ (0, 1);

(iii) there exists M > 0 s.t. d(H(x, ρ),H(y,σ)) 6M|ρ− σ| for all x ∈ A,y ∈ B and ρ,σ ∈ [0, 1].

Then H(., 0) has a fixed point iff H(., 1) has a fixed point.

Proof. Let X = {ρ ∈ [0, 1] : x = H(x, ρ) f.s x ∈ A}, Y = {σ ∈ [0, 1] : y = H(y,σ) f.s y ∈ B}. Since H(., 0)
has a fixed point in A ∪B, we have 0 ∈ X ∩ Y. Thus, X ∩ Y is a non-empty set. Now, we’ll show X ∩ Y

is both closed and open in [0, 1] and so by connectedness X = Y = [0, 1]. Let ({ρn}∞n=1, {σn}∞n=1) ⊆ (X,Y)
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with (ρn,σn) → (ρ,σ) ∈ [0, 1] as n → ∞. We must show ρ = σ ∈ X ∩ Y. Since (ρn,σn) ∈ (X,Y) for n =
1, 2, 3, . . . , there exists (xn,yn) ∈ (A,B) such that xn+1 = H(xn, ρn) and yn+1 = H(yn,σn). Now,

d(xn+1,yn) = d(H(xn, ρn),H(yn−1,σn−1)) 6 αd(xn,yn−1) 6 · · · 6 αnd(x1,y0).

Also,

d(xn,yn) = d(H(xn−1, ρn−1),H(yn−1,σn−1)) 6 αd(xn−1,yn−1) 6 · · · 6 αnd(x0,y0).

By the same process as used in Theorem 4.1 we can easily prove that (xn,yn) is a Cauchy bisequence in
(A,B). By completeness there exists µ ∈ A and ν ∈ B such that

lim
n→∞ xn = ν and lim

n→∞yn = µ. (5.1)

Consider

d(H(µ, ρ),ν) 6 d(H(µ, ρ),yn+1) + d(xn+1,yn+1) + d(xn+1,ν)
6 d(H(µ, ρ),H(yn,σn)) + d(H(xn, ρn),H(yn,σn)) + d(xn+1,ν)
6 αd(µ,yn) +M|ρn − σn|+ d(xn+1,ν)
→ 0 as n→∞.

Thus, H(µ, ρ) = ν. Similarly, we get H(ν,σ) = µ. Now, from equation (5.1) we get

d(µ,ν) = d( lim
n→∞yn, lim

n→∞ xn) = lim
n→∞d(xn,yn) = 0.

So, µ = ν. Thus ρ = σ ∈ X∩ Y which further implies that X∩ Y is closed in [0, 1]. Now, we have to prove
that X∩ Y is open in [0, 1]. Let (ρ0,σ0) ∈ (X,Y), then there exists a bisequence (x0,y0) such that

x0 = H(x0, ρ0) and y0 = H(y0,σ0).

As A ∪B is open, there exists r > 0 such that Bd(x0, r) ⊆ A ∪B and Bd(r,y0) ⊆ A ∪B. Pick ρ ∈ (σ0 −
ε,σ0 +ε), and σ ∈ (ρ0 −ε, ρ0 +ε) such that |ρ−σ0| 6 1

Mn <
ε
2 , |σ−ρ0| 6 1

Mn <
ε
2 , and |ρ0 −σ0| 6 1

Mn <
ε
2 .

Then we have y ∈ BX∪Y(x0, r) = {y ∈ B|d(x0,y) 6 r+ d(x0,y0) for some y0 ∈ B} and x ∈ BX∪Y(r,y0) =
{x ∈ A|d(x,y0) 6 r+ d(x0,y0) for some x0 ∈ A}. Additionally

d(H(x, ρ),y0) = d(H(x, ρ),H(y0,σ0))

6 d(H(x, ρ),H(y,σ0)) + d(H(x0, ρ),H(y,σ0)) + d(H(x0, ρ),H(y0,σ0))

6 2M|ρ− σ0|+ d(H(x0, ρ),H(y,σ0))

6 2M|ρ− σ0|+αd(x0,y)

6
2

Mn−1 + d(x0,y).

On letting n→∞, we get

d(H(x, ρ),y0) 6 d(x0,y) 6 r+ d(x0,y0).

By similar procedure, we get d(x0,H(y,σ)) 6 d(x,y0) 6 r+ d(x0,y0). But

d(x0,y0) = d(H(x0, ρ0),H(y0,σ0)) 6M|ρ0 − σ0| 6
1

Mn−1 → 0 as n→∞,

which implies x0 = y0. Therefore, for each fixed σ, where σ = ρ ∈ (σ0 − ε,σ0 + ε) and H(., ρ) :
BX∪Y(x0, r)→ BX∪Y(x0, r). Since all the hypothesis of Theorem 4.1 hold, H(., ρ) has a fixed point in A∩B
but the fixed point must be in A ∩B as (i) holds. Therefore ρ = σ ∈ X ∩ Y for each σ ∈ (σ0 − ε,σ0 + ε).
Thus (σ0 − ε,σ0 + ε) ∈ X∩ Y, which gives X∩ Y is open in [0, 1]. Now we get the required result from the
connectedness of [0, 1] because X∩ Y = [0, 1].

We use a similar process for converse part.
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[11] A. Mutlu, U. Gürdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362–5373.

1, 1.1, 1.3, 1.4
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[14] A. Mutlu, K. Özkan, U. Gürdal, Locally and Weakly Contractive Principle in Bipolar Metric Spaces, TWMS J. Appl.

Eng. Math., 10 (2020), 379–388.
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