Online: ISSN 2008-949X

Journal of Mathematics and Computer Science

Journal Homepage: www.isr-publications.com/jmcs

Topological pseudo-UP algebras

Mahmoud A. Yousef, Alias B. Khalaf*

Department of Mathematics, College of Basic Education, University of Duhok, Kurdistan Region, Iraq.

Abstract

The aim of this paper is to study the concept of topological pseudo-UP algebra which is a pseudo-UP algebra equipped with a specific type of topology that makes the two binary operations topologically continuous. This concept is an extension of the concept of topological UP-algebra. Thereupon, we obtain many properties of topological pseudo-UP algebras.

Keywords: Topological pseudo-UP algebra, minimal open sets, T_i-spaces, pseudo-UP homomorphism. **2020 MSC:** 03G25, 54A05.

©2022 All rights reserved.

Check for updates

1. introduction

In the last five decades many mathematicians have been interested in studying topologies of classes of algebras. The topological concepts of (BCK, BCC, BE)-algebras are given in [1, 3, 4]. In 1998, Lee and Ryu investigated and presented some topological characteristics to the topological BCK-Algebras notion. In 2008, Ahn and Kwon introduced the concept of topological BCC-algebras. In 2017, Mehrshad and Golzarpoor investigated certain characteristics of uniform topology and topological BE-algebras. In this same year, Iampan [2] introduced a new class of algebras termed UP- algebras which is a generalization of KU-algebras [6] established by Prabpayak and Leerawat in 2009. Later in 2019, Satirad and Iampan [10] defined topological UP-algebras and discovered more features of this structure. In 2020, Romano introduced a generalization of UP-algebras that he called pseudo-UP algebras. Also, he studied the concepts of pseudo-UP filters and pseudo-UP ideals of pseudo-UP algebras in [8]. Furthermore, he introduced the concept of homomorphisms between pseudo-UP algebras in [9].

This paper is structured as follows. In Section 2, we present some definitions and propositions on pseudo-UP algebras and topologies which are needed to develop this paper. In Section 3, we study a pseudo-UP algebra fitted with a topology in which the two binary operations of the structure satisfy the continuity, we call this pseudo-UP algebra associated with such a topology by a topological pseudo-UP algebra and we obtain many of its properties.

*Corresponding author

Email address: aliasbkhalaf@uod.ac (Alias B. Khalaf)

doi: 10.22436/jmcs.026.01.07

Received: 2021-07-17 Revised: 2021-08-04 Accepted: 2021-08-26

2. Preliminaries

In this section, we provide some background information and notes on the topology and pseudo-UP algebra, which are necessary for the development of this paper.

Definition 2.1 ([7]). A pseudo-UP algebra is a structure $((X, \leq), \cdot, *, 0)$ where \leq is a binary operation on a set X, \cdot and * are two binary operations on X if X satisfies the following axioms: for all $x, y, z \in X$,

1. $\mathbf{y} \cdot \mathbf{z} \leq (\mathbf{x} \cdot \mathbf{y}) * (\mathbf{x} \cdot \mathbf{z})$ and $\mathbf{y} * \mathbf{z} \leq (\mathbf{x} * \mathbf{y}) \cdot (\mathbf{x} * \mathbf{z})$;

2. If $x \leq y$ and $y \leq x$ then x = y, (i.e. \leq is an anti-symmetric);

3. $(y \cdot 0) * x = x$ and $(y * 0) \cdot x = x$; and

4. $x \leq y$ if and only if $x \cdot y = 0$ and $x \leq y$ if and only if x * y = 0.

Proposition 2.2 ([7]). In a pseudo-UP algebra $((X, \leq), \cdot, *, 0)$ the following statements hold: for all $x \in X$,

- 1. $x \cdot 0 = 0$ and x * 0 = 0;
- 2. $0 \cdot x = x$ and 0 * x = x; and
- 3. (\leqslant) is a reflexive (i.e., $x \cdot x = 0$ and x * x = 0).

Proposition 2.3 ([7]). In a pseudo-UP algebra $((X, \leq), \cdot, *, 0)$ the following statements hold: for all $x, y \in X$,

- 1. $x \leq y \cdot x$;
- 2. $x \leq y * x$.

Proposition 2.4 ([7]). Every pseudo-UP algebra X satisfying $x * y = x \cdot y$ is UP-algebra for all $x, y \in X$.

Definition 2.5 ([8]). A non-empty subset \mathcal{F} of a pseudo-UP algebra X is said to be a pseudo-UP filter of X if it satisfies: for all $x, y \in X$,

- 1. $0 \in \mathcal{F}$;
- 2. $x \cdot y \in \mathcal{F}$ and $x \in \mathcal{F}$ then $y \in \mathcal{F}$;
- 3. $x * y \in \mathcal{F}$ and $x \in \mathcal{F}$ then $y \in \mathcal{F}$.

Definition 2.6. A non-empty subset S of a pseudo-UP algebra X is called a pseudo-UP subalgebra of X if it satisfies:

- 1. $0 \in S$;
- 2. S is closed under two binary operations \cdot and * (i.e., $x \cdot y \in S$ and $x * y \in S$ for all $x, y \in S$).

It is clear that {0} and X are two pseudo-UP subalgebras of X.

Example 2.7. Let $X = \{0, a, b, c\}$ with two binary operations \cdot and * defined in Table 1.

	0	а	b	С	*	0	а	b	
0	0	а	b	С	0	0	а	b	
а	0	0	b	С	а	0	0	b	
b	0	а	0	С	b	0	а	0	
С	0	а	0	0	С	0	а	b	

Table 1: A pseudo-UP subalgebra of a pseudo-UP algebra.

By easy calculation, we can check that $((X, \leq), \cdot, *, 0)$ is a pseudo-UP algebra and $S = \{0, b\}$ is a pseudo-UP subalgebra of X. Obviously. $S_1 = \{a, b\}$ is not a pseudo-UP subalgebra of X.

Definition 2.8 ([9]). Let $((X, \leq), \cdot, *, 0)$ and $((Y, \leq_Y), \cdot_Y, *_Y, 0_Y)$ be two pseudo-UP algebras. A map $f : X \to Y$ is a pseudo-UP homomorphism if

$$f(x \cdot y) = f(x) \cdot_Y f(y)$$
 and $f(x * y) = f(x) *_Y f(y)$,

for all $x, y \in X$. Moreover, f is a pseudo-UP isomorphism if it is bijective.

In the remainder of this section, we recall some topological concepts from [5]. By (X, τ) or X we mean a topological space. A space X is a compact if every open cover of X has a finite subcover. Also, A space X is a connected if and only if ϕ and X are only clopen sets in τ . Let A be a subset X, the closure of A is defined by $cl(A) = \{x \in X : \forall O \in \tau \text{ such that } x \in O, O \cap A \neq \phi\}$. The set of all interior points of A defined by $int(A) = \bigcup \{O : O \in \tau \text{ and } O \subseteq A\}$. Let $f : (X, \tau) \to (Y, \tau_Y)$ be a function, then f is a continuous if the inverse image of every open set in Y is an open set X. Also, f is an open map if the image of every open set in X is an open set in Y. A topological space (X, τ) is called:

- 1. T₀ if for each two distinct point $x, y \in X$, there exists an open set U containing one of them but not the other;
- T₁ if for each two distinct point x, y ∈ X, there exist two open sets U and V such that U containing x but not y and V containing y but not x;
- 3. T₂ if for each two distinct point $x, y \in X$, there exist two disjoint open sets U and V containing x and y, respectively.

Definition 2.9 ([10]). A UP-algebra (X, *, 0) equipped with a topology τ is called a topological UP-algebra (for short TUP-algebra) if for each open set O containing x * y, there exist two open sets U and V containing x and y, respectively such that $U * V \subseteq O$.

3. Topological pseudo-UP algebras

In this section, we introduce the concept of a topological pseudo-UP algebras and establish some of its properties.

Definition 3.1. A pseudo-UP algebra $((X, \leq), \cdot, *, 0)$ equipped with a topology τ is called a topological pesudo-UP algebra (for short TPUP-algebra) if for each open set O containing $x \cdot y$ and for each open set W containing x * y, there exist two open sets U_1 and V_1 (U_2 and V_2) containing x and y, respectively such that $U_1 \cdot V_1 \subseteq O$ and $U_2 * V_2 \subseteq W$ for all $x, y \in X$.

Lemma 3.2. A pseudo-UP algebra $((X, \leq), \cdot, *, 0)$ equipped with a topology τ is a TPUP-algebra if and only if for each open set O containing $x \cdot y$ and for each open set W containing x * y, there exist two open sets U and V containing x and y, respectively such that $U \cdot V \subseteq O$ and $U * V \subseteq W$ for all $x, y \in X$.

Lemma 3.3. If a pseudo-UP algebra $((X, \leq), \cdot, *, 0)$ equipped with a topology τ is a TPUP-algebra, then for each open set O containing $x \cdot y$ and x * y, there exist two open sets U and V containing x and y, respectively such that $U \cdot V \subseteq O$ and $U * V \subseteq O$ for all $x, y \in X$.

The converse of Lemma 3.3 may not be true. But whenever $x \cdot y = x * y$ for all $x, y \in X$, then the converse is also true.

Lemma 3.4. A pseudo-UP algebra $((X, \leq), \cdot, *, 0)$ equipped with a topology τ is a TPUP algebra, if the two binary operations \cdot and * are continuous (i.e., the inverse image of every open set containing either $x \cdot y$ or x * y is an open set in $X \times X$ for all $x, y \in X$).

Lemma 3.5. If a pseudo-UP algebra $((X, \leq), \cdot, *, 0)$ equipped with a topology τ is a TPUP-algebra and if O_1 and O_2 are two open sets containing $x \cdot y$ and x * y, respectively, then $(\cdot^{-1})(O_1)$ and $(*^{-1})(O_2)$ are open sets in $X \times X$ for all $x, y \in X$. Hence, $(\cdot^{-1})(O_1) \cap (*^{-1})(O_2)$ is an open set in $X \times X$.

Example 3.6. Let $X = \{0, a, b, c\}$ with two binary operations \cdot and * defined in Table 2. Then $((X, \leq), \cdot, *, 0)$ is a pseudo-UP algebra [7]. Now, if we take the topology $\tau = \mathcal{P}(X)$ on X then it is not difficult to check that the pseudo-UP algebra $((X, \leq), \cdot, *, 0)$ equipped with the topology τ is a TPUP-algebra.

	0	а	b	C
	0	а	b	с
a	0	0	0	0
2	0	а	0	С
C	0	а	b	0

Table 2: Topological pseudo-UP algebra.

Remark 3.7. If a topological pseudo-UP algebra X satisfies $x * y = x \cdot y$ for all $x, y \in X$, then X is a topological UP-algebra.

Proposition 3.8. Let A and B be any two subsets of a TPUP-algebra X, then the following statements hold:

- 1. $cl(A) \cdot cl(B) \subseteq cl(A \cdot B)$ and $cl(A) * cl(B) \subseteq cl(A * B)$;
- 2. *if* $cl(A) \cdot cl(B)$ *and* cl(A) * cl(B) *are closed sets, then* $cl(A) \cdot cl(B) = cl(A \cdot B)$ *and* cl(A) * cl(B) = cl(A * B).

Proof.

1. Let $x \in cl(A) \cdot cl(B)$, $y \in cl(A) * cl(B)$ and O, W be two open sets containing x and y, respectively such that $x = a \cdot b$ and y = a * b where $a \in cl(A)$ and $b \in cl(B)$. Since X is a TPUP-algebra, then there exist two open sets U and V containing a and b, respectively such that $U \cdot V \subseteq O$ and $U * V \subseteq W$. Also, we have $a \in cl(A)$ and $b \in cl(B)$, so $A \cap U \neq \phi$ and $B \cap V \neq \phi$. Suppose that $a_1 \in A \cap U$ and $b_1 \in B \cap V$, then $a_1 \cdot b_1 \in U \cdot V \subseteq O$ and $a_1 * b_1 \in U * V \subseteq W$. Therefore, $x \in cl(A \cdot B)$ and $x \in cl(A * B)$. Hence, $cl(A) \cdot cl(B) \subseteq cl(A \cdot B)$ and $cl(A) * cl(B) \subseteq cl(A * B)$.

2. Suppose that $cl(A) \cdot cl(B)$ and cl(A) * cl(B) are closed sets. Since $A \cdot B \subseteq cl(A) \cdot cl(B)$ and $A * B \subseteq cl(A) * cl(B)$, then $cl(A \cdot B) \subseteq cl(cl(A) \cdot cl(B)) = cl(A) \cdot cl(B)$, $cl(A * B) \subseteq cl(cl(A) * cl(B)) = cl(A) * cl(B)$ and from part (1) we get $cl(A) \cdot cl(B) = cl(A \cdot B)$ and cl(A) * cl(B) = cl(A * B).

The following example shows that the equality in Proposition 3.8 may not be true and $cl(A) \cdot cl(B)$, cl(A) * cl(B) are not closed sets in general.

Example 3.9. Let $X = \{0, a, b, c\}$ with two binary operations \cdot and * defined by Table 3.

•	0	а	b	C	*	0	a	b	
0	0	а	b	С		0	a	b	
а	0	0	b	С	a	0	0	b	
b	0	а	0	С	b	0	0	0	
С	0	а	b	0		0	a	b	

Table 3: TPUP-algebra that does not satisfy the equality of the proposition 3.8.

It is clear that $((X, \leq), \cdot, *, 0)$ is a pseudo-UP algebra. Now, let $\tau = \{\varphi, \{a\}, \{b\}, \{a, b\}, \{0, c\}, \{0, a, c\}, \{0, b, c\}, X\}$ then it is not difficult to check that the pseudo-UP algebra $((X, \leq), \cdot, *, 0)$ equipped with the topology τ is a TPUP-algebra. Moreover, let $A = \{a\}$ and $B = \{a, b\}$ then $cl(A) = \{a\}, cl(B) = \{a, b\}, cl(A \cdot B) = cl(\{0, b\}) = \{0, b, c\}$ and $cl(A * B) = cl(\{0, b\}) = \{0, b, c\}$. Therefore, $cl(A) \cdot cl(B) = \{0, b\}$ and $cl(A * B) = cl(\{A \cdot B\}) = cl(\{A \cdot$

Proposition 3.10. Let $((X, \leq), \cdot, *, 0, \tau)$ be a TPUP-algebra and $\phi \neq W \in \tau$, then the following statements hold.

1. If $x \in W$, then there exists an open set U containing 0 such that $U \cdot x \subseteq W$ and $U * x \subseteq W$.

- 2. If $0 \in W$, then there exists an open set U containing x such that $U \cdot U \subseteq W$ and $U * U \subseteq W$.
- 3. If $0 \in W$, then there exist two open sets U and V containing x and 0, respectively such that $(U \cdot V) * V \subseteq W$ and $(U * V) \cdot V \subseteq W$.
- 4. If $0 \in W$, then there exist two open sets U and V containing x and y, respectively such that $U \cdot (V * U) \subseteq W$ and $U * (V \cdot U) \subseteq W$.

1. Obvious.

2. Let $0 \in W$ and $x \in X$. Since $x \cdot x = 0 \in W$, $x * x = 0 \in W$ and X is a TPUP-algebra, then there exist two open sets G and H containing x such that $G \cdot H \subseteq W$ and $G * H \subseteq W$. Suppose that $U = G \cap H$, then U is an open set containing x. Hence, $U \cdot U \subseteq W$ and $U * U \subseteq W$.

3. Let $0 \in W$ and $x \in X$. Since $(x * 0) \cdot 0 = 0$, $(x \cdot 0) * 0 = 0$ and X is a TPUP-algebra, then there exists an open set G containing x * 0, $x \cdot 0$ and an open set V_1 containing 0 such that $G \cdot V_1 \subseteq W$ and $G * V_1 \subseteq W$. Again, since X is a TPUP-algebra, then there exist two open sets U and V_2 containing x and 0, respectively such that $U \cdot V_2 \subseteq G$ and $U * V_2 \subseteq G$. Let $V = V_1 \cap V_2$, then V is an open set containing 0. Therefore, $(U \cdot V) * V \subseteq G * V \subseteq W$ and $(U * V) \cdot V \subseteq G \cdot V \subseteq W$.

Let $0 \in W$ and $x, y \in X$. Since $x \leq y * x$, $x \leq y \cdot x$ and X is a TPUP-algebra, then there exist three open sets U_1 , G and H containing x, y * x and $y \cdot x$, respectively such that $U_1 \cdot G \subseteq W$ and $U_1 * H \subseteq W$. Again, since X is a TPUP-algebra, then there exist two open sets V and U_2 containing y and x, respectively such that $V \cdot U_2 \subseteq H$ and $V * U_2 \subseteq G$. Let $U = U_1 \cap U_2$, then U is an open set containing x. Therefore, $U \cdot (V * U) \subseteq U \cdot G \subseteq W$ and $U * (V \cdot U) \subseteq U * H \subseteq W$.

Proposition 3.11. *In a TPUP-algebra X, {0} is an open set if and only if X is a discrete topology.*

Proof. Let {0} be an open set in X. Since $x \cdot x = 0 \in \{0\}$, $x * x = 0 \in \{0\}$ and X is a TPUP-algebra, then by Proposition 3.10, for each $x \in X$ there exists an open set U containing x such that $U \cdot U \subseteq \{0\}$ and $U * U \subseteq \{0\}$. Now, if $x \neq y$ and $y \in U$ then $x \leq y$ and $y \leq x$ which is a contradiction. Hence, $U = \{x\}$ implies that $\{x\}$ is open for each $x \in X$.

Conversely, Let X be a discrete topology. Then $\{0\}$ is an open set in X.

Note that in Example 3.9, $\{0\}$ is not an open set and (X, τ) is not a discrete topology.

Corollary 3.12. In a TPUP-algebra X, if $\{0\}$ is an open set, then (X, τ) is a disconnected space.

The converse of Corollary 3.12 may not be true in general. In Example 3.9, every element of τ is a clopen set. Therefore, (X, τ) is a disconnected space and $\{0\}$ is not an open set.

Proposition 3.13. *In a TPUP-algebra* X*,* {0} *is a closed set if and only if* X *is a* T₂*.*

Proof. Suppose that {0} is a closed set in X and let $x, y \in X$ such that $x \neq y$. Hence, we have $x \notin y$ or $y \notin x$ if we assume that $x \notin y$. Then $\{0\}^c$ is an open set containing $x \cdot y$ and x * y. Since X is a TPUP-algebra, then there exist two open sets U and V containing x and y, respectively such that $U \cdot V \subseteq \{0\}^c$ and $U * V \subseteq \{0\}^c$. We claim that $U \cap V = \phi$. If $U \cap V \neq \phi$, then there is $z \in U \cap V$, so $0 = z \cdot z \in U \cdot V \subseteq \{0\}^c$ and $0 = z * z \in U * V \subseteq \{0\}^c$ which is a contradiction. Hence (X, τ) is a T₂.

The converse is obvious.

Proposition 3.14. *In a TPUP-algebra* $((X, \leq), \cdot, *, 0, \tau)$ *, the following statements are equivalent:*

- 1. *X* is a T₀;
- 2. X is a T₁;
- 3. X is a T₂.

(1) \implies (2): Suppose that X is a T₀ and $x, y \in X$ such that $x \neq y$. Thus, we have $x \nleq y$ or $y \nleq x$ without loss of generality. Assume that $x \nleq y$, then we have two cases.

Case 1: There exists an open set *W* containing either $x \cdot y$ or x * y but not {0}. Since *X* is a TPUP-algebra, then there exist two open sets U and V containing x and y, respectively such that $U \cdot V \subseteq W$ or $U * V \subseteq W$. But $0 \notin W$, then $0 \notin U \cdot V$ and $0 \notin U * V$. If $U \cap V \neq \phi$, then there is $z \in U \cap V$. Hence, $0 = z \cdot z \in U \cdot V \subseteq W$ and $0 = z * z \in U * V \subseteq W$ which is a contradiction. Therefore, $y \notin U$.

Case 2: There exists an open *W* containing 0 but not $x \cdot y$ and x * y. Since $x \leq x$ and X is a TPUPalgebra, then there exist two open sets U and V containing x such that $U \cdot V \subseteq W$ and $U * V \subseteq W$. But $x \cdot y, x * y \notin W$, then $x \cdot y \notin U \cdot V$ and $x * y \notin U * V$. Therefore, $y \notin V$.

(2) \implies (3): Suppose that X is a T₁, then {0} is a closed set. Therefore, by Proposition 3.13, X is a T₂. \Box

Proposition 3.15. Every open pseudo-UP subalgebra S of a TPUP-algebra X is also a TPUP-algebra.

Proof. Let $x, y \in S$, and let O, W be any two open sets in S containing $x \cdot y$ and x * y, respectively. Since S is an open set in X, then O and W are two open sets in X also. Since X is a TPUP-algebra, then there exist two open sets U and V in X containing x and y, respectively such that $U \cdot V \subseteq O$ and $U * V \subseteq O$. Hence, $U \cap S = G$ and $V \cap S = H$ are open sets in S containing x and y, respectively such that $G \cdot H \subseteq O$ and $G * H \subseteq W$. Therefore, S is a TPUP-algebra.

Proposition 3.16. Let S be a pseudo-UP subalgebra of a TPUP-algebra X, then cl(S) is a pseudo-UP subalgebra.

Proof. Let $x, y \in cl(S)$ and W be an open set containing $x \cdot y$. Since X is a TPUP-algebra, then there exist two open sets U and V containing x and y, respectively such that $U \cdot V \subseteq W$. Since $x, y \in cl(S)$, then there are points $a \in U \cap S \neq \phi$ and $b \in V \cap S \neq \phi$. Since $a, b \in S$ and S is a pseudo-UP subalgebra of X, then $a \cdot b \in W \cap S \neq \phi$. Since W be any open set containing $x \cdot y$, then $x \cdot y \in cl(S)$. By similar statements we can prove that $x * y \in cl(S)$. This implies that cl(S) is a pseudo-UP subalgebra.

Proposition 3.17. Let $((X, \leq), \cdot, *, 0, \tau)$ be a TPUP-algebra and M_0 be the minimal open set containing 0. If $x \in M_0$, then M_0 is the minimal open set containing x.

Proof. Suppose that $x \in M_0$ and W is any open set containing x. Since $0 \cdot x = x$, 0 * x = x and X is a TPUPalgebra, then there exist two open sets U and V containing 0 and x, respectively such that $U \cdot V \subseteq W$ and $U * V \subseteq W$. Since U is an open set containing 0, it follows from assumption that $0 = x \cdot x \in M_0 \cdot V \subseteq$ $U \cdot V \subseteq W$ and $0 = x * x \in M_0 * V \subseteq U * V \subseteq W$. Therefore, W is an open set containing 0. Then by assumption $M_0 \subseteq W$. Hence, M_0 is the minimal open set containing x.

Lemma 3.18. Let $((X, \leq), \cdot, *, 0, \tau)$ be a TPUP-algebra and let $\tau^* = \tau \setminus \{\varphi\}$. If $0 \in \bigcap_{U \in \tau^*} U$, then $V \subseteq V \cdot V$ and $V \subseteq V * V$ for all $V \in \tau^*$.

Proof. If $x \in V$, then $0 \in V$ and we have $x = 0 \cdot x \in V \cdot V$ and $x = 0 * x \in V * V$. Hence the proof. \Box

Proposition 3.19. Let $((X, \leq), \cdot, *, 0, \tau)$ be a TPUP-algebra. If $0 \in \bigcap_{U \in \tau^*} U$, then $B \subseteq X$ is an open set if and only if 0 is an interior point of B.

Proof. If B is an open set, clearly 0 is an interior point of B. Conversely, let 0 be an interior point of B. Since $x \cdot x = 0$ and x * x = 0, then there exists an open set W containing 0 such that $x \cdot x = 0 \in W \subseteq B$ and $x * x = 0 \in W \subseteq B$. Since X is a TPUP-algebra, then there exists an open set V containing x such that $V \cdot V \subseteq W$ and $V * V \subseteq W$. By assumption, $0 \in V$, and so by Lemma 3.18, $x \in V \subseteq V \cdot V \subseteq W \subseteq B$ and $x \in V \subseteq V * V \subseteq W \subseteq B$. This shows that x is an interior point of B.

Proposition 3.20. *Let* $((X, \leq), \cdot, *, 0, \tau)$ *be a TPUP-algebra and* \mathcal{F} *be a pseudo-UP filter of a pseudo-UP algebra* X*, then the following statements hold.*

- 1. 0 is an interior point of \mathcal{F} if and only if \mathcal{F} is an open set in X.
- 2. If \mathcal{F} is an open set in X, then \mathcal{F} is a closed set in X.
- 3. If M_0 is a minimal open set containing 0 and \mathcal{F} is a closed set in X, then \mathcal{F} is an open set in X.

1. Suppose that 0 is an interior point of \mathcal{F} , then there exists $W \in \tau$ such that $0 \in W \subseteq \mathcal{F}$. Let $x \in \mathcal{F}$. Since $x \cdot x = 0 \in W$, $x * x = 0 \in W$ and X is a TPUP-algebra, then there exist two open sets U and V containing x such that $U \cdot V \subseteq W \subseteq \mathcal{F}$ and $U * V \subseteq W \subseteq \mathcal{F}$. To prove that $V \subseteq \mathcal{F}$, let $y \in V$ then $x \cdot y \in U \cdot V \subseteq W \subseteq \mathcal{F}$ and $x * y \in U * V \subseteq W \subseteq \mathcal{F}$. Since $x \in \mathcal{F}$ and \mathcal{F} is a pseudo-UP filter of X, then $y \in \mathcal{F}$ and so $V \subseteq \mathcal{F}$. Hence, \mathcal{F} is an open set in X.

2. Suppose that \mathcal{F} is an open set in X and let $x \in \mathcal{F}^c$. Since $x \cdot x = 0$, x * x = 0 and X is a TPUP-algebra, then there exist two open sets U and V containing x such that $U \cdot V \subseteq \mathcal{F}$ and $U * V \subseteq \mathcal{F}$. If $U \notin \mathcal{F}^c$, then $s \in U$ for some $s \in \mathcal{F}$. Therefore, $s \cdot y \in \mathcal{F}$ and $s * y \in \mathcal{F}$ for all $y \in V$. Since $s \in \mathcal{F}$ and \mathcal{F} is a pseudo-UP filter of X, then $y \in \mathcal{F}$ and so $V \subseteq \mathcal{F}$. Thus, $x \in \mathcal{F}$ which is a contradiction. Hence, $U \subseteq \mathcal{F}^c$ and so \mathcal{F}^c is an open set in X. Therefore, \mathcal{F} is a closed set in X.

3. Suppose that M_0 is a minimal open set containing 0 and \mathcal{F} is a closed set in X. Hence, \mathcal{F}^c is an open set in X. Assume that \mathcal{F} is not an open set in X, then by (1) we have 0 is not an interior point of \mathcal{F} . Thus, $U \not\subseteq \mathcal{F}$ for all open sets U containing 0. Therefore, $M_0 \not\subseteq \mathcal{F}$ and so $M_0 \cap \mathcal{F}^c \neq \phi$, then there exists $x \in M_0 \cap \mathcal{F}^c$. By Proposition 3.17, $M_0 \subseteq \mathcal{F}^c$ and so $0 \in \mathcal{F}^c$ which is a contradiction. Hence, \mathcal{F} is an open set in X.

Proposition 3.21. Let $((X, \leq), \cdot, *, 0, \tau)$ be a TPUP-algebra and M_0 be the minimal open set containing 0, then M_0 is a pseudo-UP filter of X.

Proof. Let $x, x \cdot y, x * y \in M_0$. By Proposition 3.17, M_0 is the minimal open set containing x. Since $x \cdot y, x * y \in M_0$ and X is a TPUP-algebra, then there exist two open sets U and V containing x and y, respectively such that $U \cdot V \subseteq M_0$ and $U * V \subseteq M_0$. Thus, $y = 0 \cdot y \in M_0 \cdot V \subseteq U \cdot V \subseteq M_0$ and $y = 0 * y \in M_0 * V \subseteq U * V \subseteq M_0$. Hence, M_0 is a pseudo-UP filter of X.

Proposition 3.22. Let $((X, \leq), \cdot, *, 0, \tau)$ be a TPUP-algebra and M_x, M_y be two minimal open sets containing x, y, respectively. If $x \cdot y, x * y \notin M_0$, then $y \notin M_x$ and $x \notin M_y$ where $x \neq 0$ and $y \neq 0$.

Proof. Suppose that $y \in M_x$, then $\{x, y\} \subseteq M_x$. Since $x \cdot y \in M_{x \cdot y}$, $x * y \in M_{x * y}$ and X is a TPUP-algebra, then there exist two open sets U_1 and U_2 containing x and y, respectively such that $U_1 \cdot U_2 \subseteq M_{x \cdot y}$ and $U_1 * U_2 \subseteq M_{x * y}$. Hence, we have $y \in M_x \subseteq U_1$, $y \in M_y \subseteq U_2$ and thus $0 = y \cdot y \in M_x \cdot M_y \subseteq M_{x \cdot y}$ and $0 = y * y \in M_x * M_y \subseteq M_{x * y}$. Pick $z = x \cdot y$ and z = x * y. Since $z \cdot z = 0 \in M_0$ and $z * z = 0 \in M_0$, then there exist two open sets V_1 and V_2 containing z such that $V_1 \cdot V_2 \subseteq M_0$ and $V_1 * V_2 \subseteq M_0$. Therefore, $0 \cdot z \in M_z \cdot M_z \subseteq V_1 \cdot V_2 \subseteq M_0$ and $0 * z \in M_z * M_z \subseteq V_1 * V_2 \subseteq M_0$. Hence, $x \cdot y = z \in M_0$ and $x * y = z \in M_0$ which is a contradiction. Similarly, $x \notin M_y$.

Definition 3.23. Let B be a non-empty subset of a pseudo-UP algebra X and $a \in X$. The subsets $_{a}B$ and B_{a} are defined as follows: $_{a}B = \{x \in X : a \cdot x \in B \text{ and } a * x \in B\}$ and $B_{a} = \{x \in X : x \cdot a \in B \text{ and } x * a \in B\}$. If $A \subseteq X$, then

$$_{A}B = \bigcup_{a \in A} _{a}B$$
 and $B_{A} = \bigcup_{a \in A} B_{a}.$

Proposition 3.24. *Let* X *be any pseudo-UP algebra and* A, B, C, F *be non-empty subsets of* X, *then the following statements hold.*

- 1. If $B \subseteq C$, then $_AB \subseteq _AC$ and $B_A \subseteq C_A$.
- 2. If $F \subseteq X$, then $({}_{a}F)^{c} = {}_{a}(F^{c})$ and $(F_{a})^{c} = (F^{c})_{a}$ for all $a \in X$.

Proposition 3.25. *Let* B *and* F *be two non-empty subsets of a TPUP-algebra* X*, then the following statements hold for all* $a \in X$ *.*

- 1. If B is an open set, then B_a and $_aB$ are open sets.
- 2. If F is a closed set, then F_a and $_aF$ are closed sets.

Proof.

1. Let B be an open set, and for any $a \in X$ let $x \in B_a$. Then, $x \cdot a \in B$ and $x * a \in B$. Since X is a TPUP-algebra, then there exist two open sets U and V containing x and a, respectively such that $U \cdot V \subseteq B$ and $U * V \subseteq B$, which implies that $x \cdot a \in U_a \subseteq B$ and $x * a \in U_a \subseteq B$, and so $U \cdot a \subseteq B$ and $U * a \subseteq B$. Thus, $x \in U \subseteq B_a$. Therefore, B_a is an open set. By similar statements we can prove $_aB$ is an open set.

2. The proof follows from Proposition 3.24 and part (1).

Definition 3.26. A TPUP-algebra X is called a transitive open TPUP-algebra, if the right maps are both continuous and open.

For a fixed element s of a TPUP-algebra X, define the right maps $R_s : X \to X$ by $R_s(x) = x \cdot s$ and $r_s : X \to X$ by $r_s(x) = x * s$ for all $x \in X$.

Proposition 3.27. In a TPUP-algebra X, the right maps are continuous.

Proof. Let $s \in X$, define the right maps $R_s : X \to X$ by $R_s(x) = x \cdot s$ and $r_s : X \to X$ by $r_s(x) = x * s$ for all $x \in X$. Let W be an open set containing $R_s(x)$ and $r_s(x)$. Since X is a TPUP-algebra, then there exist two open sets U and V containing x and s, respectively such that $U \cdot V \subseteq W$ and $U * V \subseteq W$. Clearly, $U \cdot s \subseteq W$ and $U * s \subseteq W$. Hence, $R_s(U) \subseteq W$ and $r_s(U) \subseteq W$. Therefore, R_s and r_s are continuous.

Proposition 3.28. Let U be an open set in a transitive open TPUP-algebra X, then the following statements hold.

- 1. $R_s(U) = U \cdot s$ and $r_s(U) = U * s$ are open sets in X.
- 2. $R_s^{-1}(U) = \{x \in X | x \cdot s = R_s(x)\}$ and $r_s^{-1}(U) = \{x \in X | x \cdot s = r_s(x)\}$ are open sets in X.
- 3. $U \cdot V$ and U * V are open sets in X.

Proof.

1. Let $s \in X$. Since the right maps R_s and r_s are open and U is an open set, then $R_s(U)$ and $r_s(U)$ are open sets in X.

2. Let $s \in X$. Since the right maps R_s and r_s are continuous, then $R_s^{-1}(U)$ and $r_s^{-1}(U)$ are open sets in X. 3. Since $U \cdot V = \bigcup_{s \in V} (U \cdot s)$ and $U * V = \bigcup_{s \in V} (U * s)$, then by (1) we get $U \cdot V$ and U * V are open sets in X.

Proposition 3.29. *Let* F *and* P *be two disjoint subsets of a TPUP-algebra* X. *If* F *is a compact set,* P *is a closed set and the right maps are open from* X *to* X*, then there exists an open set* U *containing* 0 *such that* $(U \cdot F) \cap P = \phi$ *and* $(U * F) \cap P = \phi$.

Proof. Let $x \in F \subseteq X \setminus P$. Since $0 * (0 \cdot x) = x \in X \setminus P$, $0 \cdot (0 * x) = x \in X \setminus P$ and X is a TPUP-algebra, then there exists an open set U_0 containing 0 and an open set V containing $0 \cdot x$ and 0 * x such that $U_0 * V \subseteq X \setminus P$ and $U_0 * V \subseteq X \setminus P$. Also, there exists an open set U_1 containing 0 such that $U_1 \cdot x \subseteq V$ and $U_1 * x \subseteq V$. If $U_x = U_0 \cap U_1$, then U_x is an open set containing 0 and $U_x * (U_x \cdot x) \subseteq U_0 * V \subseteq X \setminus P$, $U_x \cdot (U_x * x) \subseteq U_0 \cdot V \subseteq X \setminus P$. Since the right maps are open, then $C = \{U_x \cdot x : x \in F\}$ and $C = \{U_x * x : x \in F\}$ are open cover of the compact set F. Therefore, there exist $U_{x_1} \cdot x_1, \dots, U_{x_n} \cdot x_n \in C$ and $U_{x_1} * x_1, \dots, U_{x_n} * x_n \in C$ such that

$$F \subseteq \bigcup_{i=1}^{n} (U_{x_{i}} \cdot x_{i}) \text{ and } F \subseteq \bigcup_{i=1}^{n} (U_{x_{i}} * x_{i}).$$

Suppose that $U = \bigcap_{i=1}^{n} (U_{x_i})$, then U is an open set containing 0 such that for all $y \in F$, $y \in U_{x_i} \cdot x_i$, $y \in U_{x_i} * x_i$ for some x_i and

$$\mathbf{U} \ast \mathbf{y} \subseteq \mathbf{U} \ast (\mathbf{U}_{\mathbf{x}_{i}} \cdot \mathbf{x}_{i}) \subseteq \mathbf{U}_{0} \ast \mathbf{V} \subseteq \mathbf{X} \setminus \mathbf{P},$$

and

$$\mathbf{U} \cdot \mathbf{y} \subseteq \mathbf{U} \cdot (\mathbf{U}_{\mathbf{x}_{i}} \ast \mathbf{x}_{i}) \subseteq \mathbf{U}_{0} \cdot \mathbf{V} \subseteq \mathbf{X} \setminus \mathbf{P}.$$

Hence, we obtain that $(U \cdot F) \cap P = \phi$ and $(U * F) \cap P = \phi$.

Proposition 3.30. Let $((X, \leq), \cdot, *, 0_X, \tau_X)$, and $((Y, \leq_Y), \cdot_Y, *_Y, 0_Y, \tau_Y)$ be two transitive open TPUP-algebras and $f: X \to Y$ be a pseudo-UP homomorphism. If f is a continuous map at 0_X , then f is a continuous on X.

Proof. Let $x \in X$ and W be an open set containing y = f(x). Since the right maps on Y are continuous, then there exists an open set V containing 0_Y such that $R_y(V) = V \cdot_Y y \subseteq W$ and $r_y(V) = V *_Y y \subseteq W$. Since f is a continuous at 0_X , then there exists an open set U containing 0_X such that $f(U) \subseteq V$. Since the right maps on X are open, then $0 \cdot x = x \in U \cdot x$ and $0 * x = x \in U * x$ are open sets containing x. Now, we have

$$f(U \cdot x) = f(U) \cdot_Y f(x) = f(U) \cdot_Y y \subseteq V \cdot_Y y \subseteq W,$$

and

$$f(U * x) = f(U) *_Y f(x) = f(U) *_Y y \subseteq V *_Y y \subseteq W.$$

This proves that f is a continuous at x. Since x is any arbitrary element in X, then f is a continuous on X. \Box

Proposition 3.31. Suppose that X, Y, and Z are tansitive open TPUP-algebras and $\psi : X \to Y$, $\xi : X \to Z$ are pseudo-UP homomorphisms such that $\xi(X) = Z$ and Ker $\xi \subseteq$ Ker ψ , then there exists a pseudo-UP homomorphism $f : Z \to Y$ such that $\psi = f \circ \xi$. Also, for each open set U containing 0_Y , there exists an open set V containing 0_Z such that $\xi^{-1}(V) \subseteq \psi^{-1}(U)$, then f is a continuous.

Proof. Suppose that U is an open set containing 0_Y . By assumption, there exists an open set V containing 0_Z such that

$$\xi^{-1}(V) \subseteq \psi^{-1}(U)$$

Therefore,

$$\psi(\xi^{-1}(V)) \subseteq \psi(\psi^{-1}(U)),$$

and thus

 $f(V) \subseteq U$.

Hence, f is a continuous map at 0_Z . By Proposition 3.30, we get f is a continuous.

Definition 3.32. Let($(X, \leq), \cdot, *, 0_X, \tau_X$), and $((Y, \leq_Y), \cdot_Y, *_Y, 0_Y, \tau_Y)$ be two TPUP-algebras. A map $f : X \to Y$ is called a topological pseudo-UP homomorphism if:

1. f is a pseudo-UP homomorphism;

2. f is a contininuous.

Proposition 3.33. Let $((X, \leq), \cdot, *, 0_X, \tau_X)$ and $((Y, \leq_Y), \cdot_Y, *_Y, 0_Y, \tau_Y)$ be two transitive open TPUP-algebras, and $f: X \to Y$ be a pseudo-UP homomorphism. Then the following statements hold.

- 1. for every open set H containing 0_Y , there exists an open set G containing 0_X such that $f(G) \subseteq H$. Then f is a continuous and hence f is a topological pseudo-UP homomorphism.
- 2. for every open set G containing 0_X , there exists an open set H containing 0_Y such that $H \subseteq f(G)$. Then, f is an open map.

88

1. Suppose that V is an open set in Y. If $V \cap Im(f) = \phi$, then $f^{-1}(V) = \phi$ is an open set in X. Let $V \cap Im(f) \neq \phi$ and $x \in f^{-1}(V)$, then $y := f(x) \in V \cap Im(f)$. By Proposition 3.28, $R_y^{-1}(V) = \{b \in Y | b \cdot_Y y = R_y(b) \in V\}$ and $r_y^{-1}(V) = \{b \in Y | b \cdot_Y y = r_y(b) \in V\}$ are open sets in Y. Let $v \in H := R_y^{-1}(V) \cap r_y^{-1}(V)$. Therefore, $0_Y \cdot_Y y = y \in V$ and $0_Y *_Y y = y \in V$ and thus $0_Y \in H$. By assumption, there exists an open set G containing 0_X such that $f(G) \subseteq H$. Since the right maps are open, then $G \cdot x$ and G * x are open sets in X. Thus, $x = 0_X \cdot x \in G \cdot x$ and $x = 0_X * x \in G * x$. Since $v \cdot_Y y \in H \cdot_Y y$ and $v *_Y y \in H *_Y y$, then $v \cdot_Y y \in V$ and $v *_Y y \in V$ and hence $H \cdot_Y y \subseteq V$ and $H *_Y y \subseteq V$. Now, $f(G \cdot x) = f(G) \cdot_Y f(x) = f(G) \cdot_Y y \subseteq H \cdot_Y y \subseteq V$ and $f(G * x) = f(G) *_Y f(x) = f(G) *_Y y \subseteq H *_Y y \subseteq V$. Thus, $x \in G \cdot x \subseteq f^{-1}(f(G \cdot x)) \subseteq f^{-1}(V)$ and $x \in G * x \subseteq f^{-1}(f(G * x)) \subseteq f^{-1}(V)$. This implies that $f^{-1}(V)$ is an open set in X. Hence, f is a continuous and hence f is a topological pseudo-UP homomorphism.

2. Suppose that U is an open set in X and let $y \in f(U)$. Then, y = f(x) for some $x \in U$. Since the right maps are continuous, then $R_x^{-1}(U) = \{a \in X | a \cdot x = R_x(a) \in U\}$ and $r_x^{-1}(U) = \{a \in X | a \cdot x = r_x(a) \in U\}$ are open sets in X. Let $u \in G := R_x^{-1}(U) \cap r_x^{-1}(U)$. Therefore, $0_X \cdot x = x \in U$, $0_X \cdot x = x \in U$ and so $0_X \in G$. By assumption, there exists an open set H containing 0_Y such that $H \subseteq f(G)$. By Proposition 3.28, $H \cdot_Y y$ and $H *_Y y$ are open sets in Y. Thus, $y = 0_Y \cdot_Y y \in H \cdot_Y y$ and $y = 0_Y \cdot_Y y \in H *_Y y$. Since $u \cdot x \in G \cdot x$ and $u \cdot x \in G \cdot x$, then $u \cdot x \in U$ and $u \cdot x \in U$. Hence, $G \cdot x \subseteq U$ and $G \cdot x \subseteq U$. Therefore, $f(G \cdot x) \subseteq f(U)$ and $f(G \cdot x) \subseteq f(U)$. Now, $H \cdot_Y y = H \cdot_Y f(x) \subseteq f(G) \cdot_Y f(x) = f(G \cdot x) \subseteq f(U)$ and $H *_Y y = H *_Y f(x) \subseteq f(G) *_Y f(x) = f(G \cdot x) \subseteq f(U)$. Thus, $y \in H \cdot_Y y \subseteq f(U)$ and $y \in H *_Y y \subseteq f(U)$. This implies that f(U) is an open set in Y. Hence, f is an open map.

4. Conclusion

In this article, the concept of topological pseudo-UP algebra is introduced. Minimal open sets and some separation axioms (T_i -spaces i = 0, 1, 2) are discussed in such spaces. Several topological properties and relations among pseudo-UP algebras are obtained by using pseudo-UP homomorphisms. Moreover, this work can be extended into supra (infra) topological pseudo-UP algebras.

References

- [1] S. S. Ahn, S. H. Kown, On topological BCC-algebras, Comm. Korean Math. Sci., 23 (2008), 169–178. 1
- [2] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Topics, 5 (2017), 35–54. 1
- [3] D. S. Lee, D. N. Ryu, Notes on topological BCK-algebras, Sci. Math., 1 (1998), 231–235. 1
- [4] S. Mehrshad, J. Golzarpoor, On topological BE-algebras, Math. Morav., 21 (2017), 1–13. 1
- [5] W. J. Pervin, Foundations of General Topology, Academic Press, New York-London, (1964). 2
- [6] C. Prabpayak, U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna, 5 (2009), 54–57. 1
- [7] D. A. Romano, pseudo-UP algebras, An introduction, Bull. Int. Math. Virtual Inst., 10 (2020), 349–355. 2.1, 2.2, 2.3, 2.4, 3.6
- [8] D. A. Romano, pseudo-UP Ideals and pseudo-UP Filters in pseudo-UP Algebras, Math. Sci. Appl. E-Notes, 8 (2020), 155–158. 1, 2.5
- [9] D. A. Romano, Homomorphism of pseudo-UP algebras, Bull. Int. Math. Virtual Inst., 11 (2021), 47-53. 1, 2.8
- [10] A. Satirad, A. Iampan, Topological UP-algebras, Discuss. Math. Gen. Algebra Appl., 39 (2019), 231–250. 1, 2.9