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Abstract
Interval-valued functions have been recently used to accommodate data inexactness in optimization and decision theory.

In this paper, we consider the case of interval-valued vector optimization problems, and derive their relationships to interval
variational inequality problems, of both Stampacchia and Minty types. Using the concept of interval approximate convexity, we
establish necessary and sufficient optimality conditions for local strong quasi and approximate efficient solutions.
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1. Introduction

In various real-life problems in engineering and economic, the occurrence of imprecision in the data
which is taken from measurements or observations is inevitable. Therefore, in reason of simplicity and
confidentiality, one has to consider an objective function taking values as real intervals. In the literature,
numerous examples can be found where imprecision in real-life applications is modeled by the help of
a mathematical tool [7, 9, 15]. Recently, many researchers studied interval-valued vector optimization
problems. For instance, in order to characterize solutions of interval-valued programming problems, the
Karush-Kuhn-Tucker optimality conditions were obtained in [16–18]. Wolfe and Mond-Weir-type duality
were investigated for these problems in [10] where weak and strong duality results were provided.

On the other hand, a considerable and growing interest has been centered about studying the rela-
tionship between vector optimization problems and vector variational inequalities. In particular, many
results providing optimality conditions in terms of vector variational inequalities were proven for both
smooth and nonsmooth vector-valued objective functions; see [1, 2] for a current state-of-the-art. With re-
spect to interval-valued objective functions, Zhang et al. [18, 19] studied optimality conditions under the
assumption of LU-convexity introduced by Wu [16] as an extension of convexity for real-valued functions.

∗Corresponding author
Email addresses: mohsine.jennane@usmba.ac.ma (Mohsine Jennane), E.Kalmoun@aui.ma (El Mostafa Kalmoun),
lhouelfadil2@gmail.com (Lhoussain El Fadil)

doi: 10.22436/jmcs.026.01.06

Received: 2021-07-19 Revised: 2021-08-17 Accepted: 2021-08-23

http://dx.doi.org/10.22436/jmcs.026.01.06
http://dx.doi.org/10.22436/jmcs.026.01.06
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.026.01.06&domain=pdf


M. Jennane, E. M. Kalmoun, L. El Fadil, J. Math. Computer Sci., 26 (2022), 67–79 68

In this work, we adapt the concepts of approximate convexity [14] and generalized approximate con-
vexity [3] to interval-valued vector functions. Afterwards, we will use these concepts as a tool to es-
tablish optimality conditions for interval-valued vector optimization problems in terms of Stampacchia
and Minty vector variational inequalities using two solutions types: local strong quasi and approximate
efficient solutions.

The layout of this article is as follows. First, we recall in Section 2 some preliminary definitions. In
Section 3, basic properties and arithmetic for intervals are introduced. In Section 4, sufficient optimal-
ity conditions characterizing local strong quasi efficient solutions for interval-valued vector optimization
problems are established. In Section 5, sufficient and necessary optimality conditions are proved under
generalized approximate convexity assumptions using the concept of approximate vector variational in-
equalities. Finally, we provide an example in Section 6 illustrating the main results, and conclude our
work in Section 7.

2. Preliminaries

Throughout this paper, let Rn be the n-dimensional Euclidean space, Rn
+ be its nonnegative orthant

defined as follows
Rn

+ = {x = (x1, . . . , xn)T ∈ Rn, xi > 0, i = 1, ...n},

and X be a nonempty set in Rn. For all x0 ∈ Rn and δ > 0 we denote by B(x0, δ) the ball of radius δ
and center x0. For any x = (x1, . . . , xn)T and y = (y1, . . . ,yn)T in X, we say that x < y if xi < yi for all
i = 1, 2, . . . ,n, x 6 y if xi 6 yi for all i = 1, 2, . . . ,n except at least one index for which the inequality
holds strict, and x 5 y if xi 6 yi for all i = 1, 2, . . . ,n.

Definition 2.1 ([4]). A function φ : X → R is said to be locally Lipschitz at x0 ∈ X, if there are positive
constants k and δ satisfying for all x,y ∈ B(x0, δ)∩X

|φ(x) −φ(y)| 6 k‖x− y‖.

It is said to be locally Lipschitz on X if it is so at each x0 ∈ X.

Definition 2.2 ([4]). Let f : X→ Rm be a vector valued function such that its components fi : X→ R, i =
1, 2, . . . ,m are locally Lipschitz on X.

(i) If m = 1, then Clarke’s generalized subdifferential of f at x ∈ X is defined as

∂f(x) := {y ∈ Rn : f◦(x; v) > 〈y, v〉, ∀v ∈ Rn},

where f◦(x; v) is Clarke’s generalized directional derivative of f along v ∈ Rn at x ∈ X, which is
defined as

f◦(x, v) := lim sup
t↓0
y→x

f(y+ tv) − f(y)

t
.

(ii) If m > 1, then we define Clarke’s generalized Jacobian of f at x ∈ X to be the Cartesian product set

∂f(x) := ∂f1(x)× ∂f2(x)× . . .× ∂fm(x).

Let us recall the notions of approximate convexity which are provided in [3, 6, 14].

Definition 2.3. Let e > 0. A function f : X→ R is called

(i) approximate e-convex at x0 ∈ X, if there exists δ > 0 such that for all x,y ∈ B(x0, δ)∩X,

f(x) − f(y) > 〈ξ, x− y〉− e‖x− y‖, for all ξ ∈ ∂f(y);
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(ii) approximate pseudo e-convex of type I at x0 ∈ X, if there exists δ > 0 such that for any x,y ∈
B(x0, δ)∩X,

f(x) − f(y) < −e‖x− y‖ ⇒ 〈ξ, x− y〉 < 0, ∀ξ ∈ ∂f(y);

(iii) approximate pseudo e-convex of type II at x0 ∈ X if there exists δ > 0 such that for any x,y ∈
B(x0, δ)∩X,

f(x) − f(y) < 0 ⇒ 〈ξ, x− y〉+ e‖x− y‖ < 0, ∀ξ ∈ ∂f(y);

(iv) approximate quasi e-convex of type I at x0 ∈ X if there exists δ > 0 such that for any x,y ∈
B(x0, δ)∩X,

∃ξ ∈ ∂f(y) : 〈ξ, x− y〉− e‖x− y‖ > 0 ⇒ f(x) > f(y);

(v) approximate quasi e-convex of type II at x0 ∈ X if there exists δ > 0 such that for any x,y ∈
B(x0, δ)∩X,

∃ξ ∈ ∂f(y) : 〈ξ, x− y〉 > 0 ⇒ f(x) − f(y) > e‖x− y‖.

Remark 2.4. The relationship between the above concepts of convexity can be summarized as follows.

1. If f is approximate pseudo (resp. quasi) e-convex of type II at x0 ∈ X, then f is approximate pseudo
(resp. quasi) e-convex of type I at x0.

2. It is easy to see that any approximate e-convex function at x0 is approximate pseudo e-convex
function of type I and approximate quasi e-convex function of type I at x0.

3. There is no relation between approximate pseudo e-convex functions of type II and approximate
quasi e-convex functions of type II and approximate e-convex functions (see [6]).

3. Interval-valued vector functions

We first recall some basic arithmetic operations on real intervals, which are the same for general sets
(for more details on the topic of interval analysis, we refer to [12, 13]). Let us denote by IR the class of all
closed intervals in R, and let A = [aL,aU] and B = [bL,bU] be in IR. The sum and product are defined
by

A+B := {a+ b : a ∈ A, b ∈ B} = [aL + bL,aU + bU], A×B := {ab : a ∈ A, b ∈ B} = [minS, maxS],

where S := {aLbL,aLbU,aUbL,aUbU}. It is worth mentioning that any real number a can be regarded as
a closed interval Aa = [a,a] and for that the sum a+B means Aa +B.

From the above operations, we can define the multiplication of an interval with a real number α as

αA := {αa : a ∈ A} =

{
[αaL,αaU], if α > 0,
[αaU,αaL], if α < 0.

Note the special case of −A = {−a : a ∈ A} = [−aU,−aL]. Henceforth, the difference of two sets is defined
by

A−B := A+ (−B) = [aL − bU,aU − bL].

On the other hand, an order relation can be defined for intervals. We write A �LU B if aL 6 bL and
aU 6 bU. Also, we say A ≺LU B if A �LU B and A 6= B; that is, we have either aL < bL and aU 6 bU,
aL 6 bL and aU < bU, or aL < bL and aU < bU.

Following the partial order defined above, A and B are said to be comparable if A �LU B or A �LU

B. Henceforth, these two intervals are not comparable means either A ⊆ B or A ⊇ B. We call A =
(A1, . . . ,An) an interval-valued vector if for each k = 1, . . . ,n we have Ak = [aLk,aUk ] is a closed interval.
We consider two interval-valued vectors A = (A1, . . . ,An) and B = (B1, . . . ,Bn) such that Ak and Bk are
comparable for all k = 1, . . . ,n. We write
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• A �LU B if Ak �LU Bk for all k = 1, . . . ,n;

• A ≺LU B if Ak �LU Bk for all k = 1, . . . ,n, and Aj ≺LU Bj for at least one j.

An interval-valued function f : X → IR is defined by f(x) = [fL(x), fU(x)] for each x ∈ X, where
fL and fU are two real-valued functions on X satisfying fL(x) 6 fU(x). If f1, . . . , fm : X → IR are m
interval-valued functions, then we call f = (f1, . . . , fm) : X→ IRm an interval-valued vector function.

Definition 3.1 ([19]). An interval-valued function f = [fL, fU] : X→ IR is called locally Lipschitz at x0 ∈ X
with respect to the Hausdorff metric if there exist L > 0 and δ > 0 such that for any x,y ∈ B(x0, δ)∩X one
has

dH(f(x), f(y)) 6 L‖x− y‖,

where dH(f(x), f(y)) is the Hausdorff metric between f(x) and f(y) defined by

dH(f(x), f(y)) = max{| f(x)L − f(y)L |, | f(x)U − f(y)U |}.

f is locally Lipschitz on X if it is so at any x0 ∈ X.

Proposition 3.2 ([19]). If f = [fL, fU] : X→ IR is locally Lipschitz on X, then both fL and fU are locally Lipschitz
on X (as real-valued functions).

From now on, we take e = (e1, . . . , em) ∈
∫
(Rm

+ ). The following concept of generalized approximate
LU-e-convexity for nonsmooth interval-valued vector functions can be introduced.

Definition 3.3. Let f = (f1, . . . , fm) : X → IRm such that for each k ∈ {1, . . . ,m} one has fk = [fLk, fUk ] is a
locally Lipschitz interval-valued function.

(i) fk is approximate LU-ek-convex (respectively approximate pseudo LU-ek-convex of type II, approx-
imate quasi LU-ek-convex of type II) at x0 ∈ X, if and only if both fLk and fUk are approximate
ek-convex (respectively approximate pseudo ek-convex of type II, approximate quasi ek-convex of
type II) at x0.

(ii) f is approximate LU-e-convex (respectively approximate pseudo LU-e-convex of type II, approxi-
mate quasi LU-e-convex of type II) at x0 ∈ X, if and only if for all k ∈ {1, . . . ,m} we have fk is
approximate ek-convex (respectively approximate pseudo ek-convex, approximate quasi ek-convex)
at x0.

Remark 3.4. From Remark 2.4, it is easy to check that there is no relation between approximate pseudo LU-
e-convex functions of type II and approximate quasi LU-e-convex functions of type II and approximate
e-convex functions.

Example 3.5. Let f = [fL, fU] such that for all x ∈ R one has fL(x) = x3 − 2x2 and fU(x) = x3 − x2. An
easy calculation shows that, for e > 0, the interval-valued function f is approximate LU-e-convex and
approximate quasi LU-e-convex of type II at x = 0, but there does not exist any δ > 0 such that f is
approximate pseudo LU-e-convex of type II at x = 0.

Example 3.6. Consider the following interval-valued function f = [fL, fU] such that

fL(x) =

{
x2 + x, x > 0,
x2, x < 0,

and fU(x) =

{
x2 + x+ 1, x > 0,
x2 + 1, x < 0.

We can easily show that, for e = 2, f is approximate LU-e-convex and approximate pseudo LU-e-convex
of type II at x = 0, but there does not exist any δ > 0 such that f is approximate quasi LU-e-convex of
type II at x = 0.
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To introduce the interval-valued vector optimization problem (IVOP), we consider in what follows
an interval-valued multiobjective function f = (f1, . . . , fm). Each component objective function fk =
[fLk, fUk ] is a locally Lipschitz interval-valued function defined on the nonempty feasible set X ⊆ Rn. Our
optimization problem is written as:

min
x∈X

f(x) = (f1(x), f2(x), . . . , fm(x)). (IVOP)

Assume we are given a vector x as a feasible solution to (IVOP).

Definition 3.7 ([17]). The vector x is said to be

i) an efficient solution of (IVOP) if there is no x ∈ X with f(x) ≺LU f(x);
ii) a strong efficient solution of (IVOP) if there is no x ∈ X with f(x) �LU f(x).

In [8], the concepts of quasi efficient solutions of vector optimization introduced in [5] was extended
to local e-quasi efficient and local strong e-quasi efficient solutions. We adopt here the latter type of
solutions to our problem (IVOP).

Definition 3.8. The vector x is said to be a local (strong) e-quasi efficient solution to (IVOP) if there is
δ > 0 such that there is no x ∈ B(x, δ)∩X satisfying

f(x) + e‖x− x‖ ≺LU (�LU) f(x).

We introduce the following concept of approximate efficient solutions to (IVOP), which is useful when
no efficient solution exists.

Definition 3.9. The vector x is said to be an e-approximate efficient solution of (IVOP) if there is no δ > 0
such that, for all x ∈ B(x, δ)∩X, one has

f(x) + e‖x− x‖ �LU f(x).

The following proposition shows the relation between the notion of local strong quasi efficiency and
the notion of approximate efficiency.

Proposition 3.10. If x is a local strong e-quasi efficient solution to (IVOP), then x is an e-approximate efficient
solution of (IVOP).

Proof. Assume the vector x is not an e-approximate efficient solution of (IVOP). Then, there exists δ > 0
such that, for all x ∈ B(x, δ)∩X, we have

f(x) + e‖x− x‖ �LU f(x).

Let δ > 0. There is x ∈ B(x, δ) ∩ B(x, δ) ∩ X satisfying the above inequality. Hence x is not a local strong
e-quasi efficient solution to (IVOP).

Remark 3.11. The converse of the above proposition is not generally true as shown in the following exam-
ple.

Example 3.12. Consider the following example of (IVOP):

min f(x) = [fL(x), fU(x)]

subject to x ∈ X = [−1, 1],

where

fL(x) = −2x and fU(x) = x2 − 2x.
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Let e = 1 and x = 0. Observe first that for any δ > 0 and x ∈ (−δ, 0)∩X, the inequality

f(x) + |x| = [−3x, x2 − 3x] �LU f(0) = [0, 0]

do not hold true. Hence, we deduce that there exist no δ > 0 such that, for all x ∈ (−δ, δ)∩X, one has

f(x) + e‖x− x‖ �LU f(0).

This means that x = 0 is an e-approximate efficient solution to (IVOP).
However, it is easy to check that for any δ > 0 there is x ∈ (0, δ)∩X ⊂ (−δ, δ)∩X, satisfying

f(x) + e‖x− x‖ �LU f(0).

Therefore x is not a local strong e-quasi efficient solution to (IVOP).

4. Sufficient conditions for local strong e-quasi efficient solutions

We consider the following vector variational inequalities of Stampacchia and Minty types:

Find x ∈ X such that

{
〈ξL, x− x〉m > 0, ∀ξL ∈ ∂fL1 (x)× · · · × ∂fLm(x),
〈ξU, x− x〉m > 0, ∀ξU ∈ ∂fU1 (x)× · · · × ∂fUm(x),

∀x ∈ X. (SVVI)

Find x ∈ X such that

{
〈ζL, x− x〉m > 0, ∀ζL ∈ ∂fL1 (x)× · · · × ∂fLm(x),
〈ζU, x− x〉m > 0, ∀ζU ∈ ∂fU1 (x)× · · · × ∂fUm(x),

∀x ∈ X. (MVVI)

Here 〈ξL, x− x〉m =
(
〈ξL1 , x− x〉, . . . , 〈ξLm, x− x〉

)
(the same if we replace ξL by ξU, or ζL, or ζU).

We first present sufficient conditions for local strong e-quasi efficient solutions of (IVOP) using the
approximate pseudo LU-e-convexity of type II assumption.

Theorem 4.1. Suppose f is approximate pseudo LU-e-convex of type II at x ∈ X. If x is a solution to (SVVI), then
it is also a local strong e-quasi efficient solution to (IVOP).

Proof. Assume x fails to be a local strong e-quasi efficient solution to (IVOP). Hence for any δ > 0, there
exists x0 ∈ B(x, δ)∩X such that

f(x0) + e‖x0 − x‖ �LU f(x),

which implies that {
fLk(x0) + ek‖x0 − x‖ 6 fLk(x),
fUk (x0) + ek‖x0 − x‖ 6 fUk (x),

for each k = 1, . . . ,m. Then {
fLk(x0) − f

L
k(x) 6 −ek‖x0 − x‖ < 0,

fUk (x0) − f
U
k (x) 6 −ek‖x0 − x‖ < 0,

(4.1)

are satisfied for all k = 1, . . . ,m. Since f is approximate pseudo LU-e-convex of type II at x, then fk =
[fLk, fUk ] is a approximate pseudo LU-ek-convex function of type II at x for all k = 1, . . . ,m. Hence, fLk and
fUk are both approximate pseudo LU-ek-convex of type II functions at x for all k = 1, . . . ,m. Then, there
exists δ > 0 such that for each x ∈ B(x, δ)∩X and k = 1, . . . ,m,{

fLk(x) − f
L
k(x) < 0⇒ 〈ξLk, x− x〉 < −ek‖x− x‖ 6 0, ξLk ∈ ∂fLk(x),

fUk (x) − fUk (x) < 0⇒ 〈ξUk , x− x〉 < −ek‖x− x‖ 6 0, ξUk ∈ ∂fUk (x).
(4.2)
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From (4.1) and (4.2), we deduce that there is x0 ∈ B(x, δ)∩X satisfying{
〈ξL, x0 − x〉m 5 0, ξL ∈ ∂fL1 (x)× · · · × ∂fLm(x),
〈ξU, x0 − x〉m 5 0, ξU ∈ ∂fU1 (x)× · · · × ∂fUm(x).

We conclude that x is not a solution of (SVVI).

Remark 4.2. We can obtain the same result of the above theorem using the approximate LU-e-convexity
assumption (see Theorem 5.2 in [19]).

Sufficient optimality conditions in terms of (MVVI) instead of (SVVI) requires approximate convexity
assumptions to be imposed on −fk as shown in the next theorem.

Theorem 4.3. Suppose −f is approximate LU-e-convex at x. If x is a solution to (MVVI), then it is a local strong
e-quasi efficient solution to (IVOP).

Proof. Assume the vector x fails to be a local strong e-quasi efficient solution to (IVOP). Hence for any
δ > 0 there exists x0 ∈ B(x, δ)∩X satisfying

f(x0) + e‖x0 − x‖ �LU f(x),

which implies that {
fLk(x0) + ek‖x0 − x‖ 6 fLk(x),
fUk (x0) + ek‖x0 − x‖ 6 fUk (x),

for each k = 1, . . . ,m. Then {
fLk(x0) − f

L
k(x) + ek‖x0 − x‖ 6 0,

fUk (x0) − f
U
k (x) + ek‖x0 − x‖ 6 0,

(4.3)

are satisfied for each k = 1, . . . ,m.
Since −f is approximate LU-e-convex at x, then −fk = [−fUk ,−fLk] is approximate LU-ek-convex func-

tion at x for all k = 1, . . . ,m. Therefore, both −fLk and −fUk are approximate ek-convex functions at x for
all k = 1, . . . ,m. Then, there is δ > 0 such that for each x ∈ B(x, δ)∩X and k = 1, . . . ,m,{

(−fLk)(x) − (−fLk)(x) > 〈ζLk, x− x〉− ek‖x− x‖, ∀ζLk ∈ ∂(−fLk)(x),
(−fUk )(x) − (−fUk )(x) > 〈ζUk , x− x〉− ek‖x− x‖, ∀ζUk ∈ ∂(−fUk )(x),

which implies that {
fLk(x) − f

L
k(x) > 〈ζLk, x− x〉− ek‖x− x‖, ∀ζLk ∈ ∂(−fLk)(x),

fUk (x) − fUk (x) > 〈ζUk , x− x〉− ek‖x− x‖, ∀ζUk ∈ ∂(−fUk )(x).
(4.4)

Using (4.3), (4.4), and taking into account the fact that ∂(−f)(x) = −∂f(x), we obtain that there is x0 ∈
B(x, δ)∩X such that for all ζLk ∈ ∂fLk(x0) and ζUk ∈ ∂fUk (x0),{

〈ζLk, x0 − x〉 = 〈−ζLk, x− x0〉 6 fLk(x0) − f
L
k(x) + ek‖x0 − x‖ 6 0,

〈ζUk , x0 − x〉 = 〈−ζUk , x− x0〉 6 fUk (x0) − f
U
k (x) + ek‖x0 − x‖ 6 0.

Therefore, there is x0 ∈ B(x, δ)∩X satisfying{
〈ζL, x0 − x〉m 5 0, ∀ζL ∈ ∂fL1 (x0)× · · · × ∂fLm(x0),
〈ζU, x0 − x〉m 5 0, ∀ζU ∈ ∂fU1 (x0)× · · · × ∂fUm(x0).

We conclude that x does not solve (MVVI).
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The previous result still hold true if we replace the approximate convexity assumption by approximate
pseudo convexity.

Theorem 4.4. Suppose −f is approximate pseudo LU-e-convex of type II at x. If x solves (MVVI), then x is a local
strong e-quasi efficient solution to (IVOP).

Proof. The proof is similar to that of Theorem 4.3.

Remark 4.5. The results of this section gives new sufficient conditions for local strong e-quasi efficient
solutions of (IVOP) by using the concepts of (MVVI) and approximate pseudo/quasi LU-e-convexity of
type II, which improve [19, Theorem 5.2].

5. Necessary and sufficient conditions for e-approximate efficient solutions

We consider the following approximate vector variational inequalities of Stampacchia and Minty type:

Find x ∈ X such that there is no δ > 0 satisying{
〈ξL, x− x〉m 5 −e‖x− x‖, ∀ξL ∈ ∂fL1 (x)× · · · × ∂fLm(x),
〈ξU, x− x〉m 5 −e‖x− x‖, ∀ξU ∈ ∂fU1 (x)× · · · × ∂fUm(x),

∀x ∈ B(x, δ)∩X.
(ASVVI)

Find x ∈ X such that there is no δ > 0 satisfying{
〈ζL, x− x〉m 5 −e‖x− x‖, ∀ζL ∈ ∂fL1 (x)× · · · × ∂fLm(x),
〈ζU, x− x〉m 5 −e‖x− x‖, ∀ζU ∈ ∂fU1 (x)× · · · × ∂fUm(x),

∀x ∈ B(x, δ)∩X.
(AMVVI)

Hereafter, if the above definition is fulfilled for a given e, then we say that x is a solution for (ASVVI)
(or (AMVVI)) with respect to e.

In the following theorem, we will see that solutions to (ASVVI) are also e-approximate efficient solu-
tions of (IVOP) when the interval-valued objective function satisfies the pseudo approximate convexity
hypothesis.

Theorem 5.1. Suppose f is approximate pseudo LU-e-convex function of type II at x. If x solves (ASVVI) w.r.t. e,
then x is an e-approximate efficient solution to (IVOP).

Proof. Assume the vector x is not an e-approximate efficient solution of (IVOP). Hence, there exists δ > 0
such that, for all x ∈ B(x, δ)∩X, we have

f(x) + e‖x− x‖ �LU f(x),

which implies that {
fLk(x) + ek‖x− x‖ 6 fLk(x),
fUk (x) + ek‖x− x‖ 6 fUk (x),

for each k = 1, . . . ,m. Then

fLk(x) − f
L
k(x) < 0 and fUk (x) − fUk (x) < 0

hold true for any k = 1, . . . ,m.
Since f is approximate pseudo LU-e-convex function of type II at x, then fk = [fLk, fUk ] is approximate

pseudo LU-ek-convex function of type II at x for all k = 1, . . . ,m. Therefore, both fLk and fUk are approxi-
mate pseudo LU-ek-convex functions of type II at x for all k = 1, . . . ,m. Consequently, there exists δ > 0
with δ < δ, such that, for all x ∈ B(x, δ)∩X and k = 1, . . . ,m one has{

〈ξLk, x− x〉 < −ek‖x− x‖, ∀ξLk ∈ ∂fLk(x),
〈ξUk , x− x〉 < −ek‖x− x‖, ∀ξUk ∈ ∂fUk (x).

(5.1)
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From (5.1), there is δ > 0 such that for all x ∈ B(x, δ)∩X one has{
〈ξL, x− x〉m 5 −e‖x− x‖, ∀ξL ∈ ∂fL1 (x)× · · · × ∂fLm(x),
〈ξU, x− x〉m 5 −e‖x− x‖, ∀ξU ∈ ∂fU1 (x)× · · · × ∂fUm(x).

We deduce that x cannot be a solution of (ASVVI) with respect to e.

In the following theorem, we prove that every e-approximate efficient solution to (IVOP) is still a
solution of (ASVVI) w.r.t. e in the case of approximate quasi LU-e-convexity of type II of −f.

Theorem 5.2. Suppose −f is approximate quasi LU-e-convex function of type II at x. If x is an e-approximate
efficient solution to (IVOP), then x solves (ASVVI) w.r.t. e.

Proof. Assume that x is not a solution of (ASVVI) w.r.t. e. Hence, there is δ > 0 such that, for all
x ∈ B(x, δ)∩X, ξL ∈ ∂fL1 (x)× · · · × ∂fLm(x) and ξU ∈ ∂fU1 (x)× · · · × ∂fUm(x) one has{

〈ξL, x− x〉m 5 −e‖x− x‖,
〈ξU, x− x〉m 5 −e‖x− x‖.

Then, {
〈ξLk, x− x〉 6 −ek‖x− x‖ < 0, ∀ξLk ∈ ∂fLk(x),
〈ξUk , x− x〉 6 −ek‖x− x‖ < 0, ∀ξUk ∈ ∂fUk (x),

hold true for all k = 1, . . . ,m. Consequently, from ∂(−f)(x) = −∂f(x), it follows that{
〈−ξLk, x− x〉 > 0, (−ξLk) ∈ ∂(−fLk)(x),
〈−ξUk , x− x〉 > 0, (−ξUk ) ∈ ∂(−fUk )(x).

(5.2)

Since −f is approximate quasi LU-e-convex function of type II at x, then −fk = [−fUk ,−fLk] is approximate
quasi LU-ek-convex function of type II at x for all k = 1, . . . ,m. Therefore, both −fLk and −fUk are
approximate quasi LU-ek-convex functions of type II at x for all k = 1, . . . ,m. Then, by (5.2) there is δ > 0
with δ < δ, such that, for each x ∈ B(x, δ)∩X, one has{

(−fLk)(x) − (−fLk)(x) > ek‖x− x‖,
(−fUk )(x) − (−fUk )(x) > ek‖x− x‖,

hold true for all k = 1, . . . ,m. This yields{
fLk(x) + ek‖x− x‖ < fLk(x),
fUk (x) + ek‖x− x‖ < fUk (x).

Therefore there is δ > 0 satisfying for each x ∈ B(x, δ)∩X,

f(x) + e‖x− x‖ �LU f(x).

This proves the theorem as x cannot be an e-approximate efficient solution to (IVOP).

A direct consequence of Theorem 5.1 and Theorem 5.2 is presented in the following corollary.

Corollary 5.3. Suppose f is approximate pseudo LU-e-convex of type II at x ∈ X and −f is approximate quasi LU-
e-convex of type II at x. Then, x is an e-approximate efficient solution to (IVOP) if and only if x solves (ASVVI)
w.r.t. e.
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The following theorem illustrates when a solution of (AMVVI) w.r.t. e is also an e-approximate efficient
solution to (IVOP).

Theorem 5.4. Suppose −f is approximate pseudo LU-e-convex function of type II at x. If x solves (AMVVI) w.r.t.
e, then x is an e-approximate efficient solution to (IVOP).

Proof. Assume that x is not an e-approximate efficient solution to (IVOP). Thus, there exists δ > 0 such
that, for all x ∈ B(x, δ)∩X, we have

f(x) + e‖x− x‖ �LU f(x),

which implies that {
fLk(x) + ek‖x− x‖ 6 fLk(x),
fUk (x) + ek‖x− x‖ 6 fUk (x),

for each k = 1, . . . ,m. Then

fLk(x) − f
L
k(x) 6 −ek‖x− x‖ < 0 and fUk (x) − fUk (x) 6 ek‖x− x‖ < 0,

are satisfied for each k = 1, . . . ,m. Then{
−fLk(x) − (−fLk)(x) < 0,
−fUk (x) − (−fUk )(x) < 0.

(5.3)

Since −f is approximate pseudo LU-e-convex function of type II at x, then −fk = [−fUk ,−fLk] is approx-
imate pseudo LU-ek-convex function of type II at x for all k = 1, . . . ,m. Therefore, both −fLk and −fUk are
approximate pseudo LU-ek-convex functions of type II at x. Then, by (5.3) there exists δ > 0 with δ < δ,
such that, for all x ∈ B(x, δ)∩X,{

〈ζLk, x− x〉 < −ek‖x− x‖, ζLk ∈ ∂(−fLk)(x),
〈ζUk , x− x〉 < −ek‖x− x‖, ζUk ∈ ∂(−fUk )(x).

(5.4)

Using (5.4) and taking into account the fact that ∂(−f)(x) = −∂f(x) for all x ∈ X, we obtain{
〈ζLk, x− x〉 = 〈−ζLk, x− x〉 6 −ek‖x− x‖, ζLk ∈ ∂fLk(x),
〈ζUk , x− x〉 = 〈−ζUk , x− x〉 6 −ek‖x− x‖, ζUk ∈ ∂fUk (x).

Therefore, there exists δ > 0 such that for any x ∈ B(x, δ)∩X we have{
〈ζL, x− x〉m 5 −e‖x− x‖, ζL ∈ ∂fL1 (x)× · · · × ∂fLm(x),
〈ζU, x− x〉m 5 −e‖x− x‖, ζU ∈ ∂fU1 (x)× · · · × ∂fUm(x).

This establishes that x is not a solution of (AMVVI) w.r.t. e.

The next result specifies when an e-approximate efficient solution to (IVOP) is also a solution of
(AMVVI) w.r.t. e.

Theorem 5.5. Suppose −f is approximate quasi LU-e-convex function of type II at x. If x is an e-approximate
efficient solution to (IVOP), then x solves (AMVVI) w.r.t. e.

Proof. Assume that x is not a solution of (AMVVI) w.r.t. e. Then there is δ > 0 such that for each
x ∈ B(x, δ)∩X and ζL ∈ ∂fL1 (x)× · · · × ∂fLm(x), ζU ∈ ∂fU1 (x)× · · · × ∂fUm(x), we have{

〈ζL, x− x〉m 5 −e‖x− x‖,
〈ζU, x− x〉m 5 −e‖x− x‖.
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Hence {
〈ζLk, x− x〉 6 −ek‖x− x‖ < 0, ζLk ∈ ∂fLk(x),
〈ζUk , x− x〉 6 −ek‖x− x‖ < 0, ζUk ∈ ∂fUk (x),

are satisfied for all k = 1, . . . ,m. Consequently, from ∂(−f)(x) = −∂f(x) we deduce that{
〈−ζLk, x− x〉 > 0, (−ζLk) ∈ ∂(−fLk)(x),
〈−ζUk , x− x〉 > 0, (−ξUk ) ∈ ∂(−fUk )(x).

(5.5)

Since −f is approximate quasi LU-e-convex function of type II at x, then −fk = [−fUk ,−fLk] is a locally
Lipschitz and approximate quasi LU-ek-convex function of type II at x for all k = 1, . . . ,m. Therefore,
both −fLk and −fUk are all approximate quasi LU-ek-convex functions of type II at x for all k = 1, . . . ,m. It
follows from (5.5) that there exists δ > 0 with δ < δ such that for all x ∈ B(x, δ)∩X,{

(−fLk)(x) − (−fLk)(x) > ek‖x− x‖,
(−fUk )(x) − (−fUk )(x) > ek‖x− x‖.

This implies that {
fLk(x) + ek‖x− x‖ < fLk(x),
fUk (x) + ek‖x− x‖ < fUk (x).

Thus there is δ > 0 satisfying for each x ∈ B(x, δ)∩X,

f(x) + e‖x− x‖ �LU f(x).

We conclude that x cannot be an e-approximate efficient solution to (IVOP).

The following corollary is a direct consequence of Theorems 5.4 and 5.5.

Corollary 5.6. Suppose f is approximate pseudo LU-e-convex of type II at x and −f is approximate quasi LU-e-
convex of type II at x. Then, x is an e-approximate efficient solution to (IVOP) if and only if x solves (AMVVI)
w.r.t. e.

Remark 5.7.

i) We can show that similar results of this section can be obtained when using approximate LU-e-
convexity assumptions.

ii) As the interval-valued vector optimization problems is more general than vector optimization prob-
lems, the results of this section represent a generalization of the corresponding results obtained in
[6, 11].

6. Numerical example

Consider the following example of (IVOP):

min f(x) = (f1(x), f2(x))
T = ([fL1 (x), f

U
1 (x)], [fL2 (x), f

U
2 (x)])T

such that x ∈ X = [−1, 1],

where

fL1 (x) =

{
2x− x2, x > 0,
3x, x < 0,

fU1 (x) =

{
x3 + 2x, x > 0,
2.5x, x < 0,
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fL2 (x) =

{
x3 + x, x > 0,
3x, x < 0,

fU2 (x) =

{
2x3 + x, x > 0,
1.5x, x < 0.

Let e = (1, 1)T . Observe that f is an approximate pseudo LU-e-convex function of type II at x = 0. It is
also easy to check that for any δ > 0 and x ∈ (0, δ)∩X, the following inequalities are not satisfied

(〈ξL1 , x− x〉, 〈ξL2 , x− x〉)T + e‖x− x‖ = (ξL1 x, ξL2 x)
T + (|x|, |x|)T < 0,

(〈ξU1 , x− x〉, 〈ξU2 , x− x〉)T + e‖x− x‖ = (ξU1 x, ξU2 x)
T + (|x|, |x|)T < 0,

where

ξL1 ∈ ∂fL1 (0) = [2, 3], ξL2 ∈ ∂fL2 (0) = [1, 3],

ξU1 ∈ ∂fU1 (0) = [2, 2.5], ξU2 ∈ ∂fU2 (0) = [1, 1.5].

Thus, there does not exist δ > 0 such that, for all x ∈ (−δ, δ) ∩ X, ξL ∈ ∂fL1 (x)× fL2 (x) and ξU ∈ ∂fU1 (x)×
∂fU2 (x) one has {

〈ξL, x− x〉2 5 −e‖x− x‖,
〈ξU, x− x〉2 5 −e‖x− x‖.

Therefore the point x = 0 solves (ASVVI).
Now, since f is approximate pseudo LU-e-convex of type II at x = 0, then by Theorem 5.1, x = 0 should

be an e-approximate efficient solution to (IVOP). Indeed, for any δ > 0 and x ∈ (0, δ) ∩ X, the following
inequalities are not satisfied

f1(x) + ‖x− x‖ = [3x− x2, x3 + 3x] ≺LU f1(0) = [0, 0],

f2(x) + ‖x− x‖ = [x3 + 2x, 2x3 + 2x] ≺LU f2(0) = [0, 0].

Hence, we deduce that there exist no δ > 0 such that, for all x ∈ (−δ, δ)∩X, one has

f(x) + e‖x− x‖ �LU f(0).

7. Conclusion

In this paper, we have introduced new optimality conditions for a vector optimization problem with
interval-valued vector functions using the concept of local strong e-quasi efficiency and e-approximate
efficiency hypotheses. We have established the relationships between this problem and vector variational
inequality problems under the hypotheses of approximate LU-e-convexity or generalized approximate
LU-e-convexity. Hence, our presented results extend and improve the corresponding main results ob-
tained in [6, 11, 19].
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