

Online: ISSN 2008-949X

Journal of Mathematics and Computer Science

Journal Homepage: www.isr-publications.com/jmcs

Stability of an additive-quartic functional equation in modular spaces

S. Karthikeyan^{a,*}, Choonkil Park^b, P. Palani^c, T. R. K. Kumar^a

Abstract

In this paper, we prove the Ulam-Hyers stability of the following additive-quartic functional equation

$$f\left(\frac{u+v}{2}-w\right) + f\left(\frac{v+w}{2}-u\right) + f\left(\frac{w+u}{2}-v\right) = \frac{25}{32}\left(f(u-v) + f(v-w) + f(w-u)\right) - \frac{7}{32}\left(f(v-u) + f(w-v) + f(w-w)\right) = \frac{25}{32}\left(f(u-v) + f(w-w) + f(w-w)\right) + \frac{7}{32}\left(f(v-w) + f(w-w) + f(w-w)\right) = \frac{25}{32}\left(f(w-v) + f(w-w) + f(w-w)\right) = \frac{25}{32}\left(f(w-v) + f(w-w) + f(w-w)\right) = \frac{7}{32}\left(f(w-w) + f(w-w) + f(w-w)\right)$$

in modular spaces by using the direct method.

Keywords: Ulam-Hyers stability, additive functional equation, quartic functional equation, modular space.

2020 MSC: 39B52, 39B72, 39B82.

©2022 All rights reserved.

1. Introduction

Stability of the functional equation has been growing tremendously over the last seventy years. Ulam [43], who was responsible for this, raised the question of stability at a conference in 1940. The following year, a mathematician named Hyers [11] gave an answer based on Ulam's question. Aoki [2] published a paper in1950 generalizing Hyers' response. Then in 1978, Rassias [36] introduced a new stability result as sum of two norms. Rassias [37] converted to the multiplication of two norms in 1982. In 1994, Găvruta [9] provided a further generalization of Rassias theorem in which he replaced the bound by a general control function. In 2008, Ravi [40] established mixed type stability by adding sum of two norms and product of two norms. Subsequent authors have given flexible results using a lot of functional equations in modular spaces [4, 10, 22, 32, 34, 35, 44, 45].

The additive functional equation is

$$f(x+y) = f(x) + f(y)$$
. (1.1)

Email addresses: kns.sh@rmkec.ac.in (S. Karthikeyan), baak@hanyang.ac.kr (Choonkil Park), ppalanitamil@gmail.com (P. Palani), trk.sh@rmkec.ac.in (T. R. K. Kumar)

doi: 10.22436/jmcs.026.01.04

Received: 2021-07-10 Revised: 2021-07-21 Accepted: 2021-08-10

^aDepartment of Mathematics, R.M.K. Engineering College, Kavaraipettai - 601 206, Tamil Nadu, India.

^bResearch Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.

^cDepartment of Mathematics, Sri Vidya Mandir Arts and Science College, Uthangarai- 636 902, Tamil Nadu, India.

^{*}Corresponding author

Since f(x) = kx is the solution of the functional equation (1.1), every solution of the additive functional equation is called an additive mapping. The functional equation

$$f(2x+y) + f(2x-y) = 4f(x+y) + 4f(x-y) + 24f(x) - 6f(y)$$
(1.2)

is called a quartic functional equation. Since the function $f(x) = x^4$ is a solution of (1.2), every solution of the quartic functional equation is called a quartic mapping.

In this paper, we present the Ulam-Hyers stability of the additive-quartic mixed type functional equation of the form

$$f\left(\frac{u+v}{2}-w\right) + f\left(\frac{v+w}{2}-u\right) + f\left(\frac{w+u}{2}-v\right) = \frac{25}{32}\left(f(u-v) + f(v-w) + f(w-u)\right) - \frac{7}{32}\left(f(v-u) + f(w-v) + f(u-w)\right)$$
(1.3)

in modular spaces by using the direct method.

2. Basic concepts on modular space

The research on modulars and modular spaces was begun by Nakano [31] as generalizations of normed spaces. Since the 1950s, many prominent mathematicians like Luxemburg, Mazur, Musielak, and Orlicz [25, 26, 29, 30] developed it extensively. Modulars and modular spaces have broad branches of applications, e.g., interpolation theory and Orlicz spaces. We start by considering some basic relevant notions.

Definition 2.1. Let X be a vector space over a field \mathbb{K} (\mathbb{R} or \mathbb{C}). A generalized function $\rho: X \to [0, \infty]$ is called a modular if for any $\alpha, \beta \in \mathbb{K}$ and $x, y \in X$,

- (1) $\rho(x) = 0$ if and only if x = 0;
- (2) $\rho(\alpha x) = \rho(x)$ for every α with $|\alpha| = 1$;
- (3) $\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y)$ if $\alpha + \beta = 1$ and $\alpha, \beta \geq 0$.

If the condition (3) is replaced with

(4)
$$\rho(\alpha x + \beta y) \leq \alpha^s \rho(x) + \beta^s \rho(y)$$
 if $\alpha s + \beta s = 1$ and $\alpha, \beta \geq 0$ with an $s \in (0, 1]$,

then ρ is called an s-convex modular. We call 1-convex modulars as convex modulars.

A modular ρ on X generates a linear subspace X_{ρ} of X naturally defined by

$$X_{\rho} = \left\{ x \in X | \lim_{\lambda \to 0} \rho(\lambda x) = 0 \right\}.$$

 X_{ρ} is called a modular space.

Definition 2.2. Let X_{ρ} be a modular space and $\{x_n\}$ be a sequence in X_{ρ} .

- (1) $\{x_n\}$ is ρ -convergent to a point $x \in X_\rho$ if $\rho(x_n \to x_m) \to 0$ as $n \to \infty$. The point x is called a ρ -limit of the sequence $\{x_n\}$.
- (2) $\{x_n\}$ is called a ρ -Cauchy sequence if $\rho(x_n-x_m)\to 0$ as $n,m\to\infty$.
- (3) X_{ρ} is called ρ -complete if every ρ -Cauchy sequence in X_{ρ} is ρ -convergent.

Remark 2.3. If ρ is a convex modular and $0 \leqslant \lambda \leqslant 1$, then we have $\rho(\lambda x) \leqslant \lambda \rho(x)$ for all $x \to X_\rho$. If ρ is a convex modular, and $\lambda_i \geqslant 0, i = 1, 2, \ldots, n$ and $\lambda_1 + \lambda_2 + \cdots + \lambda_n \leqslant 1$, then $\rho(\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n) \leqslant \lambda_1 \rho(x_1) + \lambda_2 \rho(x_2) + \cdots + \lambda_n \rho(x_n)$. If $\{x_n\}$ is ρ -convergent to x, then $\{\alpha x_n\}$ is ρ -convergent to αx , where $0 \leqslant \alpha \leqslant 1$. But the ρ -convergence of a sequence $\{x_n\}$ to x does not imply that $\{cx_n\}$ is ρ -convergent to cx for scalars c with |c| > 1.

There are two notions that play important roles when we study modulars. A modular ρ is said to have the Fatou property if $\rho(x) \leqslant \liminf_{n \to \infty} \rho(x_n)$ for every sequence $\{x_n\}$ that is ρ -convergent to x. ρ is said to satisfy the Δ_2 -condition if there exists a constant $k \geqslant 0$ such that $\rho(2x) \leqslant k\rho(x)$ for all $x \to X_\rho$.

Example 2.4. For a measure space (Ω, \sum, μ) , let $L^0(\mu)$ be the collection of all measurable functions on Ω . Let

$$L^{\varphi}(\mu) = \left\{ f \to L^0(\mu) | \int_{\Omega} \varphi\left(|\lambda f(x)| \right) d\mu(x) \to 0 \text{ as } \lambda \to 0 \right\},$$

where $\phi:[0,\infty)\to R$ is assumed to be a continuous, positive, convex and nondecreasing function increasing to infinity with $\varphi(0)=0$. We can take, e.g., $\varphi(t)=e^{t^2}-1$. $L^{\varphi}(\mu)$ is called an Orlicz space. Define for $f\to L^{\varphi}(\mu)$,

$$\rho_{\Phi}(f) = \int_{\Omega} \Phi(|f|) \, d\mu.$$

Then ρ_{Φ} is a complete modular.

3. Solution of the functional equation (1.3)

In this section, we solve the mixed type functional equation (1.3). Throughout this section let E and H be real vector spaces.

Theorem 3.1. An odd mapping $f : E \to H$ satisfies the functional equation (1.3) for all $u, v, w \in E$ if and only if $f : E \to H$ satisfies the functional equation (1.1) for all $x, y \in E$.

Proof. Since f is an odd mapping, one can deduce from (1.3) that we have

$$f\left(\frac{u+v}{2}-w\right) + f\left(\frac{v+w}{2}-u\right) + f\left(\frac{w+u}{2}-v\right) = f(u-v) + f(v-w) + f(w-u)$$
(3.1)

for all $u, v, w \in E$. Setting v = u, w = -u in (3.1) and finally replacing u by -x, we obtain

$$2f(x) = f(2x) \tag{3.2}$$

for all $x \in E$. Replacing x by $\frac{x}{2}$ in (3.2), we get

$$f\left(\frac{x}{2}\right) = \frac{1}{2}f(x)$$

for all $x \in E$. Letting u = x, v = y, w = 0 in (3.1) and using the oddness, we obtain

$$f(x+y) + f(y-2x) + f(x-2y) = 2f(x-y) + 2f(y) - 2f(x)$$
(3.3)

for all $x, y \in E$. Interchanging x and y in (3.3) and using the oddness, we get

$$f(x+y) + f(x-2y) + f(-2x+y) = -2f(x-y) + 2f(x) - 2f(y)$$
(3.4)

for all $x, y \in E$. Subtracting (3.4) from (3.3), we get

$$f(x - y) = f(x) - f(y)$$

for all $x, y \in E$. Replacing y by -y and using the oddness, we have (1.1).

Conversly, replacing (x,y) by (u,u) in (1.1), we get f(2u)=2f(u) for all $u\in E$.

Replacing (x,y) by $\left(\frac{u+w}{2},v\right)$ in (1.1) and using the oddness, we get

$$f\left(\frac{u+w}{2}-v\right) = \frac{1}{2}f(u) + \frac{1}{2}f(w) - f(v)$$
(3.5)

for all $u, v, w \in E$. Replacing (x,y) by $\left(\frac{v+w}{2}, u\right)$ in (1.1), we get

$$f\left(\frac{v+w}{2}-u\right) = \frac{1}{2}f(v) + \frac{1}{2}f(w) - f(u)$$
 (3.6)

for all $u, v, w \in E$. Replacing (x, y) by $\left(\frac{u+v}{2}, w\right)$ in (1.1), we get

$$f\left(\frac{u+v}{2}-w\right) = \frac{1}{2}f(u) + \frac{1}{2}f(v) - f(w)$$
(3.7)

for all $u, v, w \in E$. Adding (3.5), (3.6), (3.7), and using the oddness, we obtain (3.1) for all $u, v, w \in E$.

Lemma 3.2. Let $f: E \to H$ satisfy the functional equation (1.2) for all $x,y \in E$. Then $f: E \to H$ satisfies the functional equation

$$f(2x+y) + f(2x-y) + f(x+2y) + f(x-2y) = 8f(x+y) + 8f(x-y) + 18f(x) + 18f(y)$$
(3.8)

for all $x, y \in E$.

Proof. Let $f: E \to H$ be a mapping satisfying the functional equation (1.2). Interchanging x and y in (1.2) and using eveness of f, we arrive at

$$f(x+2y) + f(x-2y) = 4(x+y) + 4f(x-y) + 24f(y) - 6f(x).$$
(3.9)

Adding (1.2) and (3.9), we get (3.8).

Theorem 3.3. Let an even mapping $f: E \to H$ satisfies the functional equation (1.3) for all $x,y \in E$. Then $f: E \to H$ satisfies the functional equation (3.8) for all $x,y,z \in E$.

Proof. Since f is an even mapping, one can deduce from (1.3) that we have

$$f\left(\frac{u+v}{2}-w\right) + f\left(\frac{v+w}{2}-u\right) + f\left(\frac{w+u}{2}-v\right) = \frac{9}{16}\left(f(u-v) + f(v-w) + f(w-u)\right) \tag{3.10}$$

for all $u, v, w \in E$. Setting u = v = w = 0 in (3.10), we get f(0) = 0. Replacing (u, v, w) by (x, x, -x) in (3.10), we get

$$f(2x) = 16f(x) (3.11)$$

for all $x \in E$. Setting x by $\frac{x}{2}$ in (3.11), we have

$$f\left(\frac{x}{2}\right) = \frac{1}{16}f(x) \tag{3.12}$$

for all $x \in E$. Replacing (u, v, w) by (x, y, 0) in (3.10) using (3.12) and evenness, we obtain

$$f(x+y) + f(2x-y) + f(x-2y) = 9(f(x-y) + f(y) + f(x))$$
(3.13)

for all $x, y \in E$. Replacing y by -y in (3.13) and using evenness, we obtain

$$f(x-y) + f(2x+y) + f(x+2y) = 9(f(x+y) + f(y) + f(x))$$
(3.14)

for all $x, y \in E$. Adding (3.13) and (3.14), we arrive (3.8) for all $x, y \in E$. By Lemma 3.2, f is quartic. \Box

4. Additive-quartic mixed type stability results: direct method

Throughout this paper, let V and X be linerar spaces, ρ be a convex modular, and X_{ρ} be a ρ -complete modular space. Define a mappings Df, Df₀, Df_{q2} : $V^3 \to X_{\rho}$ respectively by

D
$$f(u,v,w) = f\left(\frac{u+v}{2} - w\right) + f\left(\frac{v+w}{2} - u\right) + f\left(\frac{w+u}{2} - v\right)$$

- $\frac{25}{32} (f(u-v) + f(v-w) + f(w-u)) + \frac{7}{32} (f(v-u) + f(w-v) + f(u-w))$

for all $u, v, w \in V$,

$$D\ f_o(u,v,w) = f\left(\frac{u+v}{2}-w\right) + f\left(\frac{v+w}{2}-u\right) + f\left(\frac{w+u}{2}-v\right) - \left(f(u-v) + f(v-w) + f(w-u)\right)$$

for all $u, v, w \in V$, and

$$D\ f_{q_2}(u,v,w) = f\left(\frac{u+v}{2}-w\right) + f\left(\frac{v+w}{2}-u\right) + f\left(\frac{w+u}{2}-v\right) - \frac{9}{16}\left(f(u-v) + f(v-w) + f(w-u)\right)$$

for all $u, v, w \in V$.

4.1. Additive stability of (1.3) in modular space without Δ_2 -conditions

In this subsection, we present the Ulam-Hyers stability of the additive-quartic functional equation (1.3) using Hyers' direct method in modular space without Δ_2 -conditions.

Theorem 4.1. Let $j \in \{-1, 1\}$. Let $\Gamma : V^3 \to [0, \infty)$ be a function such that

$$\sum_{k=0}^{\infty} \frac{\Gamma\left(2^{kj}u, 2^{kj}v, 2^{kj}w\right)}{2^{kj}} \quad converges \ to \ \mathbb{R}$$
(4.1)

for all $u,v,w\in V$ and $f_o:V\to X_\rho$ be an odd mapping that satisfies the inequality

$$\rho\left(\mathsf{D}\,\mathsf{f}_{\mathsf{o}}(\mathsf{u},\mathsf{v},\mathsf{w})\right)\leqslant\Gamma\left(\mathsf{u},\mathsf{v},\mathsf{w}\right)\tag{4.2}$$

for all $u, v, w \in V$. Then there exists a unique additive function $A: V \to X_\rho$ such that

$$\rho(f_{o}(u) - A(u)) \leqslant \sum_{i = \frac{1-j}{2}}^{\infty} \frac{\Gamma(2^{ij}u, 2^{ij}u, -2^{ij}u)}{2^{ij}}$$
(4.3)

for all $u \in V$. The mapping A(u) is defined by

$$A(u) = \rho - \lim_{k \to \infty} \frac{f_o(2^{kj}u)}{2^{kj}}$$
(4.4)

for all $u \in V$.

Proof. Assume j = 1. Replacing (u, v, w) by (u, u, -u) in (4.2) and dividing by 2, we get

$$\rho\left(\frac{f_o(2u)}{2} - f_o(u)\right) \leqslant \frac{1}{2}\Gamma(u, u, -u) \tag{4.5}$$

for all $u \in V$, since f is an odd mapping. Replacing u by 2u in (4.5) and dividing by 2, we get

$$\rho\left(\frac{f_{o}(2^{2}u)}{2^{2}} - \frac{f_{o}(2u)}{2^{2}}\right) \leqslant \frac{1}{2^{2}}\Gamma(2u, 2u, -2u) \tag{4.6}$$

for all $u \in V$. Combining (4.5) and (4.6), we obtain

$$\rho\left(\frac{f_o(2^2u)}{2^4} - f_o(u)\right) \leqslant \left[\frac{1}{2}\Gamma(u, u, -u) + \frac{1}{2^2}\Gamma(2u, 2u, -2u)\right]$$

for all $u \in V$. Using induction on a positive integer k, we obtain that

$$\rho\left(\frac{f_{o}(2^{k}u)}{2^{k}} - f_{o}(u)\right) \leqslant \sum_{i=0}^{k-1} \frac{1}{2^{i+1}} \Gamma\left(2^{i}u, 2^{i}u, -2^{i}u\right) \leqslant \sum_{i=0}^{\infty} \frac{1}{2^{i+1}} \Gamma\left(2^{i}u, 2^{i}u, -2^{i}u\right) \tag{4.7}$$

for all $u \in V$. Let m and n be nonnegative integers with n > m. By (4.7), we have

$$\begin{split} \rho\left(\frac{f_{o}(2^{n}u)}{2^{n}}-\frac{f_{o}(2^{m}u)}{2^{m}}\right) &= \rho\left(\frac{1}{2^{m}}\left(\frac{f_{o}(2^{n-m}.2^{m}u)}{2^{n-m}}-f_{o}(2^{m}u)\right)\right) \\ &\leqslant \frac{1}{2^{m}}\sum_{i=0}^{n-m}\frac{1}{2^{i+1}}\Gamma\left(2^{i}.2^{m}u,2^{i}.2^{m}u,-2^{i}.2^{m}u\right) \\ &=\sum_{i=0}^{n-m}\frac{1}{2^{i+m+1}}\Gamma\left(2^{i+m}u,2^{i+m}u,-2^{i+m}u\right) \\ &=\sum_{i=m+1}^{n}\frac{1}{2^{i}}\Gamma\left(2^{i-1}u,2^{i-1}u,-2^{i-1}u\right) \end{split} \tag{4.8}$$

for all $u \in V$. Then (4.1) and (4.8) yield that $\left\{\frac{f_o(2^k u)}{2^k}\right\}$ is a ρ -Cauchy sequence in X_ρ . The ρ -completeness of X_ρ guarantees its ρ -convergence. Hence, there exists a mapping $A: V \to X_\rho$ defined by

$$A(\mathfrak{u}) = \rho - \lim_{n \to \infty} \frac{f_o(2^n \mathfrak{u})}{2^n}, \quad \forall \ \mathfrak{u} \in V. \tag{4.9}$$

Then we see that

$$\begin{split} \rho\left(\frac{A(2\mathfrak{u})-2A(\mathfrak{u})}{2^{3}}\right) &= \rho\left(\frac{1}{2^{3}}\left(A(2\mathfrak{u})-\frac{f_{o}\left(2^{n+1}\mathfrak{u}\right)}{2^{n}}\right)+\frac{1}{2}\left(\frac{1}{2}.\frac{f_{o}\left(2^{n+1}\right)}{2^{n+1}}-\frac{1}{2}A(\mathfrak{u})\right)\right) \\ &\leqslant \frac{1}{2^{3}}\rho\left(A(2\mathfrak{u})-\frac{2^{n+1}}{2^{n}}\right)+\frac{1}{4}\rho\left(\frac{f_{o}\left(2^{n+1}\right)}{2^{n+1}}-A(\mathfrak{u})\right) \end{split} \tag{4.10}$$

for all $u \in V$. Then by (4.9), the right hand side of (4.10) tends to 0 as $n \to \infty$. Therefore, it follows that $A(2u) = 2A(u), \ \forall \ u \in V.$

Next, we calculate ρ (A(u) – $f_o(u)$). Note that for every $n \in N$, by (4.10) we write

$$\begin{split} \rho\left(A(\mathfrak{u}) - f_{o}(\mathfrak{u})\right) &= \rho\left(\sum_{k=1}^{n} \frac{f_{o}(2^{k}\mathfrak{u}) - 2f_{o}(2^{k-1}\mathfrak{u})}{2^{k}} + \left(A(\mathfrak{u}) - \frac{f_{o}(2^{n}\mathfrak{u})}{2^{n}}\right)\right) \\ &= \rho\left(\sum_{k=1}^{n} \frac{f_{o}(2^{k}\mathfrak{u}) - 2f_{o}(2^{k-1}\mathfrak{u})}{2^{k}} + \frac{1}{2}\left(A(2\mathfrak{u}) - \frac{f_{o}(2^{n-1}.2\mathfrak{u})}{2^{n-1}}\right)\right). \end{split} \tag{4.11}$$

Since $\sum_{k=1}^{n} \frac{1}{2^k} + \frac{1}{2} < 1$, it follows from (4.3) and (4.11) that

$$\begin{split} \rho\left(A(u) - f_{o}(u)\right) &\leqslant \sum_{k=1}^{n} \frac{1}{2^{k}} \rho\left(f_{o}\left(2^{k}u\right) - 2f\left(2^{k-1}\right)\right) + \frac{1}{2}\rho\left(A(2u) - \frac{f_{o}\left(2^{n-1}.2u\right)}{2^{n-1}}\right) \\ &\leqslant \sum_{k=1}^{n} \frac{1}{2^{k}} \Gamma\left(2^{k-1}u, 2^{k-1}u, -2^{k-1}u\right) + \frac{1}{2}\rho\left(A(2u) - \frac{f_{o}\left(2^{n-1}.2u\right)}{2^{n-1}}\right) \end{split} \tag{4.12}$$

for all $u \in V$. Letting $n \to \infty$ in (4.12), we obtain

$$\rho\left(A(\mathfrak{u})-f_o(\mathfrak{u})\right)\leqslant \Gamma(\mathfrak{u},\mathfrak{u},-\mathfrak{u}),\ \forall\ \mathfrak{u}\in V.$$

Therefore, we get (4.3).

Now, we prove that A is additive. We note that

$$\rho\left(\frac{1}{2^n}D\ f_o(2^n\mathfrak{u},2^n\mathfrak{v},2^n\mathfrak{w})\right)\leqslant \frac{1}{2^n}\Gamma(2^n\mathfrak{u},2^n\mathfrak{u},-2^n\mathfrak{u})\to 0\ \text{as}\ n\to\infty$$

for all $u, v, w \in V$. Thus, we observe by convexity of ρ that

$$\begin{split} &\rho\left(\frac{1}{7}A\left(\frac{u+v}{2}-w\right)+\frac{1}{7}A\left(\frac{v+w}{2}-u\right)+\frac{1}{7}A\left(\frac{w+u}{2}-v\right)\right.\\ &-\left(\frac{1}{7}A(u-v)+\frac{1}{7}A(v-w)+\frac{1}{7}A(w-u)\right)\right)\\ &\leqslant\frac{1}{7}\rho\left(A\left(\frac{u+v}{2}-w\right)-\frac{1}{2^{n}}f_{o}\left(\frac{2^{n}(u+v)}{2}-2^{n}w\right)\right)\\ &+\frac{1}{7}\rho\left(A\left(\frac{v+w}{2}-u\right)-\frac{1}{2^{n}}f_{o}\left(\frac{2^{n}(v+w)}{2}-2^{n}u\right)\right)\\ &+\frac{1}{7}\rho\left(A\left(\frac{w+u}{2}-v\right)-\frac{1}{2^{n}}f_{o}\left(\frac{2^{n}(w+u)}{2}-2^{n}v\right)\right)+\frac{1}{7}\rho\left(-A(u-v)+\frac{1}{2^{n}}f_{o}\left(2^{n}u-2^{n}v\right)\right)\\ &+\frac{1}{7}\rho\left(-A(v-w)+\frac{1}{2^{n}}f_{o}\left(2^{n}v-2^{n}w\right)\right)+\frac{1}{7}\rho\left(-A(w-u)+\frac{1}{2^{n}}f_{o}\left(2^{n}w-2^{n}u\right)\right)\\ &+\frac{1}{7}\rho\left(\frac{1}{2^{n}}\left(f_{o}\left(\frac{2^{n}(u+v)}{2}-w\right)+f_{o}\left(\frac{2^{n}(v+w)}{2}-u\right)+f_{o}\left(\frac{2^{n}(w+u)}{2}-v\right)\right.\\ &-\left.\left.\left(f_{o}\left(2^{n}u-2^{n}v\right)+f_{o}\left(2^{n}v-2^{n}w\right)+f_{o}\left(2^{n}w-2^{n}u\right)\right)\right)\right) \end{split}$$

for all $u, v, w \in V$. Taking $n \to \infty$ in (4.13), we get

$$A\left(\frac{\mathsf{u}+\mathsf{v}}{2}-\mathsf{w}\right)+A\left(\frac{\mathsf{v}+\mathsf{w}}{2}-\mathsf{u}\right)+A\left(\frac{\mathsf{w}+\mathsf{u}}{2}-\mathsf{v}\right)-\left(A(\mathsf{u}-\mathsf{v})+A(\mathsf{v}-\mathsf{w})+A(\mathsf{w}-\mathsf{v})\right)=0$$

for all $u, v, w \in V$. This gives that A is additive.

In order to prove A is unique, let A' be another additive mapping satisfying (4.3) and (1.3). Since A and A' are additive mappings, $A(2^n u) = 2^n A(u)$ and $A'(2^n u) = 2^n A'(u)$ hold. So

$$\begin{split} \rho\left(\frac{1}{2}\mathsf{A}(\mathfrak{u}) - \frac{1}{2}\mathsf{A}'(\mathfrak{u})\right) &= \frac{1}{2}\rho\left(\frac{\mathsf{A}(2^n\mathfrak{u})}{2^n} - \frac{\mathsf{f}_o(2^n\mathfrak{u})}{2^n}\right) + \frac{1}{2}\rho\left(\frac{\mathsf{f}_o(2^n\mathfrak{u})}{2^n} - \frac{\mathsf{A}'(2^n\mathfrak{u})}{2^n}\right) \\ &\leqslant \frac{1}{2^{n+1}}\rho\left(\mathsf{A}(2^n\mathfrak{u}) - \mathsf{f}_o(2^n\mathfrak{u})\right) + \frac{1}{2^{n+1}}\rho\left(\mathsf{f}_o(2^n\mathfrak{u}) - \mathsf{A}'(2^n\mathfrak{u})\right) \\ &\leqslant \frac{1}{2^n}\sum_{i=0}^{\infty}\frac{1}{2^{i+1}}\Gamma\left(2^{i+n}\mathfrak{u},2^{i+n}\mathfrak{u},-2^{i+n}\mathfrak{u}\right) \\ &\leqslant \sum_{i=n}^{\infty}\frac{1}{2^{i+1}}\Gamma\left(2^i\mathfrak{u},2^i\mathfrak{u},-2^i\mathfrak{u}\right) \to 0 \text{ as } n \to \infty \end{split}$$

for all $u \in V$. Hence A is unique.

For j = -1, we can prove the similar stability result. Hence we complete the proof.

Corollary 4.2. Let Θ and τ be nonnegative real numbers. If an odd mapping $f_o: V \to X_\rho$ satisfies the inequality

$$\rho\left(\mathsf{Df}_{\mathsf{o}}(\mathfrak{u}, \nu, w)\right) \leqslant \Theta$$

for all $u, v, w \in V$, then there exists a unique additive mapping $A: V \to X_\rho$ such that

$$\rho\left(f_{o}(u) - A(u)\right) \leqslant \frac{\Theta}{|1|}$$

for all $u \in V$.

Corollary 4.3. Let Θ and τ be nonnegative real numbers with $\tau \neq 1$. If an odd mapping $f_o: V \to X_\rho$ satisfies the inequality

$$\rho (Df_{o}(u, v, w)) \leq \Theta (\|u\|^{\tau} + \|v\|^{\tau} + \|w\|^{\tau})$$

for all $u,v,w\in V$, then there exists a unique additive mapping $A:V\to X_\rho$ such that

$$\rho\left(f_o(u) - A(u)\right) \leqslant \frac{3\Theta||u||^{\tau}}{|2 - 2^{\tau}|}$$

for all $u \in V$.

Corollary 4.4. Let Θ and τ be nonnegative real numbers with $\tau \neq \frac{1}{3}$. If an odd mapping $f_o: V \to X_\rho$ satisfies the inequality

$$\rho\left(\mathsf{Df}_{o}(\mathfrak{u}, \nu, w)\right) \leqslant \Theta\left(\left\|\mathfrak{u}\right\|^{\tau} \left\|\nu\right\|^{\tau} \left\|w\right\|^{\tau}\right)$$

for all $u,v,w\in V,$ then there exists a unique additive mapping $A:V\to X_\rho$ such that

$$\rho\left(f_o(u) - A(u)\right) \leqslant \frac{\Theta \|u\|^{3\tau}}{|2 - 2^{3\tau}|}$$

for all $u \in V$.

Corollary 4.5. Let Θ and τ be nonnegative real numbers with $\tau \neq \frac{1}{3}$. If an odd mapping $f_o: V \to X_\rho$ satisfies the inequality

$$\rho\left(Df_{o}(u, v, w)\right) \leqslant \Theta\left(\|u\|^{\tau} \|v\|^{\tau} \|w\|^{\tau} + \|u\|^{3\tau} + \|v\|^{3\tau} + \|w\|^{3\tau}\right)$$

for all $u, v, w \in V$, then there exists a unique additive mapping $A: V \to X_{\rho}$ such that

$$\rho\left(f_o(u) - A(u)\right) \leqslant \frac{4\Theta||u||^{3\tau}}{|2 - 2^{3\tau}|}$$

for all $u \in V$.

4.2. Additive stability of (1.3) in modular space with Δ_2 -conditions

In this subsection, we present the Ulam-Hyers stability of the additive-quartic functional equation (1.3) using Hyers' direct method in modular space with Δ_2 -conditions.

Theorem 4.6. Let $j \in \{-1, 1\}$. Let $\Gamma : V^3 \to [0, \infty)$ be a function such that

$$\sum_{n=0}^{\infty} \left(\frac{k^2}{2}\right)^n \Gamma\left(\frac{u}{2^{nj}}, \frac{u}{2^{nj}}, \frac{-u}{2^{nj}}\right) < +\infty \quad and \quad \lim_{n \to \infty} k^{nj} \Gamma\left(\frac{u}{2^{nj}}, \frac{v}{2^{nj}}, \frac{w}{2^{nj}}\right) = 0 \tag{4.14}$$

for all $u, v, w \in V$ and $f_o: V \to X_\rho$ be an odd mapping satisfying the inequality

$$\rho\left(\mathsf{D}\,\mathsf{f}_{\mathsf{o}}(\mathsf{u},\mathsf{v},\mathsf{w})\right) \leqslant \Gamma\left(\mathsf{u},\mathsf{v},\mathsf{w}\right) \tag{4.15}$$

for all $u, v, w \in V$. Then there exists a unique additive mapping $A: X \to H$ such that

$$\rho\left(f_{o}(u) - A(u)\right) \leqslant \frac{1}{2} \sum_{i=\frac{1-j}{2}}^{\infty} \left(\frac{k^{2}}{2}\right)^{i} \Gamma\left(\frac{u}{2^{ij}}, \frac{u}{2^{ij}}, \frac{-u}{2^{ij}}\right) \tag{4.16}$$

for all $u \in V$. The mapping A(u) is defined by

$$A(u) = \rho - \lim_{n \to \infty} 2^{nj} f_o \left(\frac{u}{2^{nj}} \right)$$
(4.17)

for all $u \in V$.

Proof. Assume j = 1. Replacing (u, v, w) by $(\frac{u}{2}, \frac{u}{2}, \frac{-u}{2})$ in (4.15), we get

$$\rho\left(f_{o}(u) - 2f_{o}\left(\frac{u}{2}\right)\right) \leqslant \Gamma\left(\frac{u}{2}, \frac{u}{2}, \frac{-u}{2}\right)$$

for all $u \in V$, since f is an odd mapping. Then it follows from Δ_2 -condition and the convexity of the modular ρ that

$$\rho\left(f_o(u)-2^nf_o\left(\frac{u}{2^n}\right)\right)=\rho\left(\sum_{i=1}^n\frac{1}{2^i}\left(f_o\left(\frac{u}{2^{i-1}}\right)-2^{2i}f_o\left(\frac{u}{2^i}\right)\right)\right)\leqslant \frac{1}{k}\sum_{i=1}^n\left(\frac{k^2}{2}\right)^i\Gamma\left(\frac{u}{2^i},\frac{u}{2^i},\frac{-u}{2^i}\right)$$

for all $u \in V$. So, for all $n, m \in \mathbb{N}$ with $n \geqslant m$, we have

$$\begin{split} \rho\left(2^{n}f_{o}\left(\frac{u}{2^{n}}\right)-2^{m}f_{o}\left(\frac{u}{2^{m}}\right)\right) &=\rho\left(2^{m}\left(2^{n-m}f_{o}\left(\frac{u}{2^{n-m}}\right)-f_{o}\left(\frac{u}{2^{m}}\right)\right)\right)\\ &\leqslant k^{m}\sum_{i=1}^{n-m}\left(\frac{k^{2}}{2}\right)^{i}\Gamma\left(\frac{u}{2^{i}.2^{m}},\frac{u}{2^{i}.2^{m}},\frac{-u}{2^{i}.2^{m}}\right)\\ &\leqslant \frac{2^{m}}{k^{m+1}}\sum_{i=m+1}^{n}\left(\frac{k^{2}}{2}\right)^{2}\Gamma\left(\frac{u}{2^{i}},\frac{u}{2^{i}},\frac{-u}{2^{i}}\right) \end{split}$$

for all $u \in V$. Since the right hand side of the above inequality tends to zero as n goes to infinity, the sequence $\left\{2^n f_o\left(\frac{u}{2^n}\right)\right\}$ is a ρ -Cauchy sequence in X_ρ and so the sequence $\left\{2^n f_o\left(\frac{u}{2^n}\right)\right\}$ is a ρ -convergent sequence on X_ρ . Thus, we may define a mapping $A:V\to X_\rho$ as

$$A(u) = \rho - \lim_{n \to \infty} 2^n f_o\left(\frac{u}{2^n}\right), \text{ i.e., } \lim_{n \to \infty} \rho\left(2^n f_o\left(\frac{u}{2^n}\right) - A(u)\right) = 0$$

for all $u \in V$. According to the Δ_2 -condition, we obtain the following inequality

$$\begin{split} \rho\left(A(u)-f(u)\right) &\leqslant \frac{1}{2}\rho\left(2A(u)-2^{n+1}f_o\left(\frac{u}{2^n}\right)\right) + \frac{1}{2}\rho\left(2^{n+1}f_o\left(\frac{u}{2^n}\right)-2f(u)\right) \\ &\leqslant \frac{k}{2}\rho\left(A(u)-2^nf_o\left(\frac{u}{2^n}\right)\right) + \frac{k}{2}\rho\left(2^nf_o\left(\frac{u}{2^n}\right)-f(u)\right) \\ &\leqslant \frac{1}{2}\sum_{i=1}^{\infty}\left(\frac{k^2}{2}\right)^i\Gamma\left(\frac{u}{2^i},\frac{u}{2^i},\frac{-u}{2^i}\right) + \frac{k}{2}\rho\left(2^nf_o\left(\frac{u}{2^n}\right)-f(u)\right) \end{split}$$

for all $u \in V$. Taking n tends to ∞ , we conclude that the estimation (4.16) of f by A holds for all $u \in V$. Now, we claim that the mapping A is additive. Replacing (u, v, w) by $\left(\frac{u}{2^n}, \frac{v}{2^n}, \frac{w}{2^n}\right)$ in (4.15) with Δ_2 -condition, we obtain

$$\rho\left(2^n \mathsf{Df}_o\left(\frac{\mathfrak{u}}{2^{\mathfrak{n}}}, \frac{\nu}{2^{\mathfrak{n}}}, \frac{w}{2^{\mathfrak{n}}}\right)\right) \leqslant k^n \Gamma\left(\frac{\mathfrak{u}}{2^{\mathfrak{n}}}, \frac{\nu}{2^{\mathfrak{n}}}, \frac{w}{2^{\mathfrak{n}}}\right)$$

for all $u, v, w \in V$. Thus, it follows from the Δ_2 -condition such that

$$\begin{split} &\rho\left(A\left(\frac{u+v}{2}-w\right)+A\left(\frac{v+w}{2}-u\right)+A\left(\frac{w+u}{2}-v\right)-\left(A(u-v)+A(v-w)+A(w-u)\right)\right)\\ &\leqslant \frac{1}{7}\rho\left(7\left(A\left(\frac{u+v}{2}-w\right)-2^nf_o\left(\frac{u+v}{2^{n+1}}-\frac{w}{2^n}\right)\right)\right)\\ &+\frac{1}{7}\rho\left(7\left(A\left(\frac{v+w}{2}-u\right)-2^nf_o\left(\frac{v+w}{2^{n+1}}-\frac{u}{2^n}\right)\right)\right)\\ &+\frac{1}{7}\rho\left(7\left(A\left(\frac{w+u}{2}-v\right)-2^nf_o\left(\frac{w+u}{2^{n+1}}-\frac{v}{2^n}\right)\right)\right)+\frac{1}{7}\rho\left(7\left(-A(u-v)+2^nf_o\left(\frac{u-v}{2^n}\right)\right)\right)\\ &+\frac{1}{7}\rho\left(7\left(-A(v-w)+2^nf_o\left(\frac{v-w}{2^n}\right)\right)\right)+\frac{1}{7}\rho\left(7\left(-A(w-u)+2^nf_o\left(\frac{w-u}{2^n}\right)\right)\right)\\ &+\frac{1}{7}\rho\left(7\left(2^n\left(f_o\left(\frac{u+v}{2^{n+1}}-\frac{w}{2^n}\right)+f_o\left(\frac{v+w}{2^{n+1}}-\frac{u}{2^n}\right)+f_o\left(\frac{w+u}{2^{n+1}}-\frac{v}{2^n}\right)\right)\\ &-\left(f_o\left(\frac{u-v}{2^n}\right)+f_o\left(\frac{v-w}{2^n}\right)+f_o\left(\frac{w-u}{2^n}\right)\right)\right)\right)\\ &\leqslant \frac{k}{7}\rho\left(A\left(\frac{u+v}{2}-w\right)-2^nf_o\left(\frac{u+v}{2^{n+1}}-\frac{v}{2^n}\right)\right)+\frac{k}{7}\rho\left(A(u-v)+2^nf_o\left(f_o\left(\frac{u-v}{2^n}\right)\right)\right)\\ &+\frac{k}{7}\rho\left(A(v-w)+2^nf_o\left(f_o\left(\frac{v-w}{2^n}\right)\right)\right)+\frac{k}{7}\rho\left(-A(w-u)+2^nf_o\left(f_o\left(\frac{w-u}{2^n}\right)\right)\right)\\ &+\frac{k}{7}\rho\left(2^n\left(f_o\left(\frac{u+v}{2^{n+1}}-\frac{w}{2^n}\right)+f_o\left(\frac{v+w}{2^{n+1}}-\frac{u}{2^n}\right)+f_o\left(\frac{w+u}{2^{n+1}}-\frac{v}{2^n}\right)\right)\\ &-\left(f_o\left(\frac{u-v}{2^n}\right)+f_o\left(\frac{v-w}{2^n}\right)+f_o\left(\frac{w-u}{2^{n+1}}-\frac{u}{2^n}\right)\right)\right) \end{split}$$

for all $u, v, w \in V$ and all positive integers n. Let us take the limit as n tends to ∞ , one see that A is additive. In order to prove A is unique, let A'(u) be another additive mapping satisfying (4.16) and (1.3). Since A and A' are additive mappings, $A\left(\frac{u}{2^n}\right) = \frac{1}{2^n}A(u)$ and $A'\left(\frac{u}{2^n}\right) = \frac{1}{2^n}A'(u)$ hold. Thus

$$\begin{split} \rho\left(A(u)-A'(u)\right) &= \frac{1}{2}\rho\left(2^{n+1}A\left(\frac{u}{2^n}\right)-2^{n+1}f_o\left(\frac{u}{2^n}\right)\right) + \frac{1}{2}\rho\left(2^{n+1}f_o\left(\frac{u}{2^n}\right)-2^{n+1}A'\left(\frac{u}{2^n}\right)\right) \\ &\leqslant \frac{k^{n+1}}{2}\rho\left(A\left(\frac{u}{2^n}\right)-f_o\left(\frac{u}{2^n}\right)\right) + \frac{k^{n+1}}{2}\rho\left(f_o\left(\frac{u}{2^n}\right)-A'\left(\frac{u}{2^n}\right)\right) \\ &\leqslant \left(\frac{2}{k}\right)^{n-1}\sum_{i=n+1}^{\infty}\left(\frac{k^2}{2}\right)^i\Gamma\left(\frac{u}{2^{i}},\frac{u}{2^{i}},\frac{-u}{2^{i}}\right) \to 0 \text{ as } n\to\infty \end{split}$$

for all $u \in V$. Hence A is unique.

For j = -1, we can prove the similar stability result. Hence we complete the proof.

Corollary 4.7. Let Θ and τ be nonnegative real numbers and X_ρ satisfies Δ_2 condition. If an odd mapping $f_o:V\to X_\rho$ satisfies the inequality

$$\rho(\mathrm{Df}_{\Omega}(\mathfrak{u}, \mathfrak{v}, \mathfrak{w})) \leq \Theta$$

for all $u,v,w\in V$, hen there exists a unique additive mapping $A:V\to X_\rho$ such that

$$\rho(f_{o}(u) - A(u)) \leqslant \frac{k^{2}\Theta}{|1|}$$

for all $u \in V$.

Corollary 4.8. Let Θ and τ be nonnegative real numbers and X_{ρ} satisfies Δ_2 condition with $2^{\tau} \neq k^2$. If an odd mapping $f_{\circ}: V \to X_{\rho}$ satisfies the inequality

$$\rho\left(\mathsf{Df}_{o}(\mathsf{u},\mathsf{v},w)\right) \leqslant \Theta\left(\left\|\mathsf{u}\right\|^{\tau} + \left\|\mathsf{v}\right\|^{\tau} + \left\|w\right\|^{\tau}\right)$$

for all $u, v, w \in V$, then there exists a unique additive mapping $A: V \to X_\rho$ such that

$$\rho\left(f_o(u) - A(u)\right) \leqslant \frac{3k^2\Theta||u||^{\tau}}{|k^2 - 2^{\tau}|}$$

for all $u \in V$.

Corollary 4.9. Let Θ and τ be nonnegative real numbers and X_{ρ} satisfies Δ_2 condition with $2^{3\tau} \neq k^2$. If an odd mapping $f_{\circ}: V \to X_{\rho}$ satisfies the inequality

$$\rho (\mathrm{Df}_{o}(\mathbf{u}, \mathbf{v}, \mathbf{w})) \leq \Theta (\|\mathbf{u}\|^{\tau} \|\mathbf{v}\|^{\tau} \|\mathbf{w}\|^{\tau})$$

for all $u, v, w \in V$, then there exists a unique additive mapping $A: V \to X_\rho$ such that

$$\rho\left(f_o(u) - A(u)\right) \leqslant \frac{k^2 \Theta \|u\|^{3\tau}}{|k^2 - 2^{3\tau}|}$$

for all $u \in V$.

Corollary 4.10. Let Θ and τ be nonnegative real numbers and X_{ρ} satisfies Δ_2 condition with $2^{3\tau} \neq k^2$. If an odd mapping $f_{\circ}: V \to X_{\rho}$ satisfies the inequality

$$\rho\left(\mathsf{Df}_{o}(\mathsf{u}, \mathsf{v}, w)\right) \leqslant \Theta\left(\|\mathsf{u}\|^{\tau} \|\mathsf{v}\|^{\tau} \|w\|^{\tau} + \|\mathsf{u}\|^{3\tau} + \|\mathsf{v}\|^{3\tau} + \|w\|^{3\tau}\right)$$

for all $u,v,w\in V,$ then there exists a unique additive mapping $A:V\to X_\rho$ such that

$$\rho(f_o(u) - A(u)) \le \frac{4k^2\Theta||u||^{3\tau}}{|k^2 - 2^{3\tau}|}$$

for all $u \in V$.

4.3. Quartic stability of (1.3) in modular space without Δ_2 -conditions

In this subsection, we present the Ulam-Hyers stability of the additive-quartic functional equation (1.3) using Hyers' direct method in modular space without Δ_2 -conditions.

Theorem 4.11. Let $j \in \{-1, 1\}$. Let $\Gamma : V^3 \to [0, \infty)$ be a function such that

$$\sum_{k=0}^{\infty} \frac{\Gamma\left(2^{kj}u, 2^{kj}v, 2^{kj}w\right)}{2^{4kj}} < \infty \tag{4.18}$$

for all $u, v, w \in V$ and $f_{q_2}: V \to X_{\rho}$ be an even mapping satisfying the inequality

$$\rho\left(\mathsf{D}\,\mathsf{f}_{\mathsf{q}_2}(\mathsf{u},\mathsf{v},w)\right)\leqslant\Gamma\left(\mathsf{u},\mathsf{v},w\right)$$

for all $u, v, w \in V$. Then there exists a unique quartic mapping $Q_2 : V \to X_p$ such that

$$\rho\left(f_{q_2}(u) - Q_2(u)\right) \leqslant \sum_{i = \frac{1-j}{2}}^{\infty} \frac{\Gamma(2^{ij}u, 2^{ij}u, -2^{ij}u)}{2^{4ij}}$$

for all $u \in V$. The mapping $Q_2(u)$ is defined by

$$Q_2(u) = \rho - \lim_{k \to \infty} \frac{f_{q_2}(2^{kj}u)}{2^{4kj}}$$
(4.19)

for all $u \in V$.

Proof. Replacing (u, v, w) by (u, u, -u) and dividing by 2^4 , we get

$$\rho\left(\frac{f_{q_2}(2\mathfrak{u})}{2^4} - f_{q_2}(\mathfrak{u})\right) \leqslant \frac{1}{2^4}\Gamma(\mathfrak{u},\mathfrak{u},-\mathfrak{u})$$

for all $u \in V$, since f is an even mapping. Then the conclusion is a direct consequence of Theorem 4.1. \square

Corollary 4.12. Let Θ and τ be nonnegative real numbers. If an even mapping $f_{q_2}: V \to X_\rho$ satisfies the inequality

$$\rho\left(\mathsf{Df}_{\mathsf{q}_2}(\mathfrak{u}, \mathfrak{v}, \mathfrak{w})\right) \leqslant \Theta$$

for all $u, v, w \in V$, then there exists a unique quartic mapping $Q_2 : V \to X_\rho$ such that

$$\rho\left(f_{q_2}(u) - Q_2(u)\right) \leqslant \frac{\Theta}{|15|}$$

for all $u \in V$.

Corollary 4.13. Let Θ and τ be nonnegative real numbers with $\tau \neq 4$. If an even mapping $f_{q_2}: V \to X_\rho$ satisfies the inequality

$$\rho\left(\mathsf{Df}_{\mathsf{q}_{2}}(\mathsf{u},\mathsf{v},w)\right)\leqslant\Theta\left(\left\|\mathsf{u}\right\|^{\tau}+\left\|\mathsf{v}\right\|^{\tau}+\left\|w\right\|^{\tau}\right)$$

for all $u, v, w \in V$, then there exists a unique quartic mapping $Q_2 : V \to X_\rho$ such that

$$\rho\left(f_{q_2}(u) - Q_2(u)\right) \leqslant \frac{3\Theta||u||^{\tau}}{|2^4 - 2^{\tau}|}$$

for all $u \in V$.

Corollary 4.14. Let Θ and τ be nonnegative real numbers with $\tau \neq \frac{4}{3}$. If an odd mapping $f_{q_2}: V \to X_\rho$ satisfies the inequality

$$\rho\left(\mathsf{Df}_{\mathsf{q}_{2}}(\mathfrak{u}, \mathfrak{v}, \mathfrak{w})\right) \leqslant \Theta\left(\left\|\mathfrak{u}\right\|^{\tau} \left\|\mathfrak{v}\right\|^{\tau} \left\|\mathfrak{w}\right\|^{\tau}\right)$$

for all $u, v, w \in V$, then there exists a unique quartic mapping $Q_2 : V \to X_\rho$ such that

$$\rho \left(f_{q_2}(u) - Q_2(u) \right) \leqslant \frac{\Theta ||u||^{3\tau}}{|2^4 - 2^{3\tau}|}$$

for all $u \in V$.

Corollary 4.15. Let Θ and τ be nonnegative real numbers with $\tau \neq \frac{4}{3}$. If an even mapping $f_{q_2}: V \to X_\rho$ satisfies the inequality

$$\rho\left(\mathsf{Df}_{\mathsf{q}_{2}}(\mathsf{u},\mathsf{v},w)\right)\leqslant\Theta\left(\left\|\mathsf{u}\right\|^{\tau}\left\|\mathsf{v}\right\|^{\tau}\left\|w\right\|^{\tau}+\left\|\mathsf{u}\right\|^{3\tau}+\left\|\mathsf{v}\right\|^{3\tau}+\left\|w\right\|^{3\tau}\right)$$

for all $u,v,w\in V,$ then there exists a unique quartic mapping $Q_2:V\to X_\rho$ such that

$$\rho\left(f_{q_2}(u)-Q_2(u)\right)\leqslant \frac{4\Theta||u||^{3\tau}}{|2^4-2^{3\tau}|}$$

4.4. Quartic stability of (1.3) in modular space with Δ_2 -conditions

In this subsection, we present the Ulam-Hyers stability of the additive-quartic functional equation (1.3) using Hyers' direct method in modular space with Δ_2 -conditions.

Theorem 4.16. Let $j \in \{-1, 1\}$. Let $\Gamma : V^3 \to [0, \infty)$ be a function such that

$$\sum_{n=0}^{\infty} \left(\frac{k^8}{2^4}\right)^n \Gamma\left(\frac{u}{2^{nj}}, \frac{u}{2^{nj}}, \frac{-u}{2^{nj}}\right) < \infty \quad and \quad \lim_{n \to \infty} k^{4nj} \Gamma\left(\frac{u}{2^{nj}}, \frac{v}{2^{nj}}, \frac{w}{2^{nj}}\right) = 0 \tag{4.20}$$

for all $u, v, w \in V$ and $f_{q_2}: V \to X_{\rho}$ be an even mapping satisfying the inequality

$$\rho\left(\mathsf{D}\,\mathsf{f}_{\mathsf{q}_2}(\mathsf{u},\mathsf{v},\mathsf{w})\right)\leqslant\Gamma\left(\mathsf{u},\mathsf{v},\mathsf{w}\right)\tag{4.21}$$

for all $u, v, w \in V$. Then there exists a unique quartic mapping $Q_2 : V \to X_\rho$ such that

$$\rho\left(f_{q_2}(u) - Q_2(u)\right) \leqslant \frac{1}{2^4} \sum_{i = \frac{1-j}{2}}^{\infty} \left(\frac{k^8}{16}\right)^i \Gamma\left(\frac{u}{2^{ij}}, \frac{u}{2^{ij}}, \frac{-u}{2^{ij}}\right)$$

for all $u \in V$. The mapping $Q_2(u)$ is defined by

$$Q_2(u) = \rho - \lim_{n \to \infty} 2^{4nj} f_{q_2} \left(\frac{u}{2^{nj}} \right)$$
(4.22)

for all $u \in V$.

Proof. Assume j = 1. Replacing (u, v, w) by $(\frac{u}{2}, \frac{u}{2}, \frac{-u}{2})$ in (4.21), we get

$$\rho\left(f_{q_2}(u) - 2^4 f_{q_2}\left(\frac{u}{2}\right)\right) \leqslant \Gamma\left(\frac{u}{2}, \frac{u}{2}, \frac{-u}{2}\right)$$

for all $u \in V$, since f is an even mapping. Then the conclusion is a direct consequence of Theorem 4.6. \square

Corollary 4.17. Let Θ and τ be nonnegative real numbers and X_{ρ} satisfies Δ_2 condition. If an even mapping $f_{q_2}: V \to X_{\rho}$ satisfies the inequality

$$\rho\left(\mathsf{Df}_{\mathfrak{q}_2}(\mathfrak{u}, \mathfrak{v}, \mathfrak{w})\right) \leqslant \Theta$$

for all $u, v, w \in V$, then there exists a unique quartic mapping $Q_2 : V \to X_\rho$ such that

$$\rho\left(f_{q_2}(\mathfrak{u}) - Q_2(\mathfrak{u})\right) \leqslant \frac{k^8\Theta}{|15|}$$

for all $u \in V$.

Corollary 4.18. Let Θ and τ be nonnegative real numbers and X_{ρ} satisfies Δ_2 condition with $2^{\tau} \neq k^8$. If an even mapping $f_{q_2}: V \to X_{\rho}$ satisfies the inequality

$$\rho\left(\mathsf{Df}_{\mathsf{q}_2}(\mathsf{u},\mathsf{v},w)\right) \leqslant \Theta\left(\|\mathsf{u}\|^\tau + \|\mathsf{v}\|^\tau + \|w\|^\tau\right)$$

for all $u, v, w \in V$, then there exists a unique quartic mapping $Q_2 : V \to X_\rho$ such that

$$\rho\left(f_{\mathfrak{q}_2}(\mathfrak{u})-Q_2(\mathfrak{u})\right)\leqslant \frac{3k^8\Theta||\mathfrak{u}||^\tau}{|k^8-2^\tau|}$$

Corollary 4.19. Let Θ and τ be nonnegative real numbers and X_{ρ} satisfies Δ_2 condition with $2^{3\tau} \neq k^8$. If an even mapping $f_{q_2}: V \to X_{\rho}$ satisfies the inequality

$$\rho\left(\mathsf{Df}_{\mathsf{q}_{2}}(\mathfrak{u}, \nu, w)\right) \leqslant \Theta\left(\|\mathfrak{u}\|^{\tau} \|\nu\|^{\tau} \|w\|^{\tau}\right)$$

for all $u, v, w \in V$, then there exists a unique quartic mapping $Q_2 : V \to X_\rho$ such that

$$\rho\left(f_{\mathfrak{q}_2}(\mathfrak{u})-Q_2(\mathfrak{u})\right)\leqslant \frac{k^8\Theta||\mathfrak{u}||^{3\tau}}{|k^8-2^{3\tau}|}$$

for all $u \in V$.

Corollary 4.20. Let Θ and τ be nonnegative real numbers and X_{ρ} satisfies Δ_2 condition with $2^{3\tau} \neq k^8$. If an even mapping $f_{q_2}: V \to X_{\rho}$ satisfies the inequality

$$\rho\left(Df_{q_{2}}(u, \nu, w)\right) \leqslant \Theta\left(\|u\|^{\tau} \|\nu\|^{\tau} \|w\|^{\tau} + \|u\|^{3\tau} + \|\nu\|^{3\tau} + \|w\|^{3\tau}\right)$$

for all $u,v,w\in V$, then there exists a unique quartic mapping $Q_2:V\to X_\rho$ such that

$$\rho\left(f_{q_2}(u) - Q_2(u)\right) \leqslant \frac{4k^8\Theta||u||^{3\tau}}{|k^8 - 2^{3\tau}|}$$

for all $u \in V$.

4.5. Additive-quartic stability of (1.3) in modular space without Δ_2 -conditions

In this subsection, we present the Ulam -Hyers stability of the additive-quartic mixed type functional equation (1.3) using Hyers' direct method in modular space without Δ_2 -conditions.

Theorem 4.21. Let $j \in \{-1,1\}$. Let $\Gamma : V \to [0,\infty)$ be a function satisfying (4.1) and (4.18) for all $u,v,w \in V$. Let $f : V \to X_p$ be a mapping satisfying the inequality

$$\rho\left(\mathrm{Df}(\mathbf{u},\mathbf{v},w)\right)\leqslant\Gamma\left(\mathbf{u},\mathbf{v},w\right)$$

for all $u,v,w \in V$. Then there exists a unique additive mapping $A:V \to X_\rho$ and a unique quartic mapping $Q_2:V \to X_\rho$ such that

$$\rho\left(f(u) - A(u) - Q_2(u)\right) \leqslant \frac{1}{2} \left\{ \sum_{i = \frac{1-j}{2}}^{\infty} \frac{\Gamma(2^{ij}u, 2^{ij}u, -2^{ij}u)}{2^{ij}} + \sum_{i = \frac{1-j}{2}}^{\infty} \frac{\Gamma(2^{ij}u, 2^{ij}u, -2^{ij}u)}{2^{4ij}} \right\}$$

for all $u \in V$. The mappings A(u) and $Q_2(u)$ respectively are defined in (4.4) and (4.19).

$$\begin{split} \rho\left(\mathsf{Df}_{\mathsf{q}_{2}}\left(\mathsf{u},\mathsf{v},w\right)\right) &= \frac{1}{2}\left\{\rho\left(\mathsf{Df}\left(\mathsf{u},\mathsf{v},w\right) + \mathsf{Df}\left(-\mathsf{u},-\mathsf{v},-w\right)\right)\right\} \\ &\leqslant \frac{1}{2}\left\{\rho\left(\mathsf{Df}\left(\mathsf{u},\mathsf{v},w\right)\right) + \rho\left(\mathsf{Df}\left(-\mathsf{u},-\mathsf{v},-w\right)\right)\right\} \leqslant \frac{1}{2}\left\{\Gamma\left(\mathsf{u},\mathsf{v},w\right) + \Gamma\left(-\mathsf{u},-\mathsf{v},-w\right)\right\} \end{split}$$

for all $u \in V$. Hence by Theorem 4.11, there exists a unique quartic mapping $Q_2 : V \to X_\rho$ such that

$$\rho\left(f_{q_{2}}(u) - Q_{2}(u)\right) \leqslant \frac{1}{2} \left\{ \sum_{i=0}^{\infty} \left(\frac{\Gamma\left(2^{i}u, 2^{i}u, -2^{i}u\right)}{2^{4i}} + \frac{\Gamma\left(-2^{i}u, -2^{i}u, 2^{i}u\right)}{2^{4i}} \right) \right\} \tag{4.23}$$

 $\text{for all } u \in V. \text{ Again } f_o(u) = \tfrac{1}{2} \{f(u) - f(-u)\} \text{ for all } u \in V. \text{ Then } f_c(0) = 0, f_o(u) = -f_o(-u). \text{ Hence } f_o(u) = -f_o(u) = -$

$$\rho \left(\mathsf{Df}_{o} \left(\mathsf{u}, \mathsf{v}, \mathsf{w} \right) \right) = \frac{1}{2} \left\{ \rho \left(\mathsf{Df} \left(\mathsf{u}, \mathsf{v}, \mathsf{w} \right) + \mathsf{Df} \left(\mathsf{u}, \mathsf{v}, \mathsf{w} \right) \right) \right\} \\
\leqslant \frac{1}{2} \left\{ \rho \left(\mathsf{Df} \left(\mathsf{u}, \mathsf{v}, \mathsf{w} \right) \right) + \rho \left(\mathsf{Df} \left(-\mathsf{u}, -\mathsf{v}, -\mathsf{w} \right) \right) \right\} \leqslant \frac{1}{2} \left\{ \Gamma \left(\mathsf{u}, \mathsf{v}, \mathsf{w} \right) + \Gamma \left(-\mathsf{u}, -\mathsf{v}, -\mathsf{w} \right) \right\} \\$$

for all $\mathfrak{u} \in V$. Hence by Theorem 4.1, there exists a unique additive mapping $A:V \to X_\rho$ such that

$$\rho\left(f_o(\mathfrak{u})-A(\mathfrak{u})\right)\leqslant\frac{1}{2}\left\{\sum_{i=0}^{\infty}\left(\frac{\Gamma\left(2^i\mathfrak{u},2^i\mathfrak{u},-2^i\mathfrak{u}\right)}{2^i}+\frac{\Gamma\left(-2^i\mathfrak{u},-2^i\mathfrak{u},2^i\mathfrak{u}\right)}{2^i}\right)\right\} \tag{4.24}$$

for all $u \in V$. Since $f(u) = f_{q_2}(u) + f_o(u)$, it follows from (4.23) and (4.24) that

$$\begin{split} \rho\left(f(u) - A(u) - Q_2(u)\right) &= \rho\left(f_o(u) + f_{q_2}(u) - A(u) - Q_2(u)\right) \\ &\leqslant \rho\left(f_{q_2}(u) - Q_2(u)\right) + \rho\left(f_o(u) - A(u)\right) \\ &\leqslant \frac{1}{2}\left\{\sum_{i=0}^{\infty} \left(\frac{\Gamma\left(2^iu, 2^iu, -2^iu\right)}{2^i} + \frac{\Gamma\left(-2^iu, -2^iu, -2^iu\right)}{2^i}\right) \\ &+ \sum_{i=0}^{\infty} \left(\frac{\Gamma\left(2^iu, 2^iu, -2^iu\right)}{2^{4i}} + \frac{\Gamma\left(-2^iu, -2^iu, 2^iu\right)}{2^{4i}}\right)\right\} \end{split}$$

for all $u \in V$. Hence we complete the proof.

Corollary 4.22. Let Θ and τ be nonnegative real numbers. If a mapping $f: V \to X_\rho$ satisfies the inequality

$$\rho\left(\mathrm{Df}(\mathfrak{u}, \nu, w)\right) \leqslant \Theta$$

for all $u,v,w\in V$, then there exists a unique additive mapping $A:V\to X_\rho$ and a unique quartic mapping $Q_2:V\to X_\rho$ such that

$$\rho\left(f(u) - A(u) - Q_2(u)\right) \leqslant \frac{16\Theta}{15}$$

for all $u \in V$.

Corollary 4.23. Let Θ and τ be nonnegative real numbers with $\tau \neq 1,4$. If a mapping $f:V \to X_\rho$ satisfies the inequality

$$\rho\left(\mathsf{Df}(\mathsf{u},\mathsf{v},w)\right)\leqslant\Theta\left(\left\|\mathsf{u}\right\|^{\tau}+\left\|\mathsf{v}\right\|^{\tau}+\left\|w\right\|^{\tau}\right)$$

for all $u,v,w\in V$, then there exists a unique additive mapping $A:V\to X_\rho$ and a unique quartic mapping $Q_2:V\to X_\rho$ such that

$$\rho\left(f(u)-A(u)-Q_2(u)\right)\leqslant 3\Theta\left(\frac{1}{|2-2^\tau|}+\frac{1}{|2^4-2^\tau|}\right)\|u\|^\tau$$

for all $u \in V$.

Corollary 4.24. Let Θ and τ be nonnegative real numbers with $\tau \neq \frac{1}{3}, \frac{4}{3}$. If a mapping $f: V \to X_\rho$ satisfies the inequality

$$\rho\left(Df(u,v,w)\right)\leqslant\Theta\left(\left\|u\right\|^{\tau}\left\|v\right\|^{\tau}\left\|w\right\|^{\tau}\right)$$

for all $u,v,w\in V$, then there exists a unique additive mapping $A:V\to X_\rho$ and a unique quartic mapping $Q_2:V\to X_\rho$ such that

$$\rho\left(f(u)-A(u)-Q_2(u)\right)\leqslant\Theta\left(\frac{1}{|2-2^{3\tau}|}+\frac{1}{|2^4-2^{3\tau}|}\right)\|u\|^{3\tau}$$

Corollary 4.25. Let Θ and τ be nonnegative real numbers with $\tau \neq \frac{1}{3}, \frac{4}{3}$. If a mapping $f: V \to X_\rho$ satisfies the inequality

$$\rho\left(Df(u,v,w)\right) \leqslant \Theta\left(\left\|u\right\|^{\tau}\left\|v\right\|^{\tau}\left\|w\right\|^{\tau}+\left\|u\right\|^{3\tau}+\left\|v\right\|^{3\tau}+\left\|w\right\|^{3\tau}\right)$$

for all $u,v,w\in V$, then there exists a unique additive mapping $A:V\to X_\rho$ and a unique quartic mapping $Q_2:V\to X_\rho$ such that

$$\rho\left(f(u)-A(u)-Q_2(u)\right)\leqslant 4\Theta\left(\frac{1}{|2-2^{3\tau}|}+\frac{1}{|2^4-2^{3\tau}|}\right)\|u\|^{3\tau}$$

for all $u \in V$.

4.6. Additive-quartic stability of (1.3) in modular space with Δ_2 -conditions

In this subsection, we present the Ulam-Hyers stability of the additive-quartic mixed type functional equation (1.3) using Hyers' direct method in modular space with Δ_2 -conditions.

Theorem 4.26. Let $j \in \{-1,1\}$. Let $\Gamma : V \to [0,\infty)$ be a function satisfying (4.14) and (4.20) for all $u,v,w \in V$. Let $f : V \to X_\rho$ be a mapping satisfying the inequality

$$\rho\left(\mathsf{D}\;\mathsf{f}(\mathsf{u},\mathsf{v},w)\right)\leqslant\Gamma\left(\mathsf{u},\mathsf{v},w\right)$$

for all $u,v,w\in V$. Then there exists a unique additive mapping $A:V\to X_\rho$ and a unique quartic mapping $Q_2:V\to X_\rho$ such that

$$\rho\left(f(u)-A(u)-Q_2(u)\right)\leqslant \frac{1}{2}\left\{\sum_{i=\frac{1-j}{2}}^{\infty}\left(\frac{k^2}{2}\right)^i\Gamma\left(\frac{u}{2^{ij}},\frac{u}{2^{ij}},\frac{-u}{2^{ij}}\right)+\sum_{i=\frac{1-j}{2}}^{\infty}\left(\frac{k^8}{2^4}\right)^i\Gamma\left(\frac{u}{2^{ij}},\frac{u}{2^{ij}},\frac{-u}{2^{ij}}\right)\right\}$$

for all $u \in V$. The mappings A(u) and $Q_2(u)$ respectively are defined in (4.17) and (4.22).

$$\begin{split} \rho\left(\mathsf{Df}_{\mathsf{q}_{2}}\left(\mathsf{u},\mathsf{v},w\right)\right) &= \frac{1}{2}\left\{\rho\left(\mathsf{Df}\left(\mathsf{u},\mathsf{v},w\right) + \mathsf{Df}\left(-\mathsf{u},-\mathsf{v},-w\right)\right)\right\} \\ &\leqslant \frac{1}{2}\left\{\rho\left(\mathsf{Df}\left(\mathsf{u},\mathsf{v},w\right)\right) + \rho\left(\mathsf{Df}\left(-\mathsf{u},-\mathsf{v},-w\right)\right)\right\} \leqslant \frac{1}{2}\left\{\Gamma\left(\mathsf{u},\mathsf{v},w\right) + \Gamma\left(-\mathsf{u},-\mathsf{v},-w\right)\right\} \end{split}$$

for all $u \in V$. Hence by Theorem 4.16, there exist sa unique quartic mapping $Q_2 : V \to X_\rho$ such that

$$\rho\left(f_{q_2}(u) - Q_2(u)\right) \leqslant \frac{1}{2} \left\{ \sum_{i=0}^{\infty} \left(\frac{k^8}{16}\right)^i \left(\Gamma\left(\frac{u}{2^i}, \frac{u}{2^i}, \frac{-u}{2^i}\right) + \Gamma\left(\frac{-u}{2^i}, \frac{-u}{2^i}, \frac{u}{2^i}\right)\right) \right\} \tag{4.25}$$

 $\text{for all } u \in V. \text{ Again } f_o(u) = \tfrac{1}{2} \{f(u) - f(-u)\} \text{ for all } u \in V. \text{ Then } f_c(0) = 0, f_o(u) = -f_o(-u). \text{ Hence } f_c(u) = 0, f_o(u) = 0, f_$

$$\rho\left(\mathsf{Df}_{\mathsf{o}}\left(\mathsf{u},\mathsf{v},w\right)\right) = \frac{1}{2}\left\{\rho\left(\mathsf{Df}\left(\mathsf{u},\mathsf{v},w\right) + \mathsf{Df}\left(\mathsf{u},\mathsf{v},w\right)\right)\right\}$$

$$\leqslant \frac{1}{2}\left\{\rho\left(\mathsf{Df}\left(\mathsf{u},\mathsf{v},w\right)\right) + \rho\left(\mathsf{Df}\left(-\mathsf{u},-\mathsf{v},-w\right)\right)\right\} \leqslant \frac{1}{2}\left\{\Gamma\left(\mathsf{u},\mathsf{v},w\right) + \Gamma\left(-\mathsf{u},-\mathsf{v},-w\right)\right\}$$

for all $u \in V$. Hence by Theorem 4.6, there exists a unique additive mapping $A : V \to X_{\rho}$ such that

$$\rho\left(f_{o}(u) - A(u)\right) \leqslant \frac{1}{2} \left\{ \sum_{i=0}^{\infty} \left(\frac{k^{2}}{2}\right)^{i} \left(\Gamma\left(\frac{u}{2^{i}}, \frac{u}{2^{i}}, \frac{-u}{2^{i}}\right) + \Gamma\left(\frac{-u}{2^{i}}, \frac{-u}{2^{i}}, \frac{u}{2^{i}}\right)\right) \right\}$$
(4.26)

for all $u \in V$. Since $f(u) = f_{q_2}(u) + f_o(u)$, it follows from (4.25) and (4.26) that

$$\begin{split} \rho\left(f(u)-A(u)-Q_2(u)\right) &= \rho\left(f_o(u)+f_{q_2}(u)-A(u)-Q_2(u)\right) \\ &\leqslant \rho\left(f_{q_2}(u)-Q_2(u)\right)+\rho\left(f_o(u)-A(u)\right) \\ &\leqslant \frac{1}{2}\left\{\sum_{i=0}^{\infty}\left(\frac{k^8}{16}\right)^i\left(\Gamma\left(\frac{u}{2^i},\frac{u}{2^i},\frac{-u}{2^i}\right)+\Gamma\left(\frac{-u}{2^i},\frac{-u}{2^i},\frac{u}{2^i}\right)\right) \\ &+\sum_{i=0}^{\infty}\left(\frac{k^2}{2}\right)^i\left(\Gamma\left(\frac{u}{2^i},\frac{u}{2^i},\frac{-u}{2^i}\right)+\Gamma\left(\frac{-u}{2^i},\frac{u}{2^i},\frac{u}{2^i}\right)\right) \right\} \end{split}$$

for all $u \in V$. Hence we complete the proof.

Corollary 4.27. Let Θ and τ be nonnegative real numbers and X_{ρ} satisfies Δ_2 condition. If a mapping $f: V \to X_{\rho}$ satisfies the inequality

$$\rho\left(\mathrm{Df}(\mathfrak{u}, \mathfrak{v}, \mathfrak{w})\right) \leqslant \Theta$$

for all $u,v,w\in V$, then there exists a unique additive mapping $A:V\to X_\rho$ and a unique quartic mapping $Q_2:V\to X_\rho$ such that

$$\rho\left(f(u) - A(u) - Q_2(u)\right) \leqslant k^2 \Theta\left(1 + \frac{k^6}{15}\right)$$

for all $u \in V$.

Corollary 4.28. Let Θ and τ be nonnegative real numbers and X_{ρ} satisfies Δ_2 condition with $2^{\tau} \neq k^2, k^8$. If a mapping $f: V \to X_{\rho}$ satisfies the inequality

$$\rho (Df(u, v, w)) \leq \Theta (\|u\|^{\tau} + \|v\|^{\tau} + \|w\|^{\tau})$$

for all $u,v,w\in V$, then there exists a unique additive mapping $A:V\to X_\rho$ and a unique quartic mapping $Q_2:V\to X_\rho$ such that

$$\rho\left(f(u) - A(u) - Q_2(u)\right) \leqslant 3\Theta\left(\frac{k^2}{|k^2 - 2^\tau|} + \frac{k^8}{|k^8 - 2^\tau|}\right) ||u||^\tau$$

for all $u \in V$.

Corollary 4.29. Let Θ and τ be nonnegative real numbers and X_{ρ} satisfies Δ_2 condition with $2^{3\tau} \neq k^2, k^8$. If a mapping $f: V \to X_{\rho}$ satisfies the inequality

$$\rho\left(Df(u,v,w)\right) \leqslant \Theta\left(\left\|u\right\|^{\tau}\left\|v\right\|^{\tau}\left\|w\right\|^{\tau}\right)$$

for all $u,v,w\in V$, then there exists a unique additive mapping $A:V\to X_\rho$ and a unique quartic mapping $Q_2:V\to X_\rho$ such that

$$\rho\left(f(u)-A(u)-Q_2(u)\right)\leqslant\Theta\left(\frac{k^2}{|k^2-2^{3\tau}|}+\frac{k^8}{|k^8-2^{3\tau}|}\right)\|u\|^{3\tau}$$

for all $u \in V$.

Corollary 4.30. Let Θ and τ be nonnegative real numbers and X_{ρ} satisfies Δ_2 condition with $2^{3\tau} \neq k^2, k^8$. If a mapping $f: V \to X_{\rho}$ satisfies the inequality

$$\rho\left(Df(u,v,w)\right) \leqslant \Theta\left(\|u\|^{\tau} \|v\|^{\tau} \|w\|^{\tau} + \|u\|^{3\tau} + \|v\|^{3\tau} + \|w\|^{3\tau}\right)$$

for all $u,v,w\in V$, then there exists a unique additive mapping $A:V\to X_\rho$ and a unique quartic mapping $Q_2:V\to X_\rho$ such that

$$\rho\left(f(u) - A(u) - Q_2(u)\right) \leqslant 4\Theta\left(\frac{k^2}{|k^2 - 2^{3\tau}|} + \frac{k^8}{|k^8 - 2^{3\tau}|}\right) ||u||^{3\tau}$$

5. Conclusion

In this article, we have proved the stability results of additive functional equation, quartic functional equation, and additive-quartic mixed type functional equations in modular spaces with and without using the Δ_2 -condition by the direct method.

References

- [1] J. Aczél, J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, Cambridge, (1989).
- [2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. 1
- [3] D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57 (1951), 223–237.
- [4] Y. Cho, M. B. Ghaemi, M. Choubin, M. Eshaghi Gordji, On the Hyers-Ulam stability of sextic functional equations in b-homogeneous probabilistic modular spaces, Math. Inequal. Appl., 16 (2013), 1097–1114. 1
- [5] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, **62** (1992), 59–64.
- [6] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Co., River Edge, (2002).
- [7] E. Elqorachi, M. T. Rassias, Generalized Hyers-Ulam Stability of Trigonometric Functional Equations, Mathematics, 6 (2018), 11 pages.
- [8] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991), 431–434.
- [9] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436. 1
- [10] M. Heydari, S. M. Hosseini, G. B. Loghmani, Numerical solution of singular IVPs of Lane-Emden type using integral operator and radial basis functions, Int. J. Ind. Math., 4 (2012), 135–146. 1
- [11] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222–224. 1
- [12] D. H. Hyers, G. Isac, T. M. Rassias, Stability of Functional Equations in Several Variables, Birkäuser, Boston, (1998).
- [13] D. H. Hyers, T. M. Rassias, Approximate homomorphisms, Aequationes Math., 44 (1992), 125–153.
- [14] Y. F. Jin, C. Park, M. T. Rassias, Hom-derivations in C*-ternary algebras, Acta Math. Sin. (Engl. Ser.), 36 (2020), 1025–1038.
- [15] S.-M. Jung, Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients, J. Math. Anal. Appl., **320** (2006), 549–561.
- [16] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, (2011).
- [17] S.-M. Jung, K. S. Lee, M. T. Rassias, S. M. Yang, Approximation Properties of Solutions of a Mean Value-Type Functional Inequality, II, Mathematics, 8 (2020), 8 pages.
- [18] S.-M. Jung, D. Popa, M. T. Rassias, On the stability of the linear functional equation in a single variable on complete metric groups, J. Global Optim., **59** (2014), 165–171.
- [19] S.-M. Jung, M. T. Rassias, A linear functional equation of third order associated to the Fibonacci numbers, Abstr. Appl. Anal., 2014 (2014), 8 pages.
- [20] S.-M. Jung, M. T. Rassias, C. Mortici, On a functional equation of trigonometric type, Appl. Math. Comput., **252** (2015), 294–303.
- [21] P. Kannappan, Functional Equations and Inequalities with Applications, Springer, New York, (2009).
- [22] H.-M. Kim, H.-Y. Shin, Refined stability of additive and quadratic functional equations in modular spaces, J. Inequal. Appl., 2017 (2017), 13 pages. 1
- [23] Y.-H. Lee, S.-M. Jung, M. T. Rassias, *On an n-dimensional mixed type additive and quadratic functional equation*, Appl. Math. Comput., **228** (2014), 13–16.
- [24] Y.-H. Lee, S.-M. Jung, M. T. Rassias, *Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation*, J. Math. Inequal., **12** (2018), 43–61.
- [25] W. A. J. Luxemburg, Banach Function Spaces, Ph.D. Thesis (Delft University of Technology), Delft, (1955). 2
- [26] S. Mazur, W. Orlicz, On some classes of linear spaces, Studia Math., 17 (1958), 97–119. 2
- [27] T. Miura, S. Miyajima, S. E. Takahasi, *A characterization of Hyers-Ulam stability of first order linear differential operators*, J. Math. Anal. Appl., **286** (2003), 136–146.
- [28] C. Mortici, M. T. Rassias, S.-M. Jung, On the stability of a functional equation associated with the Fibonacci numbers, Abstr. Appl. Anal., 2014 (2014), 6 pages.
- [29] J. Musielak, W. Orlicz, On modular spaces, Studia Math., 18 (1959), 591–597. 2
- [30] J. Musielak, W. Orlicz, Some remarks on modular spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys., 7 (1959), 661–668. 2
- [31] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co., Tokyo, (1950). 2
- [32] C. Park, A. Bodaghi, S. O. Kim, A fixed point approach to stability of additive mappings in modular spaces without Δ_2 -conditions, J. Comput. Anal. Appl., **24** (2018), 1038–1048. 1
- [33] C. Park, M. T. Rassias, *Additive functional equations and partial multipliers in C*-algebras*, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, **113** (2019), 2261–2275.

- [34] C. Park, J. M. Rassias, A. Bodaghi, S. O. Kim, Approximate homomorphisms from ternary semigroups to modular spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 113 (2019), 2175–2188. 1
- [35] M. Ramdossa, D. Pachaiyappana, H. Duttab, Functional equation and its modular stability with and without Δ_p condition, Filomat, 34 (2020), 919–930. 1
- [36] T. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. 1
- [37] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. (2), 108 (1984), 445–446. 1
- [38] T. M. Rassias, Functional Equations and Inequalities, Springer Science & Business Media, Berlin (2000).
- [39] T. M. Rassias, Solution of a functional equation problem of Steven Butler, Octogon Math. Mag., 12 (2004), 152–153.
- [40] K. Ravi, M. Arunkumar, J. M. Rassias, Ulam stability for the orthogonally general Euler-Lagrange type functional equation, Int. J. Math. Stat., 3 (2008), 36–46. 1
- [41] P. K. Sahoo, P. Kannappan, Introduction to Functional Equations, CRC Press, Boca Raton, (2011).
- [42] T. Trif, On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions, J. Math. Anal. Appl., 272 (2002), 604–616.
- [43] S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, New York, (1964). 1
- [44] K. Wongkum, P. Chaipunya, P. Kumam, On the generalized Ulam-Hyers-Rassias stability of quadratic mappings in modular spaces without Δ_2 -conditions, J. Funct. Spaces, 2015 (2015), 6 pages. 1
- [45] K. Wongkum, P. Kumam, Y. J. Cho, P. Thounthong, P. Chaipunya, On the generalized Ulam-Hyers-Rassias stability for quartic functional equation in modular spaces, J. Nonlinear Sci. Appl., 10 (2017), 1399–1406. 1