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Abstract

In this paper, we prove the Ulam-Hyers stability of the following additive-quartic functional equation

u+v v+w w+u 25 7
f( > —w)—b—f(T—u)—i—f(T—v)=i(f(u—v]—i—f(v—w)—i—f[w—u))—i(f(v—u)+f(w—v)+f(u—w))

in modular spaces by using the direct method.
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1. Introduction

Stability of the functional equation has been growing tremendously over the last seventy years. Ulam
[43], who was responsible for this, raised the question of stability at a conference in 1940. The following
year, a mathematician named Hyers [11] gave an answer based on Ulam’s question. Aoki [2] published a
paper in1950 generalizing Hyers’ response. Then in 1978, Rassias [36] introduced a new stability result as
sum of two norms. Rassias [37] converted to the multiplication of two norms in 1982. In 1994, Gavruta [9]
provided a further generalization of Rassias theorem in which he replaced the bound by a general control
function. In 2008, Ravi [40] established mixed type stability by adding sum of two norms and product of
two norms. Subsequent authors have given flexible results using a lot of functional equations in modular
spaces [4, 10, 22, 32, 34, 35, 44, 45].

The additive functional equation is

fx+y)=Ff(x)+f(y). (1.1)
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Since f(x) = kx is the solution of the functional equation (1.1), every solution of the additive functional
equation is called an additive mapping. The functional equation

f(2x +y) + f(2x —y) = 4f(x +y) + 4f(x —y) + 24f(x) — 6f(y) (1.2)

is called a quartic functional equation. Since the function f(x) = x4

the quartic functional equation is called a quartic mapping.
In this paper, we present the Ulam-Hyers stability of the additive-quartic mixed type functional equa-
tion of the form

is a solution of (1.2), every solution of

u+v v+w w+u
f( > —w)—i—f(z—u)—i—f(z—\)) 13
= g—g (flu—v)+flv—w)+flw—u)) — 312 (fv—u)+flw—v) +flu—w))

in modular spaces by using the direct method.

2. Basic concepts on modular space

The research on modulars and modular spaces was begun by Nakano [31] as generalizations of
normed spaces. Since the 1950s, many prominent mathematicians like Luxemburg, Mazur, Musielak,
and Orlicz [25, 26, 29, 30] developed it extensively. Modulars and modular spaces have broad branches
of applications, e.g., interpolation theory and Orlicz spaces. We start by considering some basic relevant
notions.

Definition 2.1. Let X be a vector space over a field K (R or C). A generalized function p : X — [0, 00] is
called a modular if for any «, 3 € K and x,y € X,

(1) p(x) =0if and only if x = 0;

(2) p(ax) = p(x) for every & with || =1;

() plax+py) <p(x)+p(y)if a+B=Tand o, p > 0.

If the condition (3) is replaced with

4) plox+Py) < «®p(x) +PSp(y) if as+Ps=1and «, B > 0 withan s € (0,1],

then p is called an s-convex modular. We call 1-convex modulars as convex modulars.
A modular p on X generates a linear subspace X, of X naturally defined by

Xp = {x € X )l\grbp(kx) = 0}.

X, is called a modular space.

Definition 2.2. Let X, be a modular space and {x,,} be a sequence in X,.

(1) {xn}is p-convergent to a point x € X, if p(xn, = Xm) — 0 as n — oo. The point x is called a p-limit of
the sequence {xn}.

(2) {xn}1is called a p-Cauchy sequence if p(xn, —xm) — 0asn, m — oco.

(3) X, is called p-complete if every p-Cauchy sequence in X, is p-convergent.

Remark 2.3. If p is a convex modular and 0 < A < 1, then we have p(Ax) < Ap(x) for all x — X,. If pisa
convex modular, and A; > 0,i=1,2,...,nand Ay + A2 + -+ -+ An < 1, then p(A1xq +A2x2 + -+ +Anxn) <
AMp(x1) +A2p(x2) + - -+ + Anp(xn). If {xn} is p-convergent to x, then {oxn} is p-convergent to «x, where
0 < « < 1. But the p-convergence of a sequence {x,,} to x does not imply that {cx,,} is p-convergent to cx
for scalars ¢ with |c| > 1.
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There are two notions that play important roles when we study modulars. A modular p is said to have
the Fatou property if p(x) < liminf,,_, p(xn) for every sequence {x,} that is p-convergent to x. p is said
to satisfy the Aj-condition if there exists a constant k > 0 such that p(2x) < kp(x) for all x — X,,.

Example 2.4. For a measure space (Q, Y, u), let L°(u) be the collection of all measurable functions on Q.
Let

L () = {f . L°(»)|L) & (VF(X))) di(x) = 0 as A — o},

where ¢ : [0, 0c0) — R is assumed to be a continuous, positive, convex and nondecreasing function increas-

ing to infinity with ¢(0) = 0. We can take, e.g., $(t) = et —1. L® () is called an Orlicz space. Define for
f— L (W),

oo (f) = JQ o (1) d.

Then pg, is a complete modular.

3. Solution of the functional equation (1.3)

In this section, we solve the mixed type functional equation (1.3). Throughout this section let E and H
be real vector spaces.

Theorem 3.1. An odd mapping f : E — H satisfies the functional equation (1.3) for all w,v,w € E if and only if
f : E — H satisfies the functional equation (1.1) for all x,y € E.

Proof. Since f is an odd mapping, one can deduce from (1.3) that we have

f <u;v —w> +f <v+2w —u> +f (w;ru —v) =flu—v)+flv—w)+f(w—u) (3.1)
for all u,v,w € E. Setting v =u,w = —u in (3.1) and finally replacing u by —x, we obtain
2f(x) = f(2x) (3.2)
for all x € E. Replacing x by 7 in (3.2), we get
X 1
1(3) =5

for all x € E. Letting u = x,v =y,w = 0in (3.1) and using the oddness, we obtain
f(x +y) + fly —2x) + f(x —2y) = 2f(x —y) + 2f(y) — 2f(x) (3.3)
for all x,y € E. Interchanging x and y in (3.3) and using the oddness, we get
f(x +y) +f(x —2y) + f(—2x +y) = —2f(x —y) + 2f(x) — 2f(y) (3.4)
for all x,y € E. Subtracting (3.4) from (3.3), we get
flx—y) = f(x) - f(y)

for all x,y € E. Replacing y by —y and using the oddness, we have (1.1).
Conversly, replacing (x,y) by (u,u) in (1.1), we get f(2u) = 2f(u) for all u € E.

Replacing (x,y) by urw

,v) in (1.1) and using the oddness, we get

u+w 1 1
¢ (2 —v> = )+ 5 f(w) — (v (35)
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for all u,v,w € E. Replacing (x,y) by (V—;W,u> in (1.1), we get

v+w 1 1
f < 5 —u) = Ef(v) + Ef(w) —f(u) (3.6)
for all u,v,w € E. Replacing (x,y) by <u;_v,w) in (1.1), we get
u+v 1 1
f < > —w) = Ef(u) + Ef(v) —f(w) (3.7)

for all u,v,w € E. Adding (3.5), (3.6), (3.7), and using the oddness, we obtain (3.1) for allu,v,w € E. O

Lemma 3.2. Let f : E — H satisfy the functional equation (1.2) for all x,y € E. Then f : E — H satisfies the
functional equation

f(2x +y) +f(2x —y) + f(x +2y) + f(x —2y) = 8f(x +y) + 8f(x —y) + 18f(x) + 18f(y) (3.8)
forall x,y € E.

Proof. Let f: E — H be a mapping satisfying the functional equation (1.2). Interchanging x and y in (1.2)
and using eveness of f, we arrive at

f(x+2y) + f(x —2y) = 4(x +y) +4f(x —y) + 24f(y) — 6f(x). (3.9)
Adding (1.2) and (3.9), we get (3.8). O

Theorem 3.3. Let an even mapping f : E — H satisfies the functional equation (1.3) for all x,y € E. Then
f : E — H satisfies the functional equation (3.8) for all x,y,z € E.

Proof. Since f is an even mapping, one can deduce from (1.3) that we have

() (5 () s

16

for all u,v,w € E. Setting u = v = w = 0 in (3.10), we get f(0) = 0. Replacing (u,v,w) by (x,x, —x) in
(3.10), we get

f(2x) = 16f(x) (3.11)
for all x € E. Setting x by 3 in (3.11), we have

X 1

f (5) = = f(x) (3.12)

for all x € E. Replacing (u,v,w) by (x,y,0) in (3.10) using (3.12) and evenness, we obtain
fx+y)+f(2x—y)+f(x—2y) =9 (f(x—y) +f(y) +f(x)) (3.13)
for all x,y € E. Replacing y by —y in (3.13) and using evenness, we obtain
fix—y)+f2x+y) +f(x+2y) =9 (f(x +y) + fly) + f(x)) (3.14)

for all x,y € E. Adding (3.13) and (3.14), we arrive (3.8) for all x,y € E. By Lemma 3.2, f is quartic. O
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4. Additive-quartic mixed type stability results: direct method

Throughout this paper, let V and X be linerar spaces, p be a convex modular, and X, be a p-complete
modular space. Define a mappings Df, Df,, Dfq, : V3 — X, respectively by

D f(u,v,w) =f <u—2kv_w> —i—f(\)—f;/v—u) —l—f(‘/\)—zﬂL—v)

25
32

7((v u) +flw—v)+flu—w))

(flu—v)+flv—w)+flw—u)) + o

forallu,v,weV,
D fo(u,v,w)="*f (u;rv —w) +f (VJ;W —u> +f (M —v> —(flu—v)+flv—w)+f(w—u))

for all u,v,w € V, and

quz(u,v,w):f<u;v—w)—|—f(v—gw—u>+f(w+u—v> 196((u v) +flv—w)+flw—u))

for all u,v,w € V.

4.1. Additive stability of (1.3) in modular space without Ay-conditions

In this subsection, we present the Ulam-Hyers stability of the additive-quartic functional equation (1.3)
using Hyers” direct method in modular space without A;-conditions.

Theorem 4.1. Letj € {—1,1}. Let T': V® — [0, 00) be a function such that

57T (290, 29,29w)

- converges to R 4.1)
2K g

k=0

forallw,v,w € Vand f, : V. — X, be an odd mapping that satisfies the inequality
p (D folw,v,w)) <T(w,v,w) (4.2)

forallw,v,w € V. Then there exists a unique additive function A : V — X, such that

i r(2Yu, 284, —29u)

im 1
2
forall w € V. The mapping A(u) is defined by
B . fo(2Y)
A =em i g @4
forallueV.
Proof. Assume j = 1. Replacing (u,v,w) by (u,u, —u) in (4.2) and dividing by 2, we get
o (5 ~tolw) < 5w - @5)
2 2
for all u € V, since f is an odd mapping. Replacing u by 2u in (4.5) and dividing by 2, we get
fo(2%u fo(2u 1
p ( (22 ) — (22 )> < ?F(Zu, 2u, —2u) (4.6)
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for all u € V. Combining (4.5) and (4.6), we obtain

2
0 <fo (224 u) _fo(u)) < [;]“(ulu, —u) + %F(Zu,Zu, —Zu)}

for all u € V. Using induction on a positive integer k, we obtain that

fo(2*W) < IS (2t 2tu, —2'u) < 1 I (2tu, 2y, —2t 4.7
p T_f()(u) \Zﬁ ( u,zu,— u)\ZZi+l ( u,u,— LL) ( . )
i=0 1=0

for all u € V. Let m and n be nonnegative integers with n > m. By (4.7), we have
fo(2™u) fo(2™Mu) 1 [fo(2"™2™Mu)
o (o) = (g (ol

1 "2 1 . . )
<5 D sl (2R2Mu, 20 2™y, 20 2™y

nmo (4.8)

k
for allu € V. Then (4.1) and (4.8) yield that {fo (22k ) } is a p-Cauchy sequence in X,,. The p-completeness

of X, guarantees its p-convergence. Hence, there exists a mapping A : V — X, defined by

n
Al = p— lim ° (zzn YWovuev. (4.9)

n—oo

Then we see that

_ o (2 o (2
T (o 529 1450 o)

1 antl 1 [fo (2™
< 2739 <A(2u) ~ Tom > + zp <2n+1 —Au)
for all u € V. Then by (4.9), the right hand side of (4.10) tends to 0 as n — co. Therefore, it follows that
A(2u) =2A(u), VueV.

(4.10)

Next, we calculate p (A(u) —fo(u)). Note that for every n € N, by (4.10) we write

n

ki) — k—1 n
p(A(u)—fo(u)):p<Zf0(2 u) —2fo(2 u)+<A(u)_f0(z u)))

2k 2n
. . . 1 (4.11)
fo(2u) — 21, (2 u 1 fo(2M 12U
=p<Z o) — 2 )+2<A(2u)_ o )))
k=1
n
Since ) 2% +1 < 1, it follows from (4.3) and (4.11) that
k=1
n —1
1 _ 1 fo (2™ 12u
p(A) —fo(w) < ) 5P (fo (2%u) —2f (2%71)) + 5P (A(Zu) - O(Zn_1)>
b (4.12)

<

hE

2n-12
ikr (2%, 28y, 2K ) + %p (A(2u) — f"(znlu)>

k=1
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for all u € V. Letting n — oo in (4.12), we obtain

p(A(u)—fo(u)) <T(w,u,—u), YV ueV.

Therefore, we get (4.3).
Now, we prove that A is additive. We note that

1 1
( D fo(2™u, 2™y, Z“W)) < —TI2™uy, 2™y, —2™u) w0 asn — oo
2TL 2Tl

for all u,v,w € V. Thus, we observe by convexity of p that

1 u+v 1 v+w 1 w+u

R R )

+;p<A<";W_u)—2lnfo (2“v+w —2" )) (4.13)
A<W2+“—v>—21nfo <2nw+u —2“v>) ; < (u— v)+21nfo(2“u—2“v))

inf 2™y — 2w ))+7p< Alw— u)+2inf (2“W—2“u)>

zin (fo <2n(L;+V) —W> +fo <2n(v2+W) —u) +fo <2n(V\;+ u) —V>

—(fo 2Mu—2™"v) +fo (2™ —2"W) + o (2™W —2™u))))

- -
©

+

for all u,v,w € V. Taking n — oo in (4.13), we get

for all u,v,w € V. This gives that A is additive.

In order to prove A is unique, let A’ be another additive mapping satisfying (4.3) and (1.3). Since A
and A’ are additive mappings, A(2™"u) =2"A(u) and A’(2™u) =2"A’(u) hold. So

1 1, 1 [AQ2™M)  fo(2™Muw) 1 [(fo(2™u) A’(2™u)
p(zA(u)_zA(u))_2p< o on >+zp< o om )

< 1
= 2n+1p

(A(2™Mu) — fo(2™u)) + Wp (fo(znu) — A’(znu))

1 & 1 ) ) )
< 27 Z 21+1 r (2l+nu, 21+nu’ _21+nu)
i=0

o0
1 o )
< Z ﬁr (2'u,2'u, —2'u) - 0asn — oo
i=n
for all u € V. Hence A is unique.
For j = —1, we can prove the similar stability result. Hence we complete the proof. O
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Corollary 4.2. Let © and T be nonnegative real numbers. If an odd mapping f, : V. — X, satisfies the inequality
p (DfO (ulvlw)) < @

forall w,v,w €V, then there exists a unique additive mapping A : V. — X, such that

o (fo(u) — A(u)) < |1®|

forallu € V.

Corollary 4.3. Let © and t be nonnegative real numbers with T # 1. If an odd mapping f, : V. — X, satisfies the
inequality

p (Dfo(w,v, W) <O ([ul* + V" + lwl*)

forall w,v,w €V, then there exists a unique additive mapping A : V. — X, such that

30|
pfolw) —AW) < 5a0

forallu € V.

Corollary 4.4. Let © and T be nonnegative real numbers with T # %. If an odd mapping fo : V — X, satisfies the
inequality

p (Dfo (u,v, w)) < O (JJul* [V )

forallw,v,w €V, then there exists a unique additive mapping A : V. — X, such that

Ollul*®
p(folu) = A(W) < o5

forallu € V.

Corollary 4.5. Let © and T be nonnegative real numbers with t© # % . If an odd mapping o : V. — X, satisfies the
inequality

p (Do (v, w)) < © ([l vl i+ [wl>* + vl + [w]**)

forall w,v,w €V, then there exists a unique additive mapping A : V. — X, such that

40|[ulPT
p(folu) —Au)) < m

forallu € V.

4.2. Additive stability of (1.3) in modular space with Ay-conditions

In this subsection, we present the Ulam-Hyers stability of the additive-quartic functional equation (1.3)
using Hyers” direct method in modular space with A;-conditions.

Theorem 4.6. Letj € {—1,1}. Let T': V® — [0, 00) be a function such that

2 K2\ u u —u i u v ow
. o 3 ) T _
E ( > ) r (an S omy 2n).> < 400 and T}lrr;ok I <2nj Sy 2“1') =0 (4.14)

n=0
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forallw,v,w € Vand f, : V. — X, be an odd mapping satisfying the inequality
p (D fo(w,v,w)) <T (u,v,w) (4.15)
forall w,v,w € V. Then there exists a unique additive mapping A : X — H such that

%) o\ 1 .
otratwl A <3 Y (5) T (555055 ) @16

.717]
1=

forallw € V. The mapping A(u) is defined by

Alw) = p— lim 2"if, (2%) 4.17)

forallueV.

Proof. Assume j = 1. Replacing (u,v,w) by (%, 5, _T“) in (4.15), we get

o(rotw 20 (3)) <7 (555

for all u € V, since f is an odd mapping. Then it follows from Aj-condition and the convexity of the
modular p that

(-2 () <o (Z 2 ()2 () <12 (5) 1 (33 5)

i=1

for all u € V. So, for all n, m € N with n > m, we have
(20 (5v) =270o (7)) =0 (2" (270 () — 7o (7))
< m iy AN u u —u
K™ (2) r <2i.2m’ 2iom’ 2i.zm>

i=1

< 2m L K2 2F u u —u
S 2 \3) Tl o
i=m+1

for all u € V. Since the right hand side of the above inequality tends to zero as n goes to infinity, the
sequence {2™f, (»=)} is a p-Cauchy sequence in X, and so the sequence {2™f, (5%)} is a p-convergent
sequence on X,. Thus, we may define a mapping A : V — X,, as

A(u) =p— lim 2™f, (;), ie, lim p(2 fo (;)—A(u)):o

n—oo n—oo

for all u € V. According to the Ay-condition, we obtain the following inequality

(2t 2070 () 3o (2 (2) -21)
=20 (32)) 5 (0 (3) )
+

(5) 7 (330 3) + o ) )

p(Alu) —flu)) <

VAN

NI= N &N =
©
/N

'M8

,.a
I
—

N
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for all u € V. Taking n tends to oo, we conclude that the estimation (4.16) of f by A holds for all
u € V. Now, we claim that the mapping A is additive. Replacing (u,v,w) by (5%, 7z, 3x) in (4.15) with
Ar-condition, we obtain

u v ow u v ow
p(27Dfo (3 3w 3w )) <K (3w 2w)
for all u,v,w € V. Thus, it follows from the A,-condition such that

o (A <u—i—v —w> +A <v—;w —u) +A (w—i—u —v> —(Alu—v)+Av—w) +A(w—u)))

) + %p <7 (—A(u—v) 27, (uz?))))
(oo (5)
)
)

w+u AY
o\ Zner —an

_|_
o

+
NI= N = N =
o
/\/:]\/\

N| &

(5 ) B3 (5 2)
(A3 (3 2)) b (e e o ()
0 (—A(v—w) +2M (fo (T))) + ;p (—A(w—u) +2M, <f0 <W2;u)>>
(o (55 ) (- 5) oo (357 3)
(050 (o) 0 (557))
for all u,v,w € V and all positive integers n. Let us take the limit as n tends to oo, one see that A is

additive. In order to prove A is unique, let A’(u) be another additive mapping satisfying (4.16) and (1.3).
Since A and A’ are additive mappings, A (2 ) = s A(u) and A’ (3%) = 5= A’(u) hold. Thus

(h A0 = 3o (A (3) <2070 (3)) 3o (0 (3) - 32)
n+1 n+1
<o (A (g) = () + ol () -2 (7))

< 2 " i k—z 1LF 22 E) S0asn o oo
Sk 2 21727 2t

i=n+1

N
+

_l’_
NI& N& Ns s ©

_|_

for all u € V. Hence A is unique.
For j = —1, we can prove the similar stability result. Hence we complete the proof. O

Corollary 4.7. Let © and t be nonnegative real numbers and X, satisfies Ay condition. If an odd mapping
fo : V — X, satisfies the inequality

p (DfO (ulvlw)) g @
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forall w,v,w €V, hen there exists a unique additive mapping A : V — X, such that

2
p (folu) = A(w) < 2
forallu € V.

Corollary 4.8. Let © and T be nonnegative real numbers and X, satisfies Ay condition with 2% # k2. If an odd
mapping fo : V — X, satisfies the inequality

p (Dfo (1, v, w)) < O ([[ull™ + [v[* + [lw]*)
forall w,v,w €V, then there exists a unique additive mapping A : V. — X, such that

3k20)||ul|*

— g =71
pfolw) ~Aw) < 750
forallu € V.

Corollary 4.9. Let © and T be nonnegative real numbers and X, satisfies Ay condition with 23% # k2. If an odd
mapping fo : V — X, satisfies the inequality

p (Dfo(w,v,w)) <O (] ™ [[v[I™ [[w])
forall w,v,w €V, then there exists a unique additive mapping A : V. — X, such that

K*0)[ulP
p(folu) —A(u)) < m
forallu € V.
Corollary 4.10. Let © and Tt be nonnegative real numbers and X, satisfies Ay condition with 23% # k2. If an odd
mapping fo : V — X, satisfies the inequality
p (Do (u,v,w)) < © (Jhul[* IV ™+ ™ + v + [w ")

forall w,v,w €V, then there exists a unique additive mapping A : V. — X, such that

420/t

b (folu) ~ A(u)) < Yoo

forallu € V.

4.3. Quartic stability of (1.3) in modular space without Ay-conditions

In this subsection, we present the Ulam-Hyers stability of the additive-quartic functional equation (1.3)
using Hyers” direct method in modular space without A;-conditions.

Theorem 4.11. Letj € {—1,1}. Let T : V® — [0, 00) be a function such that

© (265, 245y, 2K w)
> s <0 (4.18)
k=0

orall w,v,w e Vand fq, : V — X, be an even mapping satisfying the inequalit
a2 P ppmg g q Y

P (D qu(u,V,W)) < r (ulvlw)
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forall w,v,w € V. Then there exists a unique quartic mapping Qo : V. — X, such that
2 T2V, 2Uu, —29u
pfay(w) - Q) < 3 .

._1_j
=

forall w € V. The mapping Q2 (u) is defined by

Q2(u) = p— lim (4.19)

koo 24K
forallueV.
Proof. Replacing (u, v, w) by (u,u, —u) and dividing by 24, we get

2 1
P <fqzz(4lt) _fqz(u)> < ?r(uru/ —LL)

for all u € V, since f is an even mapping. Then the conclusion is a direct consequence of Theorem 4.1. [J
Corollary 4.12. Let © and T be nonnegative real numbers. If an even mapping fq, : V — X, satisfies the inequality
p (quz (u/vlw)) g @

forall w,v,w €V, then there exists a unique quartic mapping Qa : V. — X, such that

0

P (fg,(u) = Qa(u)) < 5]
forallu € V.

Corollary 4.13. Let © and T be nonnegative real numbers with T # 4. If an even mapping fq, : V — X, satisfies
the inequality

p (Dfg, (1w, v, w)) <O (] ™+ [[v]I™ + [lwll™)
forall w,v,w €V, then there exists a unique quartic mapping Qo : V. — X, such that

30|[ul®

P (fg,(u) —Q2(u)) < 2% — 0]

forallu € V.

Corollary 4.14. Let © and T be nonnegative real numbers with T # %. If an odd mapping fq, : V — X, satisfies
the inequality

p (Df g, (w, v, w)) <O ([[ull* ]I )
forall w,v,w €V, then there exists a unique quartic mapping Qa : V. — X, such that

OllulPT

P (fg,(u) —Q2(u)) < F— 57|

forallu € V.

Corollary 4.15. Let © and t be nonnegative real numbers with T # 3 . If an even mapping fq, : V — X, satisfies
the inequality

p (Dfg,(u,v,w)) <O (HuHT I Wl el vl HWH‘%)

forall w,v,w €V, then there exists a unique quartic mapping Qa : V. — X, such that

40|u/PT

P (fg, (W) —Q2(u)) < i — 257

forallu € V.
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4.4. Quartic stability of (1.3) in modular space with A;-conditions

In this subsection, we present the Ulam-Hyers stability of the additive-quartic functional equation (1.3)
using Hyers” direct method in modular space with A;-conditions.

Theorem 4.16. Let j € {—1,1}. Let T : V® — [0, 00) be a function such that
i <k8>nr (“.,“.,“f) <oo and lim KT (llﬂ) —0 (4.20)
—=\2 PARMADMPLD n—soo PARMADMPLD
forallu,v,w € Vand fq, : V — X, be an even mapping satisfying the inequality

p(D fg,(w,v,w)) <T (u,v,w) (4.21)
forall w,v,w € V. Then there exists a unique quartic mapping Qo : V. — X, such that

1 & /K u u —u
P (fg,(u) — Q2(u)) < 51 ,Z]- <16> I <2ij’ 55 21])

17

2

forallw € V. The mapping Q2 (u) is defined by

. 4ni u
Qalw) = p— lim 2"tq, (57 (422)

forallueV.

Proof. Assume j = 1. Replacing (u,v,w) by (%, %, 5%) in (4.21), we get

p (fqz(u) —24fq2 (%)) <T <;L’ %, —2u>

for all u € V, since f is an even mapping. Then the conclusion is a direct consequence of Theorem 4.6. [J

Corollary 4.17. Let © and T be nonnegative real numbers and X, satisfies Ay condition. If an even mapping
fq, 1 V — X, satisfies the inequality

P (quz(u/vlw)) g @
forall w,v,w €V, then there exists a unique quartic mapping Qo : V. — X, such that

1&(C)

P (fg,(u) —Q2(u)) < Gl

forallu € V.

Corollary 4.18. Let © and t be nonnegative real numbers and X, satisfies A, condition with 2% # k8. If an even
mapping fq, : V — X, satisfies the inequality

p (Dfg,(w, v, w)) <O ([[uf[" +[v[* + [w]™)
or all u,v,w €V, then there exists a unigue gquartic mapping Q, : V. — X, such that
que q pping P

3KkBO|u[*

P (fg,(u) —Q2(u)) < 8 — 27

forallu € V.
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Corollary 4.19. Let © and T be nonnegative real numbers and X, satisfies Ay condition with 23© # k8. If an even
mapping fq, : V — X, satisfies the inequality

p (Dfq, (1w, v, w)) < O ([ ™ V]I [[w][*)
forall w,v,w €V, then there exists a unique quartic mapping Qo : V. — X, such that

K*@)[ulP*
forallu € V.

Corollary 4.20. Let © and T be nonnegative real numbers and X, satisfies Ay condition with 23T # k8. If an even
mapping fq, : V — X, satisfies the inequality

P (Dfg,(w,v,w)) <O (HuHT VI Wl el vl + HWHB'T)
forall w,v,w €V, then there exists a unique quartic mapping Qa : V. — X, such that

4180t

P (ffh (u) — QZ(U*)) < |k8 _ 23T|

forallu € V.

4.5. Additive-quartic stability of (1.3) in modular space without Ay-conditions

In this subsection, we present the Ulam -Hyers stability of the additive-quartic mixed type functional
equation (1.3) using Hyers” direct method in modular space without A,-conditions.

Theorem 4.21. Let j € {—1,1}. Let T : V — [0, 00) be a function satisfying (4.1) and (4.18) for all u,v,w € V. Let
f:V — X, be a mapping satisfying the inequality

p (Df(u,v,w)) <T (u,v,w)

for all w,v,w € V. Then there exists a unique additive mapping A : V. — X, and a unique quartic mapping
Q2 :V = X, such that

X r@by, 28y, —20u) & T(2bu,28u,—2bu)
Z 21 Z 74ij
i=1 i=1d

p (flu) —A(u) — Q2(u)) <

N —

forall w € V. The mappings A(u) and Qa () respectively are defined in (4.4) and (4.19).
Proof. Let fg,(u) = %{f (u) + f (—u)} for all u € V. Then fgq, (0) =0, fq, (u) = fq, (—u). Hence
p (D (1%, W) = 2 {0 (DF (1,v, W) + DF (1, ~v, ~w))}
< %{p (Df (w,v,w)) + p (Df (—u, —v, —w))} < %{F (w,v,w) +T (—u, —v, —w)}

for all u € V. Hence by Theorem 4.11, there exists a unique quartic mapping Q> : V. — X, such that

o (fau() ~ Qalw)) < 5 {Z (r (2,2, 2) | T (=2, -2, 2“‘)) } (4.23)

241 241
i=0
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forallu € V. Again f,(u) = %{f (u) —f(—u)} forallu € V. Then f. (0) =0, f, (u) = —f, (—u). Hence
p (Do (,v,w) = 2 o (DF (1,v,w) + DF (w,v,w))}

< 1{9 (Df (ulvlw)) + Y (Df (_u/ -V, _W))} < %{r (ulvlw) + r (—LL, -V, _W)}

2
for all u € V. Hence by Theorem 4.1, there exists a unique additive mapping A : V — X,, such that
1< (T2, —2) (-2, 2,2
p(folu) —A(u)) < 5 {Z < ( 7 ) + ( 5 )>} (4.24)
i=0

for all u € V. Since f (u) = fq, (u) + f, (u), it follows from (4.23) and (4.24) that

p(fluw) —A(w) —Qa(u)) = p (f (u)+fq2( ) ( ) — Q2(w))
< p(fgy(u) — p (fo(u) —Afu))

{‘X’ (r (2w 2w, —2') | T (2w, 2%, —2iu)>
Sy - :
21.
(2t 2tu, —2w) T (=2, —2ty, 2tu)
+ Z ( 241 T 74t ) }

i=0

—_

N

for all u € V. Hence we complete the proof. O

Corollary 4.22. Let © and T be nonnegative real numbers. If a mapping f : V. — X,, satisfies the inequality
p (Df(u,v,w)) <O

for all w,v,w € V, then there exists a unique additive mapping A : V — X, and a unique quartic mapping
Q2 :V = X, such that

160

p (Flu) = Aw) = Qa(u)) < -

forallu € V.

Corollary 4.23. Let © and T be nonnegative real numbers with v # 1,4. If a mapping f : V — X, satisfies the
inequality

p (Df(w,v,w)) <O (Jul|" + [IVII* + W)

for all w,v,w € V, then there exists a unique additive mapping A : V — X, and a unique quartic mapping
Q2 :V = X, such that

1 1 .
o (1)~ Afw) ~ Qafu) €30 (5 + ) Il

forallu € V.

Corollary 4.24. Let © and T be nonnegative real numbers with t # %, %. If a mapping f : V. — X, satisfies the
inequality

p (DF(w, v, w)) < © (J[uf|" [[v[|* [[w]")

for all w,v,w € V, then there exists a unique additive mapping A : V — X, and a unique quartic mapping
Q2 :V = X, such that

1 1 B}
o (1) = Alt) = Qalw) € © (e ) Il

forallu € V.
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Corollary 4.25. Let © and T be nonnegative real numbers with t # %, %. If a mapping f : V. — X, satisfies the
inequality

p (Df(u, v, w)) < © (Il oI [l + IRl + V][> + [jwiP")

for all u,v,w € V, then there exists a unique additive mapping A : V. — X, and a unique quartic mapping
Q2 : V — X, such that

1 1 i
o (11)~ Afw) ~ Qa() <40 (e + g gar ) I

forallu € V.

4.6. Additive-quartic stability of (1.3) in modular space with Ay-conditions

In this subsection, we present the Ulam-Hyers stability of the additive-quartic mixed type functional
equation (1.3) using Hyers” direct method in modular space with A;-conditions.

Theorem 4.26. Let j € {—1,1}. Let T : V — [0, 00) be a function satisfying (4.14) and (4.20) for all u,v,w € V.
Let f:V — X, be a mapping satisfying the inequality

for all w,v,w € V. Then there exists a unique additive mapping A : V — X, and a unique quartic mapping
Q2 : V = X, such that

0o o\ 1 B 0 8\ 1 .
o (it - Alw — Qe < 34 3 (%) F(;;ﬁ%% (5) r (252

. 1—2’
=7

N |

=72

forall w € V. The mappings A(u) and Qa(u) respectively are defined in (4.17) and (4.22).
Proof. Let fg,(u) = %{f (u) +f (—u)} for all u € V. Then fgq, (0) =0, fq, (u) = fq, (—u). Hence

p (Dfq, (w,v,w)) = = {p (Df (w,v,w) + Df (—u, —v,—w))}

NI =N =

< {p (Df (u/ vlw)) + Y (Df (—'LL, -V, _W))} < %{r (ulvlw) + r (_ul -V, _W)}

for all u € V. Hence by Theorem 4.16, there exist sa unique quartic mapping Q> : V — X, such that

1{& /k8\* u u —u —u —u u
P (fq(u) —Q2(u)) < 5 {% (16) (r <21’ 5t/ 21) +T <2i’ St 21>>} (4.25)

for all u € V. Again f,(u) = %{f (u) —f(—u)}for allu € V. Then f. (0) =0, f, (1) = —f, (—u). Hence
b (Do (v, w)) = 3 {p (DF (v, ) + DF (v, w))
< %{p (Df (w,v,w)) + p (Df (—u, —v, —w))} < %{F (w,v,w) +T (—u, —v,—w)}

for all u € V. Hence by Theorem 4.6, there exists a unique additive mapping A : V — X,, such that

1°°k211 u u —u —Uu —Uu u
b (Folu) ~ Alw)) < 1 {% <2> (r (222) or (222>)} (4.26)
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for all u € V. Since f (u) = fq, (u) + f, (u), it follows from (4.25) and (4.26) that

p (flu) —Au) = Qa(u)) = p (fo(u) + fg, (u) — Au) — Q2(u))
P fqz(u ( )+ p (fo(u) —A(u))

u u —u r —u —u u
2ot r ) T\ 2
i= 0
o0
k2 u u —u —u —u u
—— 7.,7.,7. r 7.,7.,7.
+;(2> ( <zm 57) (355

for all u € V. Hence we complete the proof. O

N

I\J\H

Corollary 4.27. Let © and T be nonnegative real numbers and X, satisfies A, condition. If a mapping f:V — X,
satisfies the inequality

p (Df(u,v,w)) <O

for all w,v,w € V, then there exists a unique additive mapping A : V — X, and a unique quartic mapping
Q2 : V — X, such that

o) — Alw) — Qalu) < 20 (145
forallu € V.

Corollary 4.28. Let © and T be nonnegative real numbers and X, satisfies Ay condition with 2% # k2,k8. Ifa
mapping f: V — X, satisfies the inequality

p (DFf(w, v, w)) < O (J[ul|” + [Iv][* + [[w])

for all w,v,w € V, then there exists a unique additive mapping A : V — X, and a unique quartic mapping
Q2 :V = X, such that

15 k8 .
o (1)~ Afw) — Qal) €30 (125 + s ) il

forallu € V.

Corollary 4.29. Let © and T be nonnegative real numbers and X, satisfies Ay condition with 257 # ¥2,k8. If a
mapping f: V — X, satisfies the inequality
p (Df(w,v,w)) <O ([l [|v]™ lw[|")

for all w,v,w € V, then there exists a unique additive mapping A : V. — X, and a unique quartic mapping
Q2 : V = X, such that

2 8
o (1)~ ALw) — Qal) € © (1™ + g ) Il

forallu € V.
Corollary 4.30. Let © and T be nonnegative real numbers and X, satisfies Ay condition with 237 # k2,k8 . Ifa
mapping f: V — X, satisfies the inequality

p (DF(1t,v,w)) < © (Jful™ V™ o]l + ™™ + IvI** + fhw]*)

for all u,v,w € V, then there exists a unique additive mapping A : V. — X, and a unique quartic mapping
Q2 :V — X, such that

2 8
o (11) = Alw) — Qalu) €40 (13- + o ) I

forallu € V.
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5. Conclusion

In this article, we have proved the stability results of additive functional equation, quartic functional
equation, and additive-quartic mixed type functional equations in modular spaces with and without using
the Ay-condition by the direct method.
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