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Abstract
We derive new oscillatory conditions for the second-order noncanonical difference equations of the type

∆(r(ν)∆x(ν)) + q(ν)x(ν+ σ) = 0, ν > ν0,

by creating monotonical properties of nonoscillatory solutions. Our oscillatory outcomes are effectively an extension of the
previous ones. We provide several examples to demonstrate the efficacy of the new criteria.
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1. Introduction

There has recently been a surge in interest in deriving sufficient criteria for the oscillatory and non-
oscillatory properties of solutions to various classes of difference equations; see, for example, the mono-
graphs [2, 4, 9] and the references cited therein. Many authors were concerned with the oscillatory
conditions for first-order and higher-order difference equations; for example, [1, 3, 12, 13, 15, 18, 20].
Many applications of delay and advanced difference equations in various fields of science have attracted
attention; one can refer to [7, 10, 14, 17].

In this paper, we discussed the following second-order noncanonical difference equations with a vari-
able coefficient of the form

∆(r(ν)∆x(ν)) + q(ν)x(ν+ σ) = 0, ν > ν0. (1.1)

The forward difference operator ∆ is defined by ∆x(ν) = x(ν + 1) − x(ν). The three constraints are
presumed to be satisfied throughout the paper:

(C1) {q(ν)}∞ν=ν0
is a positive real sequence;
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(C2) {r(ν)}∞ν=ν0
is a positive real sequence;

(C3) σ is an integer.

“Let ν0 be a nonnegative integer that is fixed. A real sequence {x(ν)} defined for ν > min {ν0,ν0 + σ}

and satisfying the equation (1.1) for ν > ν0 is called a solution of (1.1). An oscillatory solution {x(ν)}

of (1.1) is a solution of (1.1) if for every positive integer N > 0, there exists an integer ν > N with the
property that x(ν)x(ν + 1) 6 0, otherwise {x(ν)} is said to be nonoscillatory. If every solution of the
equation (1.1) is oscillatory, then the equation (1.1) is called oscillatory” [16].

We say that (1.1) is in the noncanonical form if

θ(ν) :=

∞∑
s=ν

1
r(s)

<∞.

The goal of this paper is to present new difference inequalities that lead to new solution monotonicity
properties, which can then be used to derive new oscillatory conditions for the delay and advanced
difference equations. Arul et al. [5] discussed the difference equation

∆(p(ν)φ(∆x(ν))) + f(ν, x(ν+ 1)) = 0, ν = 0, 1, 2, 3, . . . , (1.2)

and obtained oscillatory criteria for positive solutions of (1.2). Saker [19] investigated the equation

∆(p(ν)∆x(ν)) + q(ν)f(x(ν− σ)) = 0, ν = 0, 1, 2, 3, . . . , (1.3)

and established some sufficient conditions for oscillatory of every solution of (1.3). Li [11] examined the
second-order non-linear difference equation

∆(p(ν)g(∆x(ν))) + q(ν+ 1)f(x(ν+ 1)) = 0, ν = 0, 1, 2, . . . , (1.4)

and established oscillatory criteria for the solutions of (1.4). Zhang et al. [21] used the same methods as
in [5] and obtained oscillation conditions for the equation.

∆(p(ν)(∆x(ν))α) + q(ν+ 1)f(x(ν+ 1)) = 0, ν = 0, 1, 2, . . . ,

where σ is a positive quotient of odd integers. Grace et al. [8] established new oscillation conditions for
all solutions of the following nonlinear second-order neutral difference equations

∆(a(ν)(∆u(ν))α) + b(ν)yγ(ν− τ+ 1) + c(ν)yµ(ν+ σ+ 1) = 0

and
∆(a(ν)(∆u(ν))α) = b(ν)yγ(ν− τ+ 1) + c(ν)yµ(ν+ σ+ 1),

where u(ν) = y(ν) + q1(ν)y
β(ν− k) − q2(ν)y

δ(ν− k).
This paper presents new difference inequalities that lead to new solution monotonicity properties,

which are then used to derive new oscillatory conditions for the delay and advanced difference equations.
We aim to find oscillatory conditions for all solutions of (1.1) to oscillate. Our derived results are the
discrete analogues of the sharp results of [6].

In the following sections, for the sake of convenience, a functional inequality holds for all sufficiently
large positive integer ν, when written without defining its domain of validity.

2. Some useful lemmas

We can easily see that the set of positive solutions to (1.1) has the following structure.

Lemma 2.1. If {x(ν)} is an eventually positive solution of (1.1), then {x(ν)} satisfies one of the following criteria:
(A1) r(ν)∆x(ν) > 0, ∆(r(ν)∆x(ν)) < 0;
(A2) r(ν)∆x(ν) < 0, ∆(r(ν)∆x(ν)) < 0 for ν > ν1 > ν0.

The following assertions will demonstrate that (A2) is the most important class.
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Lemma 2.2. Assume that ∞∑
s=ν0

θ(s+ 1)q(s) =∞ (2.1)

holds. Then every eventually positive solution {x(ν)} of (1.1) satisfies (A2) and, moreover

(i) limν→∞ x(ν) = 0;
(ii) x(ν) + r(ν)∆x(ν)θ(x) > 0;

(iii)
{
x(ν)
θ(ν)

}
is increasing.

Proof. On the contrary, assume that {x(ν)} is an eventually positive solution of (1.1) satisfying the condition
(A1) for ν > ν1 > ν0. Summing (1.1) from ν1 to∞, we get

r(ν1)∆y(ν1) >
∞∑
s=ν1

q(s)x(s+ σ).

Since {x(ν)} is positive and increasing, there exists a positive constant k such that x(ν) > k and x(ν+σ) >
k eventually. Then we have

r(ν1)∆x(ν1) > k
∞∑
s=ν1

q(s) >
∞∑
s=ν1

θ(s+ 1)q(s),

which contradicts the equation (2.1) and we conclude that (A2) is satisfying by {x(ν)}. Consequently, we
have limν→∞ x(ν) = l > 0. We claim that l=0. If not, then x(ν) > l > 0. A sum of (1.1) from ν1 to ν− 1
yields

−r(ν)∆x(ν) > l
ν−1∑
s=ν1

q(s).

Summing once more from ν1 + 1 to∞, we get

x(ν1 + 1) > l
∞∑

u=ν1+1

1
r(u)

u−1∑
s=ν1

q(s) = l

∞∑
s=ν1

θ(s+ 1)q(s) =∞,

which is a contradiction. Thus we conclude that l = 0.
We proceed as follows to prove part (ii). By the decreasing nature of {r(ν)∆x(ν)}, we have

x(ν) >
∞∑
s=ν

−r(s)∆x(s)

r(s)
> −r(ν)∆x(ν)

∞∑
s=ν

1
r(s)

= −r(ν)∆x(ν)θ(ν),

which implies that part (iii) holds true. This completes the proof.

We have not mentioned whether the equation (1.1) is a delay or an advanced difference equation in
the previous results. However, in the following sections, we define oscillatory criteria for the delay and
advanced difference equations individually.

3. Delay difference equation

We will assume throughout this section that (1.1) is a delay equation. That is

σ 6 −1. (3.1)

For solutions of (1.1) from the class (A2), we’re about to create some new monotonic properties.
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Lemma 3.1. Assume that (2.1) and (3.1) hold. Assume further that there exists a δ0 > 0 such that

q(ν)θ(ν+ 1)θ(ν)r(ν) > δ0 (3.2)

eventually. If {x(ν)} is a positive solution of (1.1), then

(i)
{
x(ν)

θδ0(ν)

}
is decreasing;

(ii) limν→∞ x(ν)

θδ0(ν)
= 0;

(iii)
{

x(ν)

θ1−δ0(ν)

}
is increasing.

Proof. Suppose that the equation (1.1) has an eventually positive solution {x(ν)}. Then (2.1) ensures that
{x(ν)} and {x(ν+ σ)} satisfying the condition (A2) for ν > ν1 > ν0. A summation of (1.1) from ν1 to ν− 1
yields:

−r(ν)∆x(ν) = −r(ν1)∆x(ν1) +

ν−1∑
s=ν1

q(s)x(s+ σ) > −r(ν1)∆x(ν1) + x(ν)

ν−1∑
s=ν1

q(s),

which, because of (3.2), leads to

−r(ν)∆x(ν) > −r(ν1)∆x(ν1) + δ0x(ν)

ν−1∑
s=ν1

1
θ(s+ 1)θ(s)r(s)

> −r(ν1)∆x(ν1) − δ0x(ν)

ν−1∑
s=ν1

∆θ(s)

θ(s+ 1)θ(s)
.

(3.3)

Now,

ν−1∑
s=ν1

∆θ(s)

θ(s+ 1)θ(s)
= −

1
θ(ν)

+
1

θ(ν1)
. (3.4)

Using the above inequality (3.4) in (3.3), we get

−r(ν)∆x(ν) > −r(ν1)∆x(ν1) − δ0x(ν)

(
−

1
θ(ν)

+
1

θ(ν1)

)
= −r(ν1)∆x(ν1) + δ0

x(ν)

θ(ν)
− δ0

x(ν)

θ(ν1)
> δ0

x(ν)

θ(ν)
,

(3.5)

where we have used that x(ν) → 0 as ν→∞. Consequently,

∆

(
x(ν)

θδ0(ν)

)
6
θδ0−1(ν) [r(ν)∆x(ν)θ(ν) + δ0x(ν)]

r(ν)θδ0(ν)θδ0(ν+ 1)
6 0.

So,
{
x(ν)

θδ0(ν)

}
is decreasing and there exists limν→∞ x(ν)

θδ0(ν)
= l > 0. We assert that l = 0. If not, then

x(ν)

θδ0(ν)
> l > 0 eventually. Let us introduce the sequence {z(ν)} defined by

z(ν) = (r(ν)∆x(ν)θ(ν) + x(ν))θ−δ0(ν).

By Lemma 2.2 (ii), we have z(ν) > 0 and

∆z(ν) = ∆(r(ν)∆x(ν))θ1−δ0(ν) +
δ0∆x(ν)

θδ0(ν+ 1)
+

δ0x(ν)

r(ν)θ(ν)θδ0(ν+ 1)
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= −q(ν)x(ν+ σ)θ1−δ0(ν+ 1) +
δ0∆x(ν)

θδ0(ν+ 1)
+

δ0x(ν)

r(ν)θ(ν)θδ0(ν+ 1)

6
−δ0x(ν+ σ)θ

1−δ0(ν+ 1)
θ(ν+ 1)θ(ν)r(ν)

+
δ0∆x(ν)

θδ0(ν+ 1)
+

δ0x(ν)

r(ν)θ(ν)θδ0(ν+ 1)

6 −
δ0x(ν+ σ)

r(ν)θ(ν)θδ0(ν+ 1)
+
δ0∆x(ν)

θδ0(ν+ 1)
+

δ0x(ν)

r(ν)θ(ν)θδ0(ν+ 1)

6
δ0∆x(ν)

θδ0(ν+ 1)
.

Employing (3.5) and the fact that x(ν) > lθδ0(ν), we get that

∆z(ν) 6 −
δ0

2l

r(ν)θ(ν)
< 0.

Summing the above inequalities from ν1 to ν− 1, we have,

z(ν1) > δ0l ln θ(ν1)
θ(ν) →∞ as ν→∞,

which is a contradiction and we conclude that limν→∞ x(ν)

θδ0(ν)
= 0.

Finally, we shall show that
{

x(ν)

θ1−δ0(ν)

}
is increasing. We can rewrite equation (1.1) in equivalent form

∆ (r(ν)∆x(ν)θ(ν) + x(ν)) + θ(ν+ 1)q(ν)x(ν+ σ) = 0. (3.6)

By Lemma 2.2 (iii), we see that
{
x(ν)
θ(ν)

}
is an increasing sequence. Summing the equation (3.6) from ν to∞, we have

r(ν)∆x(ν)θ(ν) + x(ν) >
∞∑
s=ν

θ(s+ 1)q(s)x(s+ σ)

>
∞∑
s=ν

θ(s+ 1)q(s)x(s)

>
∞∑
s=ν

θ(s+ 1)θ(s)q(s)
x(s)

θ(s)

>
x(ν)

θ(ν)

∞∑
s=ν

θ(s+ 1)θ(s)q(s) >
x(ν)

θ(ν)
δ0

∞∑
s=ν

1
r(ν)

= x(ν)δ0.

From the last inequality, we get

∆

(
x(ν)

θ1−δ0(ν)

)
=
θδ0(ν)[r(ν)∆x(ν)θ(ν) + x(ν)(1 − δ0)]

r(ν)θ(ν)θ(ν+ 1)
> 0.

This completes the proof.

Lemma 3.1 provides {
x(ν)

θδ0(ν)

}
↓ and

{
x(ν)

θ1−δ0(ν)

}
↑,

which ensures the oscillatory criterion that follows.

Theorem 3.2. Assume that (2.1), (3.1), and (3.2) hold. If

δ0 >
1
2

,

then every solution of (1.1) is oscillatory.
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If δ0 6 1
2 , then the results presented in Lemma 3.1 can be improved. Since {θ(ν)} is a decreasing

sequence, there is a constant λ > 1 that satisfies

θ(ν+ σ)

θ(ν)
> λ. (3.7)

We introduce the constant δ1 > δ0 as follows

δ1 =
λδ0δ0

1 − δ0
.

Lemma 3.3. Assume that (2.1), (3.1), and (3.2) hold. If {x(ν)} is a positive solution of (1.1), then

(i)
{
x(ν)

θδ1(ν)

}
is decreasing;

(ii) limν→∞ x(ν)

θδ1(ν)
= 0;

(iii)
{

x(ν)

θ1−δ1(ν)

}
is increasing.

Proof. Let us suppose that the equation (1.1) has an eventually positive solution {x(ν)} satisfying the
condition (A2) for ν > ν1 > ν0. Summing (1.1) from ν1 to ν − 1 and using the decreasing nature of{
x(ν)

θδ0(ν)

}
, we get

−r(ν)∆x(ν) > −r(ν1)∆x(ν1) +

ν−1∑
s=ν1

q(s)x(s)θδ0(s+ σ)

θδ0(s)

> −r(ν1)∆x(ν1) +
x(ν)

θδ0(ν)

ν−1∑
s=ν1

q(s)θδ0(s+ σ),

which, because of (3.7), implies

−r(ν)∆x(ν) > −r(ν1)∆x(ν1) +
λδ0δ0x(ν)

θδ0(ν)

ν−1∑
s=ν1

θδ0−2(s)

r(s)
.

Evaluating the sum, we see that

−r(ν)∆x(ν) > −r(ν1)∆x(ν1) − δ1θ
δ0−1(ν1)

x(ν)

θδ0(ν)
+ δ1

x(ν)

θ(ν)
.

Since x(ν)

θδ0(ν)
→ 0 as ν→∞, we see that

−r(ν)∆x(ν) > δ1
x(ν)

θ(ν)
.

By using the same procedure as we used in the proof of Lemma 3.1, we obtain
{
x(ν)

θδ1(ν)

}
is decreasing.

We can verify the remaining assertions by following the same steps as in the proof of Lemma 3.1.

If δ1 < 1, repeating the above procedure and introducing δ2 > δ1 follows

δ2 = δ0
λδ1

1 − δ1
.
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In general, as follows as δj < 1 for j = 1, 2, . . . , k− 1, we can define

δk = δ0
λδk−1

1 − δk−1
, (3.8)

provided that δk < 1. We can verify that by following the steps in the proof of Lemma 3.3,
{
x(ν)

θδk(ν)

}
↓

and
{

x(ν)

θ1−δk(ν)

}
↑. Consequently, the following theorem is obvious.

Theorem 3.4. Assume that (2.1), (3.1), (3.2), and (3.8) hold. If there exists a k ∈ N such that

lim inf
ν→∞

ν−1∑
s=ν+σ

q(s)θ(s+ 1)
1 − δk

>

(
σ

σ− 1

)1−σ

, (3.9)

then every solution of (1.1) is oscillatory.

Proof. Assume, on the contrary, that (1.1) possesses an eventually positive solution {x(ν)}. Condition (2.1)
guarantees that {x(ν)} satisfies the condition (A2). Define a sequence {δk} by (3.8). Consider the sequence
{w(ν)} given by

w(ν) = r(ν)∆x(ν)θ(ν) + x(ν).

From Lemma 2.2 (ii), we have w(ν) > 0 and, moreover,

∆w(ν) = r(ν)∆x(ν)∆θ(ν) + θ(ν+ 1)∆(r(ν)∆x(ν)) +∆x(ν) = −θ(ν+ 1)q(ν)x(ν+ σ). (3.10)

Since
{
x(ν)

θδk(ν)

}
is decreasing, then we attain r(ν)∆x(ν)θ(ν) + δkx(ν) 6 0 and so

w(ν) 6 (1 − δk)x(ν).

Putting the last inequality into (3.10), it is clear that {w(ν)} is a positive solution of the following delay
difference inequality of first order

∆w(ν) +
q(ν)θ(ν+ 1)

1 − δk
w(ν+ σ) 6 0. (3.11)

According to the Theorem in [9], conditions (3.9) guarantees that the difference inequality (3.11) has no
positive solution. This contradiction leads to the completion of the proof.

4. Advanced difference equation

The method described above can be adapted to work with advanced difference equations, such as
when

σ > 1. (4.1)

The key constant δ0 is slightly changed into λ0 as follows.

Lemma 4.1. Assume that (2.1) and (4.1) hold. Assume further that there exists a λ0 > 0 with the property that

q(ν)θ(ν+ 1)θ(ν+ σ)r(ν) > λ0, (4.2)

eventually. If {x(ν)} is a positive solution of (1.1), then

(i)
{
x(ν)

θλ0(ν)

}
is decreasing;

(ii) limν→∞ x(ν)

θλ0(ν)
= 0;
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(iii)
{

x(ν)

θ1−λ0(ν)

}
is increasing.

Proof. Assume that {x(ν)} is an eventually positive solution of (1.1). Then (2.1) ensures that {x(ν)} satisfies
the condition (A2) for ν > ν1 > ν0. By Lemma 2.2 (iii),

x(ν+ σ)

θ(ν+ σ)
>
x(ν)

θ(ν)
.

A summation of (1.1) from ν1 to ν− 1 yields

−r(ν)∆x(ν) > −r(ν1)∆x(ν1) + λ0x(ν)

ν−1∑
s=ν1

1
θ2(s)r(s)

= −r(ν1)∆x(ν1) + λ0
x(ν)

θ(ν)
− λ0

x(ν)

θ(ν1)
> λ0

x(ν)

θ(ν)
,

where we have used that x(ν) → 0 as ν→∞. Therefore,

∆

(
x(ν)

θλ0(ν)

)
6 0.

Applying the same procedure as we followed in the proof of the Lemma 3.1, the parts (ii) and (iii) can be
proved. Hence the proof.

Assuming that λ0 < 1 we can introduce the constant λ1 > λ0 as follows. Since {θ(ν)} is decreasing,
there exists a constants η > 1 such that

θ(ν)

θ(ν+ σ)
> η

and hence

λ1 = λ0
ηλ0

1 − λ0
.

In general, as far as λk−1 < 1, we can define

λk = λ0
ηλk−1

1 − λk−1
(4.3)

and verify that {
x(ν)

θλk(ν)

}
↓ and

{
x(ν)

θ1−λk(ν)

}
↑ .

We can establish the following oscillatory criteria for advanced difference equations in the same way
as we did in the “delay” section.

Theorem 4.2. Assume that (2.1), (4.1), (4.2), and (4.3) hold. If there exists an integer k ∈ N such that

λk >
1
2

,

then every solution of (1.1) is oscillatory.

Theorem 4.3. Assume that (2.1),(4.1),(4.2) and (4.3) holds. If there exists a k ∈ N such that

lim inf
ν→∞

ν+σ∑
s=ν+1

q(s)θ(s+ 1)
1 − λk

>

(
σ− 1
σ

)σ
then every solution of (1.1) is oscillatory.



P. Gopalakrishnan, A. Murugesan, C. Jayakumar, J. Math. Computer Sci., 25 (2022), 351–360 359

5. Ordinary difference equation

The results proved above can be applied for ordinary difference equation (σ = 0),

∆(r(ν)∆x(ν)) + q(ν)x(ν) = 0. (5.1)

Now the sequences {δk} and {λk} are identical and defined by

δk =
δ0

1 − δk−1
(5.2)

with δ0 adjusted in (3.2). Theorems 3.4 and 4.2 can be reduced to the following.

Theorem 5.1. Assume that (2.1) and (5.2) hold. If there exists an integer k ∈ N such that

δk >
1
2

,

then every solution of (5.1) is oscillatory.

6. Some examples

Example 6.1. Consider the following second-order noncanonical delay difference equation of the form

∆ (aν∆x(ν)) + aν−1x(ν− 1) = 0; ν = 1, 2, . . . , (6.1)

where a > 1.
We have r(ν) = aν, q(ν) = aν−1, σ = −1, and

θ(ν) :=
1

aν−1(a− 1)
.

Choose δ0 = 1
(a−1)2 . Then 0 < δ0 <

1
2 for 1 < a < 1 +

√
2. Hence all the conditions of the Theorem 3.2 are

satisfied for 1 < a < 1+
√

2. Thus, all the solutions of the equation (6.1) are oscillatory for 1 < a < 1+
√

2.

Example 6.2. Let us consider the following second-order noncanonical delay difference equation

∆ (2ν∆x(ν)) + 2ν−3x(ν− 1) = 0; ν = 1, 2, 3, . . . . (6.2)

Here r(ν) = 2ν, q(ν) = 2ν−3, σ = −1, and θ(ν) = 1
2ν−1 . Choose δ0 = 1

4 . Then λ = 2 and λ1 = δ0
λδ0

1−δ0
= 2

1
4

3 .
Clearly

ν−1∑
s=ν+σ

q(s)θ(s+ 1)
1 − δ1

= 0.414183205,

which is greater than
(
σ
σ−1

)1−σ
= 0.25. Then all the constraints of the Theorem 3.4 are verified and hence

the equation (6.2) is oscillatory.

Example 6.3. Let us consider the following second-order noncanonical advanced difference equation of
the form

∆ (2ν∆x(ν)) +
2ν

3
x(ν+ 1) = 0; ν = 0, 1, 2, . . . . (6.3)

Here, r(ν) = 2ν, q(ν) = 2ν
3 , σ = 1. We can easily show that θ(ν) = 1

2ν−1 . Choose λ0 = 1
3 . Then η = 2. Now,

λ1 = λ0η
λ0

1−λ0
= 0.629961 > 1

2 . Clearly 1
2 < λ1 < 1. Thus, all the constraints of the Theorem 4.2 are verified.

Hence the equation (6.3) is oscillatory.

Example 6.4. Let us consider the following second-order ordinary difference equation

∆ (2ν∆x(ν)) +
2ν

5
x(ν) = 0; ν = 0, 1, 2, . . . . (6.4)

Here, r(ν) = 2ν, q(ν) = 2ν
5 and δ0 = 2

5 . Clearly δ1 = δ0
1−δ0

= 2
3 >

1
2 . Hence all the constraints of the

Theorem 5.1 are verified. Thus the equation (6.4) is oscillatory.
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[9] I. Györi, G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford,

(1991). 1, 3
[10] D. L. Jagerman, Difference Equations with Applications to Queues, Marcel Dekker, Inc., New York, (2000). 1
[11] W.-T. Li, Oscillation Theorem for second order nonlinear difference equations, Math. Comput. Modelling, 31 (2000),

71–79. 1
[12] W.-T. Li, S. S. Cheng, Classifications and existence of positive solutions of second order nonlinear neutral difference equa-

tions, Funkcial. Ekvac., 40 (1997), 371–393. 1
[13] H.-J. Li, C.-C. Yeh, Oscillation criteria for second order neutral delay difference equations, Comput. Math. Appl., 36

(1998), 123–132. 1
[14] R. E. Mickens, Difference Equations, Third edition, CRC Press, Boca Raton, (2015). 1
[15] A. Murugesan, Oscillation of neutral advanced difference equation, Global J. Pure Appl. Math., 9 (2013), 83–92. 1
[16] A. Murugesan, K. Ammamuthu, Sufficient conditions for oscillation of second order neutral advanced difference equations,

Int. J. Pure Appl. Math., 98 (2015), 145–156. 1
[17] A. Murugesan, C. Jayakumar, Oscillation condition for second order half-linear advanced difference equation with variable

coefficients, Malaya J. Mat., 8 (2020), 1872–1879. 1
[18] B. Ping, M. Han, Oscillation of second order difference equations with advanced argument, Dynamical systems and

differential equations (Wilmington, NC, 2002), Discrete Contin. Dyn. Syst., 2003 (2003), 108–112. 1
[19] S. H. Saker, Oscillation of second order nonlinear delay difference equations, Bull. Korean Math. Soc., 40 (2003), 489–501.

1
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