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Abstract

In this paper, we investigate the behavior of solutions of the difference equation

xn+1 =
α (xn−1 + xn−2) + (α− 1) xn−1xn−2

xn−1xn−2 +α
, n = 0, 1, 2, . . . ,

where the initial conditions x−2, x−1, x0 are arbitrary non-negative real numbers and the parameter α ∈ [1,∞). More precisely,
we study the boundedness, stability, and oscillation of the solutions of this equation.
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1. Introduction

The theory of difference equations is a very rich research field. It was appeared already at the be-
ginning of the last century in intensive works by the authors. A few years ago, the classes of difference
equations attracted much attention. They have been the object of some intensive studies by many authors.
The theory of these types of equations was one of the most important concepts in mathematics and ap-
pears naturally in numerous scientific problems that have been widely applied in discretization methods
for differential equations, population biology, medicine, economic, physics, probability theory, genetics,
and psychology. Very recently, the study of nonlinear difference equations has been a lot of interest in
studying the global attractivity, boundedness character, periodicity and the solution form. For example,
Abu-Saris et al [1] investigated the asymptotic stability of the difference equation

xn+1 =
a+ xnxn−k
xn + xn−k

, n = 0, 1, 2, . . . ,
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where k is a nonnegative integer, a > 0 and x−k, . . . , x0 > 0. Ahmed [3] investigated the behavior of
solutions of the difference equation

xn+1 =
a+ xn−1xn−k
xn−1 + xn−k

, n = 0, 1, 2, . . . ,

where k ∈ {1, 2}, a > 0 and x−j > 0, j = 0, 1, . . . , k. Ma [19] investigated the global asymptotic stability for
the higher-order difference equation

zn+1 =
c (zn + zn−k) + (c− 1) znzn−k

znzn−k + c
, n = 0, 1, 2, . . . ,

with positive initial values z−k, z−k+1, . . . , z0 and c ∈ [1,∞). For other related results, see [2, 4–18].
In this paper, we investigate the behavior of solutions of the difference equation

xn+1 =
α (xn−1 + xn−2) + (α− 1) xn−1xn−2

xn−1xn−2 +α
, n = 0, 1, 2, . . . ,

where the initial conditions x−2, x−1, x0 are arbitrary non-negative real numbers and the parameter α ∈
[1,∞).

We need the following definitions.

Definition 1.1. Let I be an interval of real numbers and let

f : Ik+1 → I

be a continuously differentiable function. Consider the difference equation

xn+1 = f(xn, xn−1, . . . , xn−k), n = 0, 1, . . . , (1.1)

with x−k, x−k+1, . . . , x0 ∈ I. Let x be the equilibrium point of (1.1). The linearized equation of (1.1) about
the equilibrium point x is

yn+1 = c1yn + c2yn−1 + · · ·+ ck+1yn−k, (1.2)

where c1 = ∂f
∂xn

(x, x, . . . , x), c2 = ∂f
∂xn−1

(x, x, . . . , x), . . . , ck+1 = ∂f
∂xn−k

(x, x, . . . , x). The characteristic equa-
tion of (1.2) is

λk+1 −

k+1∑
i=1

ciλ
k−i+1 = 0. (1.3)

Definition 1.2. Let x be the equilibrium point of (1.1).

(i) The equilibrium point x of (1.1) is called locally stable if for every ε > 0, there exists δ > 0 such that
for all x−k, x−k+1, . . . , x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ · · ·+ |x0 − x| < δ,

we have
|xn − x| < ε for all n > −k.

(ii) The equilibrium point x of (1.1) is called locally asymptotically stable if x is locally stable and there
exists γ > 0, such that for all x−k, x−k+1, . . . , x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ · · ·+ |x0 − x| < γ,

we have
lim
n→∞ xn = x.

(iii) The equilibrium point x of (1.1) is called global attractor if for all x−k, x−k+1, . . . , x−1, x0 ∈ I, we have

lim
n→∞ xn = x.
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(iv) The equilibrium point x of (1.1) is called globally asymptotically stable if x is locally stable, and x is
also a global attractor of (1.1).

(v) The equilibrium point x of (1.1) is called unstable if x is not locally stable.

Definition 1.3. A positive semicycle of {xn}
∞
n=−k of (1.1) consists of a ‘string’ of terms {xl, xl+1, . . . , xm} ,

all greater than or equal to x, with l > −k and m 6 ∞ and such that either l = −k or l > −k and xl−1 < x

and either m = ∞ or m <∞ and xm+1 < x.
A negative semicycle of {xn}

∞
n=−k of (1.1) consists of a ‘string’ of terms {xl, xl+1, . . . , xm} , all less than

x, with l > −k and m 6 ∞ and such that either l = −k or l > −k and xl−1 > x and either m = ∞ or
m <∞ and xm+1 > x.

Definition 1.4. A solution {xn}
∞
n=−k of (1.1) is called nonoscillatory if there exists N > −k such that either

xn > x ∀n > N or xn < x ∀n > N,

and it is called oscillatory if it is not nonoscillatory.

We need the following theorem.

Theorem 1.5 ([18]).

(i) If all roots of (1.3) have absolute value less than one, then the equilibrium point x of (1.1) is locally asymptot-
ically stable.

(ii) If at least one of the roots of (1.3) has absolute value greater than one, then the equilibrium point x of (1.1) is
unstable.

2. Main results

In this section, we investigate the behavior of solutions of equation.

xn+1 =
α (xn−1 + xn−2) + (α− 1) xn−1xn−2

xn−1xn−2 +α
, n = 0, 1, 2, . . . , (2.1)

where the initial conditions x−2, x−1, x0 are arbitrary non-negative real numbers and the parameter α ∈
[1,∞). More precisely, we study the boundedness, stability, and oscillation of the solutions of (2.1).

Theorem 2.1. (2.1) has two equilibrium points x1 = 0 and x2 = α.

Proof. From (2.1), we can write

x =
2αx+ (α− 1) x2

x2 +α
,

then we have
x1 = 0 and x2 = α.

Theorem 2.2. The equilibrium point x1 = 0 of (2.1) is unstable equilibrium point.

Proof. The linearized equation of (2.1) about the equilibrium point x1 = 0 is

yn+1 = yn−1 + yn−2, (2.2)

and so the characteristic equation of (2.2) about the equilibrium point x1 = 0 is

λ3 − λ− 1 = 0.

Suppose that
f (λ) = λ3 − λ− 1.

It is clear that f(λ) has a root in the interval (1,∞) and so x1 = 0 is an unstable equilibrium point. This
completes the proof.
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Theorem 2.3. The equilibrium point x2 = α of (2.1) is locally asymptotically stable.

Proof. The linearized equation of (2.1) about the equilibrium point x2 = α is

yn+1 = 0, (2.3)

and so the characteristic equation of (2.3) about the equilibrium point x2 = α is

λ3 = 0,

which implies that |λ1| = |λ2| = |λ3| = 0 < 1, from which the proof is completed.

Lemma 2.4. The following identities are true

(i)

xn+1 −α =
(α− xn−2) (xn−1 −α)

xn−1xn−2 +α
, for n > 0; (2.4)

(ii)

xn+1 − xn−1 =
xn−2 (xn−1 + 1) (α− xn−1)

xn−1xn−2 +α
, for n > 0; (2.5)

(iii)

xn+1 − xn−2 =
xn−1 (xn−2 + 1) (α− xn−2)

xn−1xn−2 +α
, for n > 0; (2.6)

(iv)

xn+1 − xn−3 =
(α− xn−3) (1 + xn−3) (xn−2xn−4 (α− 1) +α (xn−2 + xn−4))

(xn−1xn−2 +α)(xn−3xn−4 +α)
, for n > 2; (2.7)

(v)

xn+1 − xn−4 =
(α− xn−4) (1 + xn−4) (xn−2xn−3 (α− 1) +α (xn−2 + xn−3))

(xn−1xn−2 +α)(xn−3xn−4 +α)
, for n > 3; (2.8)

Proof.

(i)

xn+1 −α =
α (xn−1 + xn−2) + (α− 1) xn−1xn−2

xn−1xn−2 +α
−α =

(α− xn−2) (xn−1 −α)

xn−1xn−2 +α
, for n > 0.

(ii)

xn+1 − xn−1 =
α (xn−1 + xn−2) + (α− 1) xn−1xn−2

xn−1xn−2 +α
− xn−1 =

xn−2 (xn−1 + 1) (α− xn−1)

xn−1xn−2 +α
, for n > 0.

(iii)

xn+1 − xn−2 =
α (xn−1 + xn−2) + (α− 1) xn−1xn−2

xn−1xn−2 +α
− xn−2 =

xn−1 (xn−2 + 1) (α− xn−2)

xn−1xn−2 +α
, for n > 0.

(iv)

xn+1 − xn−3 =
α (xn−1 + xn−2) + (α− 1) xn−1xn−2

xn−1xn−2 +α
− xn−3

=
α
(
α(xn−3+xn−4)+(α−1)xn−3xn−4

xn−3xn−4+α
+ xn−2

)
+ (α− 1)

(
α(xn−3+xn−4)+(α−1)xn−3xn−4

xn−3xn−4+α

)
xn−2

xn−1xn−2 +α
− xn−3

=
(α− xn−3) (1 + xn−3) (xn−2xn−4 (α− 1) +α (xn−2 + xn−4))

(xn−1xn−2 +α)(xn−3xn−4 +α)
, for n > 2.
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(v)

xn+1 − xn−4 =
α (xn−1 + xn−2) + (α− 1) xn−1xn−2

xn−1xn−2 +α
− xn−4

=
α
(
α(xn−3+xn−4)+(α−1)xn−3xn−4

xn−3xn−4+α
+ xn−2

)
+ (α− 1)

(
α(xn−3+xn−4)+(α−1)xn−3xn−4

xn−3xn−4+α

)
xn−2

xn−1xn−2 +α
− xn−4

=
(α− xn−4) (1 + xn−4) (xn−2xn−3 (α− 1) +α (xn−2 + xn−3))

(xn−1xn−2 +α)(xn−3xn−4 +α)
, for n > 3.

Then, the proof is completed.

Theorem 2.5. If {xn}
∞
n=−2 be a solution to the rational nonlinear difference (2.1), then for n > 0 we have

(i) xn+1 < xn−1, iff xn−1 > α;
(ii) xn+1 > xn−1, iff xn−1 < α;

(iii) xn+1 < xn−2, iff xn−2 > α;
(iv) xn+1 > xn−2, iff xn−2 < α.

Proof. Let xn−1 > α (xn−1 < α) . Then from (2.5) we have xn+1 < xn−1 (xn+1 > xn−1 ) . Also if xn+1 <

xn−1 (xn+1 > xn−1 ) , then from (2.5) we have xn−1 > α (xn−1 < α) . Then the proofs of (i) and (ii) are
completed.

Now, let xn−2 > α (xn−2 < α) . Then from (2.6) we have xn+1 < xn−2 (xn+1 > xn−2) . Also if xn+1 <

xn−2 (xn+1 > xn−2) , then from (2.6) we have xn−2 > α (xn−2 < α). Then the proofs of (iii) and (iv) are
completed.

Theorem 2.6. Let {xn}
∞
n=−2 be a solution of (2.1). Then the following statements are true.

(i) If xn0 = x2 = α, for some n0 ∈ {−1, 0, 1, 2, . . .} , then xn = x2 = α, for all n > n0 + 2. Also if x−2 = x2 = α,
then xn = x2 = α, for all n > 3.

(ii) If xn0 , xn0+1, xn0+2 < x2 = α, for some n0 ∈ {−2,−1, 0, 1, 2, . . .} , then xn < x2 = α, for all n > n0.
(iii) If (i) and (ii) are not satisfied, then {xn}

∞
n=−2 oscillates about x2 = α, with positive semicycles of length at

most three, and negative semicycles of length at most two.

Proof.

(i) Let xn0 = x2 = α, for some n0 ∈ {−1, 0, 1, 2, . . .}. Then from (2.4) we have xn = x2 = α, for all n > n0 + 2.
If x−2 = x2 = α, then from (2.4) we have x1 = x2 = α, which implies that xn = x2 = α, for all n > 3.

(ii) Let xn0 , xn0+1, xn0+2 < x2 = α, for some n0 ∈ {−2,−1, 0, 1, 2, . . .}. Then from (2.4) we have xn < x2 = α,
for all n > n0.

(iii) Suppose without loss of generality that there exists n0 ∈ {−2,−1, 0, 1, 2, . . .}, such that xn0 , xn0+1, xn0+2 >

x2 = α. Then from (2.4) we have xn0+3, xn0+4 < α, xn0+5 > α, xn0+6 < α and xn0+7, xn0+8, xn0+9 > x2 = α.
The proofs of the other possibilities are similar, and will be omitted.

Theorem 2.7. The equilibrium point x2 = α of (2.1) is globally asymptotically stable.

Proof. We know by Theorem 2.3 that the equilibrium point x2 = α of (2.1) is locally asymptotically stable,
and so it suffices to show that limn→∞xn = x2 = α. If there exists n0 ∈ {−2,−1, 0, 1, 2, . . .}, such that
xn0 = x2 = α, then from Theorem 2.6 we have limn→∞xn = x2 = α. Also, if x−2, x−1, x0 < x2 = α, then by
Theorem 2.6 we have xn < x2 = α, for all n > −2 and from (2.5), we have xn+1 > xn−1, for n > 0. So the
subsequences {x2n}

∞
n=0 and {x2n−1}

∞
n=0 are increasing and bounded, which implies that the even terms

{x2n}
∞
n=0 converge to a limit (say M1 > 0) and the odd terms {x2n−1}

∞
n=0 converge to a limit (say M2 > 0).

Then

M1 =
α (M1 +M2) + (α− 1)M1M2

M1M2 +α
and M2 =

α (M1 +M2) + (α− 1)M1M2

M1M2 +α
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=⇒M1 =M2 and M1 [(M1 + 1) (M1 −α)] = 0,

which implies that either M1 = M2 = −1, or M1 = M2 = 0, or M1 = M2 = α. Since M1 = M2 > 0, then
M1 =M2 = α.

Now, suppose that x−2, x−1, x0 > x2 = α, then from (2.4), (2.5), and (2.6) we have α < · · · < x14 < x7 <

x0, and so the sequence {x7n}
∞
n=0 is decreasing and bounded, which implies that the sequence {x7n}

∞
n=0

converges to a limit (say L0 > 0).
For the sequence {x7n+1}

∞
n=0, we have from (2.4) that 0 < x1 < x2 = α, and from (2.4), (2.6), and (2.7)

we have 0 < x1 < x8 < x15 < · · · < α, and so the sequence {x7n+1}
∞
n=0 is increasing and bounded, which

implies that the sequence {x7n+1}
∞
n=0 converges to a limit (say L1 > 0).

Similarly from (2.4)-(2.8), we have the following results.
The sequence {x7n+2}

∞
n=0 is increasing and bounded, and so converges to a limit (say L2 > 0).

The sequence {x7n+3}
∞
n=0 is decreasing and bounded, and so converges to a limit (say L3 > 0).

The sequence {x7n+4}
∞
n=0 is increasing and bounded, and so converges to a limit (say L4 > 0).

The sequence {x7n+5}
∞
n=0 is decreasing and bounded, and so converges to a limit (say L5 > 0).

The sequence {x7n+6}
∞
n=0 is decreasing and bounded, and so converges to a limit (say L6 > 0).

So we have from (2.1) that

L0 =
α (L4 + L5) + (α− 1)L4L5

L4L5 +α
, L1 =

α (L5 + L6) + (α− 1)L5L6

L5L6 +α
, L2 =

α (L0 + L6) + (α− 1)L0L6

L0L6 +α
,

L3 =
α (L0 + L1) + (α− 1)L0L1

L0L1 +α
, L4 =

α (L1 + L2) + (α− 1)L1L2

L1L2 +α
, L5 =

α (L2 + L3) + (α− 1)L2L3

L2L3 +α
,

L6 =
α (L3 + L4) + (α− 1)L3L4

L3L4 +α
.

If α = 1, then the solution of this system is either Li = −1, i = 0, 1, . . . , 6, or Li = 0, i = 0, 1, . . . , 6, or
Li = α, i = 0, 1, . . . , 6.

If α ∈ (1,∞) , then the solution of this system is either Li = −1, i = 0, 1, . . . , 6, or Li = 0, i = 0, 1, . . . , 6,
or Li = α, i = 0, 1, . . . , 6, or Li = 0, i = 0, 4, 5 and Li = − 2α

−1+α , i = 1, 2, 3, 6, or Li = 0, i = 2, 3, 5 and
Li = − 2α

−1+α , i = 0, 1, 4, 6, or Li = 0, i = 1, 5, 6 and Li = − 2α
−1+α , i = 0, 2, 3, 4, or Li = 0, i = 0, 1, 3 and

Li = − 2α
−1+α , i = 2, 4, 5, 6, or Li = 0, i = 0, 2, 6 and Li = − 2α

−1+α , i = 1, 3, 4, 5, or Li = 0, i = 3, 4, 6 and
Li = − 2α

−1+α , i = 0, 1, 2, 5, or Li = 0, i = 1, 2, 4, Li = − 2α
−1+α , i = 0, 3, 5 and Li = 8α

(1−α)3 −
12α

(1−α)2 +
6α

(1−α) −

16α2

(1−α)3 +
12α2

(1−α)2 +
8α3

(1−α)3 , i = 6. Since Li > 0, i = 0, 1, . . . , 6, so the only possible solution of this system in
both two cases is Li = α, i = 0, 1, . . . , 6, and so we have limn→∞xn = x2 = α.

The proofs for the other cases x−2, x−1 > x2 = α, x0 < x2 = α, or x−2, x−1 < x2 = α, x0 > x2 = α,
or x−2 > x2 = α, x−1, x0 < x2 = α, or x−2 < x2 = α, x−1, x0 > x2 = α, or x−2 > x2 = α, x−1 < x2 = α,
x0 > x2 = α or x−2 < x2 = α, x−1 > x2 = α, x0 < x2 = α are embedded in the proof of the last case, and
will be omitted. Therefore the proof is completed.

Remark 2.8. When α = 1, we obtain the results due to Ahmed [3].
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[18] V. L. Kocić, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Aca-

demic Publishers, Dordrecht, (1993). 1, 1.5
[19] W.-X. Ma, Global Behavior of a New Rational Nonlinear Higher-Order Difference Equation, Complexity, 2019 (2019), 4

pages. 1

https://doi.org/10.1155/2011/419789
https://doi.org/10.1155/2011/419789
https://doi.org/10.14317/jami.2014.599
https://www.koreascience.or.kr/article/JAKO200906942471591.pdf
https://www.koreascience.or.kr/article/JAKO200906942471591.pdf
http://scientificadvances.co.in/admin/img_data/955/images/JPAMAA7100121435HaythamM.Rezk.pdf
http://scientificadvances.co.in/admin/img_data/955/images/JPAMAA7100121435HaythamM.Rezk.pdf
https://doi.org/10.1016/j.joems.2013.04.001
https://doi.org/10.1016/j.joems.2013.04.001
https://doi.org/10.1016/S0096-3003(03)00194-2
https://doi.org/10.1016/S0096-3003(03)00194-2
https://doi.org/10.1016/j.amc.2003.08.122
https://doi.org/10.1016/j.amc.2003.08.010
https://doi.org/10.1016/j.amc.2003.08.010
https://dml.cz/bitstream/handle/10338.dmlcz/134123/MathBohem_132-2007-3_4.pdf
https://dml.cz/bitstream/handle/10338.dmlcz/134123/MathBohem_132-2007-3_4.pdf
https://web.b.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=15485390&AN=24199609&h=3WBl0R7M6KbEcZ%2b6G3QT%2bv%2fPDSD3efANJ3TxKRRH%2btazD8yZ3FlTHcr7%2beGBa1Zj4%2fKLUzOE5wI4iIEq7pw%2f1Q%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d15485390%26AN%3d24199609
https://web.b.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=15485390&AN=24199609&h=3WBl0R7M6KbEcZ%2b6G3QT%2bv%2fPDSD3efANJ3TxKRRH%2btazD8yZ3FlTHcr7%2beGBa1Zj4%2fKLUzOE5wI4iIEq7pw%2f1Q%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d15485390%26AN%3d24199609
https://www.researchgate.net/profile/Elsayed-Elsayed-7/publication/237829692_Qualitative_behavior_of_higher_order_difference_equation/links/58db31a145851578dfe851aa/Qualitative-behavior-of-higher-order-difference-equation.pdf
https://www.researchgate.net/profile/Elsayed-Elsayed-7/publication/237829692_Qualitative_behavior_of_higher_order_difference_equation/links/58db31a145851578dfe851aa/Qualitative-behavior-of-higher-order-difference-equation.pdf
https://dml.cz/bitstream/handle/10338.dmlcz/134057/MathBohem_133-2008-2_3.pdf
https://dml.cz/bitstream/handle/10338.dmlcz/134057/MathBohem_133-2008-2_3.pdf
http://ftp.math.uni-rostock.de/pub/romako/heft59/agy59.pdf
http://ftp.math.uni-rostock.de/pub/romako/heft59/agy59.pdf
https://reader.elsevier.com/reader/sd/pii/S0893965905000674?token=E42C36E7FAC6C69F1EF5B10B614136142354435B07738BEEDAECDEDB5488030DA6936F2F86E0832A107F980D9B35CD2B&originRegion=us-east-1&originCreation=20210701144613
https://reader.elsevier.com/reader/sd/pii/S0893965905000674?token=E42C36E7FAC6C69F1EF5B10B614136142354435B07738BEEDAECDEDB5488030DA6936F2F86E0832A107F980D9B35CD2B&originRegion=us-east-1&originCreation=20210701144613
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1043.835&rep=rep1&type=pdf
https://www.researchgate.net/profile/Elsayed-Elsayed-7/publication/268159596_Behavior_of_rational_recursive_sequences/links/547dcde00cf2cfe203c2247c/Behavior-of-rational-recursive-sequences.pdf
https://doi.org/10.1007/978-94-017-1703-8
https://doi.org/10.1007/978-94-017-1703-8
https://doi.org/10.1155/2019/2048941
https://doi.org/10.1155/2019/2048941

	Introduction
	Main results

