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Abstract
The focal objective of this paper is to establish a new iterative algorithm, namely Vn and utilize the same to prove some

strong and weak convergence results in Banach spaces. An example is given to confirm the efficiency of aforementioned
scheme. Since the iteration Vn is faster than many existing iterative algorithms, so the results in this paper are the extensions,
improvements and the generalizations in the existing literature of fixed point in Banach spaces.
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1. Introduction

Throughout this paper, we will denote set of natural numbers by N and set of real numbers by R. A
mapping ℘ on a subset Bs of a Banach space B is said to be nonexpansive if

||℘x− ℘y|| 6 ||x− y||, for all x,y ∈ Bs.

An element q ∈ Bs is said to be a fixed point of ℘ if q = ℘q. From now on, we will denote set of all
fixed points of ℘ by f℘. A mapping ℘ : Bs → Bs is said to be quasi-nonexpansive mapping, if f℘ 6= ∅
and ||℘x − σ|| 6 ||x − σ|| for all x ∈ Bs and σ ∈ f℘. The existence of fixed points for nonexpansive
mappings in the setting of Banach spaces was studied independently by Browder [4], Gohde [5], and
Kirk [7]. They proved that if Bs is nonempty closed bounded and convex subset of a uniformly convex
Banach space, then every nonexpansive mapping ℘ : Bs → Bs has atleast one fixed point. A number
of generalizations of nonexpansive mappings have been studied by numerous authors in recent years.
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In [16] Suzuki introduced a new class of mappings (weaker than nonexpansiveness and stronger than
quasi-nonexpansiveness) known as Suzuki generalized nonexpansive mappings which is a condition on
mappings called condition (C) and obtained successfully some convergence and existence results for such
mappings. A mapping ℘ : Bs → Bs is said to satisfy condition (C) (sometimes Suzuki generalized
nonexpansive) if

1
2
||x− ℘x|| 6 σ||x− y|| implies ||℘x− ℘y|| 6 ||x− y||,

for each x,y ∈ Bs. Suzuki proved that condition (C) is weaker than nonexpansiveness and stronger than
quasi nonexpansiveness.

It is natural to study the computation of fixed points for the known existence results, which is not an
easy task. The Banach contraction mapping principle uses Picard iteration process xn+1 = ℘xn for ap-
proximation of the unique fixed point. Some other well-known iteration schemes are Mann [8], Ishikawa
[6], Agarwal [3], Noor [10], Abbas [1], Thakur et al. [18], Mishra et al. [9] and so on. Speed of convergence
plays an important role for an iteration process to be preferred on another iteration process. Rhoades [12]
mentioned that the Mann iteration process for decreasing function converge faster than the Ishikawa iter-
ation process and for increasing function the Ishikawa iteration process is better than the Mann iteration
process.

The well-known Mann [8] and Ishikawa [6] iteration processes are respectively defined as:{
x1 ∈ Bs,
xn+1 = (1 − η0

n)xn + η0
n℘xn,n ∈N,

where η0
n ∈ (0, 1) and 

x1 ∈ Bs,
yn = (1 − η1

n)xn + η1
n℘xn,

xn+1 = (1 − η0
n)xn + η0

n℘yn,n ∈N,

where η0
n,η1

n ∈ (0, 1).
In 2007, Agarwal et al. [3] introduced the following iteration process known as S iteration:

x1 ∈ Bs,
yn = (1 − η1

n)xn + η1
n℘xn,

xn+1 = (1 − η0
n)℘xn + η0

n℘yn,n ∈N,
(1.1)

where η0
n,η1

n ∈ (0, 1). They proved that the rate of convergence of iteration process of (1.1) is same to the
picard iteration and faster than Mann iteration process in the class of contraction mappings.

Thakur et al. [18] used a new iteration process, defined as:
x1 ∈ Bs,
zn = (1 − η1

n)xn + η1
n℘xn,

yn = ℘
(
(1 − η0

n)xn + η0
nzn

)
,

xn+1 = ℘yn,n ∈N,

(1.2)

where η0
n,η1

n ∈ (0, 1). With the help of numerical example, they proved that (1.2) is faster than Picard,
Mann, Ishikawa, Agarwal, Noor and Abbas iteration process in the class of Suzuki generalized nonex-
pansive mappings.

Recently in 2018, Ullah and Arshad [19] introduced K∗ iteration process:
x1 ∈ Bs,
zn = (1 − η1

n)xn + η1
n℘xn,

yn = ℘((1 − η0
n)zn + η0

n℘zn),
xn+1 = ℘yn,n ∈N,

(1.3)
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where η0
n,η1

n ∈ (0, 1). They claimed that the rate of convergence of iteration (1.4) is faster than all above
mentioned iteration schemes. Now, inspired by the works mentioned above, we propose the following
problem:

Question 1.1. Is it possible to develop an iteration process whose rate of convergence is even faster than the iteration
process (1.3)?

As an answer, we introduce the following new iteration called as Vn iteration process:
x1 ∈ Bs,
zn = ℘xn,
yn = ℘

(
(1 − η1

n)℘zn + η1
nzn

)
,

xn+1 = ℘
(
(1 − η0

n)yn + η0
n℘yn

)
,n ∈N,

(1.4)

where η0
n,η1

n ∈ (0, 1). In this way, we approximate fixed points of Suzuki generalized nonexpansive
mappings using (1.4). With the help of numerical example, we compare the rate of convergence of our
new Vn iteration scheme with the existing faster iteration schemes.

2. Preliminaries

In this section, we give some preliminaries. Let B be a Banach space and Bs be a nonempty closed
convex subset of B. Let {xn} be a bounded sequence in Bs. For x ∈ Bs, set

r(x, {xn}) = lim sup
n→∞ ||x− xn||.

The asymptotic radius of {xn} relative to Bs is given by

r(Bs, {xn}) = inf{r(x, {xn}) : x ∈ Bs}.

The asymptotic center of {xn} relative to Bs is the set

A(Bs, {xn}) = {x ∈ Bs : r(x, {xn}) = r(Bs, {xn})}.

It is well-known that in a uniformly convex Banach spaces, A(Bs, xn) consists of exactly one point. Also,
A(Bs, xn) is nonempty and convex in the case when Bs is weakly compact and convex (see [2, 17]).

Following are some basic definitions and results.

Definition 2.1. A Banach space B is said to be uniformly convex if for each ε ∈ (0, 2], there is a λ > 0 such
that for every x,y ∈ B, ||x|| 6 1, ||y|| 6 1, and ||x− y|| > ε, we have

1
2
||x+ y|| 6 (1 − λ).

Definition 2.2 ([11]). A Banach space B is said to have Opial’s property if for each sequence {xn} in Bs
which weakly converges to x ∈ B and for every y ∈ Bs, it follows the following

lim sup
n→∞ ||xn − x|| < lim sup

n→∞ ||xn − y||.

Examples of Banach spaces satisfying this condition are Hilbert spaces and all lp spaces (1 < p <∞).

We now list some basic facts about Suzuki generalized nonexpansive mappings, which can be found
in [16].
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Proposition 2.3. Let B be a Banach space, Bs a nonempty subset of B, and ℘ : Bs → Bs be a mapping.

(i) If ℘ is nonexpansive mapping then ℘ is a Suzuki generalized nonexpansive mapping.
(ii) If ℘ is Suzuki generalized nonexpansive mapping and has a fixed point, then ℘ is a quasi-nonexpansive map-

ping.
(iii) If ℘ is Suzuki generalized nonexpansive mapping, then f℘ is closed. Moreover, if Bs is strictly convex and Bs

is convex, then f℘ is also convex.
(iv) If ℘ is Suzuki generalized nonexpansive mapping, then for each x,y ∈ Bs,

||x− ℘(y)|| 6 3||x− ℘(x)||+ ||x− y||.

(v) If Bs has Opial property, ℘ is Suzuki generalized nonexpansive, {xn} converges weakly to a point w, and
limn→∞ ||℘xn − xn|| = 0, then w ∈ f℘.

Lemma 2.4 ([16]). Let Bs be a weakly compact convex subset of a uniformly convex Banach space B. Let ℘ be a
mapping on Bs. Assume that ℘ is Suzuki generalized nonexpansive mapping. Then ℘ has a fixed point.

The following useful Lemma can be found in [13].

Lemma 2.5. Let Bs be a uniformly convex Banach space and 0 < p 6 η0
n 6 q < 1 for every n ∈ N. If {tn} and

{sn} are two sequences in Bs such that lim supn→∞ ||℘n|| 6 Bs, lim supn→∞ ||sn|| 6 c, and limn→∞ ||η0
ntn +

(1 − η0
n)sn|| = c for some c > 0, then, limn→∞ ||℘n − sn|| = 0. Also, let ℘ be a Suzuki generalized nonexpansive

mapping defined on a subset Bs of a Banach space B with the Opial property. If a sequence {xn} converges weakly
to z and limn→∞ ||℘xn − xn|| = 0, then I-℘ is demiclosed at zero.

3. Convergence theorems in uniformly Banach spaces

We start this section with following important Lemma.

Lemma 3.1. Let Bs be a nonempty closed convex subset of a Banach space B and ℘ : Bs → Bs be a Suzuki
generalized nonexpansive mapping with f℘ 6= ∅. Let {xn} be a sequence generated by (1.4), then limn→∞ ||xn − σ||
exists for each q ∈ f℘.

Proof. Let q ∈ f℘. By Proposition 2.3 part (ii), we have

||yn − σ|| = ||℘((1 − η1
n)℘zn + η1

nzn) − σ||

6 ||(1 − η1
n)℘zn + η1

nzn − σ||

6 (1 − η1
n)||℘zn − σ||+ η1

n||zn − σ||

6 (1 − η1
n)||zn − σ||+ η1

n||zn − σ||

= ||zn − σ||

= ||℘xn − σ||

6 ||xn − σ||,

which implies

||xn+1 − σ|| = ||℘((1 − η0
n)yn + η0℘yn) − σ||

6 ||(1 − η0
n)yn + η0

n℘yn − σ||

6 (1 − η0
n)||yn − σ||+ η0

n||℘yn − σ||

6 (1 − η0
n)||yn − σ||+ η0

n||yn − σ||

= ||yn − σ||

6 ||xn − σ||.

Thus {||xn − σ||} is bounded and non increasing, which implies that limn→∞ ||xn − σ|| exists for each
q ∈ f℘.
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The following theorem is useful for the next results.

Theorem 3.2. Let Bs be a nonempty closed convex subset of a uniformly convex Banach space B and ℘ : Bs → Bs
a Suzuki generalized nonexpansive mapping. Let {xn} be a sequence generated by (A). Then, f℘ 6= ∅ if and only if
{xn} is bounded and limn→∞ ||℘xn − xn|| = 0.

Proof. Suppose that f℘ 6= ∅ and q ∈ f℘. Then, by Lemma 3.1, limn→∞ ||xn − σ|| exists and {xn} is bounded.
Put

lim
n→∞ ||xn − σ|| = c. (3.1)

By the proof of Lemma 3.1, ||zn − σ|| 6 σ||xn − σ|| and ||yn − σ|| 6 σ||xn − σ||. It follows that

lim sup
n→∞ ||zn − σ|| 6 lim sup

n→∞ ||xn − σ|| = c, (3.2)

and
lim sup
n→∞ ||yn − σ|| 6 lim sup

n→∞ ||xn − σ|| = c. (3.3)

By Proposition 2.3 part (ii), we have

lim sup
n→∞ ||℘zn − σ|| 6 lim sup

n→∞ ||zn − σ|| 6 lim sup
n→∞ ||xn − σ|| = c. (3.4)

Again by the proof of Lemma 3.1, ||xn+1 − σ|| 6 σ||yn − σ||. It follows that

c 6 lim inf
n→∞ ||yn − σ||. (3.5)

From (3.3) and (3.5), we obtain
c = lim

n→∞ ||yn − σ||. (3.6)

From (3.1) and (3.6), we have

c = lim
n→∞ ||yn − σ||

= lim
n→∞ ||℘((1 − η1

n)℘zn + η1
nzn) − σ||

6 lim
n→∞ ||(1 − η1

n)℘zn + η1
nzn − σ||

= lim
n→∞ ||(1 − η1

n)(℘zn − q) + η1
n(zn − q)||

6 lim
n→∞(1 − η1

n)||℘zn − σ||+ lim
n→∞η1

n||zn − σ||

6 lim
n→∞(1 − η1

n)||zn − σ||+ lim
n→∞η1

n||zn − σ||

= lim
n→∞ ||zn − σ||

6 lim
n→∞ ||xn − σ||

= c.

Hence,
c = lim

n→∞ ||(1 − η1
n)(℘zn − q) + η1

n(zn − q)||.

Now, from (3.2), (3.4), and (3.6) together with Lemma 2.5, we obtain

lim
n→∞ ||℘zn − zn|| = 0.

Now, it can easily be concluded that

lim
n→∞ ||℘xn − xn|| = lim

n→∞ ||℘xn − q+ q− xn|| = lim
n→∞ ||℘xn − σ||+ ||q− xn|| 6 2 lim

n→∞ ||xn − σ||. (3.7)
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Since,

lim
n→∞ ||xn − p|| = lim

n→∞ ||℘((1 − η0
n)yn + η0

n℘yn) − σ||

= lim
n→∞ ||(1 − η0

n)yn + η0
n℘yn − σ|| = lim

n→∞ ||(1 − η0
n)(yn − q) + η0

n(℘yn − q)||,

which on combining above equations and Lemma 2.5,

lim
n→∞ ||yn − ℘yn|| = 0

and hence, using limn→∞ ||yn − p||, we have

lim
n→∞ ||zn − ℘zn|| = 0.

Also,

||yn − ℘zn|| = ||℘((1 − η1
n)℘zn + η1

nzn) − ℘zn||

6 ||(1 − η1
n)℘zn + η1

nzn − ℘zn||

6 ||(1 − η1
n)℘zn + η1

nzn − zn||

6 (1 − η1
n)||℘zn − zn||,

which implies that

lim
n→∞ ||yn − ℘yn|| = 0.

Also,

||zn − yn|| 6 ||zn − ℘zn||+ ||℘zn − yn|| =⇒ lim
n→∞ ||yn − zn|| = 0.

now, equation (3.7) results

lim
n→∞ ||℘xn − xn|| 6 2 lim

n→∞ ||yn − ℘yn||

6 2
[

lim
n→∞ ||yn − ℘zn + ℘zn − ℘yn||

]
6 2
[

lim
n→∞ ||yn − ℘zn||+ lim

n→∞ ||℘zn − ℘yn||

]
6 2
[

lim
n→∞ ||yn − ℘zn||+ lim

n→∞ ||zn − yn||

]
,

and hence, we have

lim
n→∞ ||℘xn − xn|| = 0.

Conversely, we assume that {xn} is bounded and limn→∞ ||℘xn − xn|| = 0. Let q ∈ A Bs, {xn}). By
Proposition 2.3 part (iv), we have

r(℘q, {xn}) = lim sup
n→∞ ||xn − ℘σ|| 6 3 lim sup

n→∞ ||xn − σ||+ lim sup
n→∞ ||xn − σ|| = lim sup

n→∞ ||xn − σ|| = r(q, {xn}).

Hence, we conclude that ℘q ∈ A(℘, {xn}. Since Bs is uniformly convex, A(℘, {xn}) consists of a unique
element. Thus, we have ℘q = q.
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First we prove our weak convergence result.

Theorem 3.3. Let Bs be a uniformly Banach space with Opial property, Bs a nonempty closed convex subset of
B and ℘ : Bs → Bs be Suzuki generalized nonexpansive mapping with f℘ 6= ∅. Then, {xn} generated by (1.4)
converges weakly to an element of f℘.

Proof. By Theorem 3.2, {xn} is bounded and limn→∞ ||℘xn − xn|| = 0. Since Bs is uniformly convex, Bs
is reflexive. So, subsequence {xni} of {xn} exists such that {xni} converges weakly to some w1 ∈ Bs. By
Proposition 2.3 part (v), we have w1 ∈ f℘. It is sufficient to show that {xn} converges weakly to w1. If not,
then, there exists a subsequence {xnj} of {xn} and w2 ∈ Bs such that {xnj} converges weakly to w2 and
w2 6= w1. Again by Proposition 2.3 part (v), w2 ∈ f℘. By Lemma 3.1 together with Opial property, we have

lim
n→∞ ||xn −w1|| = lim

i→∞ ||xni −w1|| < lim
i→∞ ||xni −w2||

= lim
n→∞ ||xn −w2||

= lim
j→∞ ||xnj −w2|| < lim

j→∞ ||xnj −w1|| = lim
n→∞ ||xn −w1||.

This is a contradiction, so, w1 = w2. Thus, {xn} converges weakly to z1 ∈ f℘.

Theorem 3.4. Let Bs be a nonempty compact convex subset of a uniformly convex Banach space B and ℘ : Bs →
Bs be a Suzuki generalized nonexpansive mapping. Then, {xn} generated by (1.4) converges strongly to an element
of f℘.

Proof. By Lemma 2.4, f℘ 6= ∅. By Theorem 3.2, limn→∞ ||℘xn− xn|| = 0. By compactness of Bs, there exists
a subsequence {xnj} of {xn} such that {xnj} converges strongly to p for some p ∈ Bs. By Proposition 2.3
(iv), we have

||xnj − ℘(p)|| 6 3||xnj − ℘(xnj)||+ ||xnj − p||.

Letting j → ∞ we get ℘p = p. By Lemma 3.1, limn→∞ ||xn − p|| exists, for each p ∈ f℘. Therefore, we
conclude that {xn} converges strongly to an element of f℘.

We now prove our strong convergence result.

Theorem 3.5. Let Bs be a nonempty closed convex subset of a uniformly convex Banach space B and ℘ : Bs → Bs
be a Suzuki generalized nonexpansive mapping. If f℘ 6= ∅ and lim infn→∞ dist(xn, f℘) = 0 (where dist(x, f℘) =
inf{||x− σ|| : q ∈ f℘}). Then, {xn} generated by (1.4) converges strongly to an element of f℘.

Proof. By Lemma 3.1, limn→∞ ||xn − σ|| exists, for each q ∈ f℘. So, limn→∞ dist(xn, f℘) exists, thus

lim
n→∞dist(xn, f℘) = 0.

Therefore, there exists subsequences {xnk} of {xn} and {wnk} in f℘ such that

||xnk −wnk || 6
1

2k

for each k ∈N. By the proof of Lemma 3.1, {xn} is non increasing, so

||xnk+1 −wk|| 6 σ||xnk −wnk || 6
1

2k
.

Therefore,

||wk+1 −wk|| 6 ||wk+1 − xnk+1 ||+ ||xnk+1 −wk|| 6
1

2k+1 +
1

2k
6

1
2k−1 → 0,



N. Sharma, L. N. Sharma, S. N. Mishra, V. N. Mishra, J. Math. Computer Sci., 25 (2022), 284–295 291

as k→∞. Hence, we conclude that {wk} is a Cauchy sequence in f℘ and so it converges to some q. Since,
by Proposition 2.3 part (iii), f℘ is closed, then q ∈ f℘. By Lemma 3.1, limn→∞ ||xn − σ|| exists, hence {xn}

converges strongly to q ∈ f℘.

Definition 3.6 ([14]). A selfmap ℘ on Bs subset of a Banach space is said to satisfy condition (I) if there is
a nondecreasing function ψ : R+ → R+ with the property ψ(0) = 0 and ψ(s) > 0 for all s ∈ (0,∞) such
that

||x− ℘x|| 6 ψ(dist(x, f℘))

for all x ∈ Bs, where
d(x, f℘) = inf

p∈f℘
||xn − p||.

Now, the strong convergence theorem using condition (I) is as follows.

Theorem 3.7. Let Bs be a nonempty closed convex subset of uniformly convex Banach space B and ℘ : Bs → Bs
be a Suzuki generalized nonexpansive mapping with f℘ 6= ∅. If ℘ satisfies condition (I), then {xn} generated by (1.4)
converges strongly to an element of f℘.

Proof. From Theorem 3.2, it follows that

lim inf
n→∞ ||℘xn − xn|| = 0. (3.8)

Since ℘ satisfies condition (I), we have

||xn − ℘xn|| > ψ(dist(xn, f℘)).

From (3.8), we get
lim inf
n→∞ (dist(xn, f℘)) = 0.

Since ψ : [0,∞) → [0,∞) is a nondecreasing function with ψ(0) = 0 and ψ(r) > 0 for all r ∈ (0,∞), we
have

lim inf
n→∞ dist(xn, f℘) = 0.

Therefore all the assumptions of Theorem 3.5 are satisfied and so {xn} converges strongly to an element
of f℘.

4. Numerical example

In this section, an example is to be given which shows that Vn iteration scheme converges faster than
the K∗.

Example 4.1. Let B = (−∞,∞) and Bs = [1, 50], and ℘ : Bs → Bs be mapping defined as ℘(x) =√
x2 − 8x+ 48 for all x ∈ Bs. Clearly, x = 6 is the fixed point of ℘. Set x0 = 35 for all n ∈ N, η0

n = 0.25
and η1

n = 0.65. The iterative values for xn are given in Table 1. Graphical comparison can easily be shown
by Figure 1. Clearly the new Vn iteration process converging fast to the fixed point of ℘ as compared to
other iteration processes whereas graphical comparison of Vn for the function 1+4x

5 for αn = 0.75 and
βn = 0.65 with initial value x0 = 10 is shown by Fig. 2.

Tabulated values for Vn, K∗, and S are respectively generated by (1.4), (1.3), and (1.1) iteration schemes
for mapping ℘.
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Table 1: Empirical behavior of Vn for initial value x0 = 35.

Figure 1: Graphical comparison to study the efficiency of Vn as compared to K∗ and S iteration processes.
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Figure 2: Graphical comparison of Vn for the function 1+4x
5 with αn = 0.75 and βn = 0.65, and initial value x0 = 10 (K∗, S, and

Vn iteration process).
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5. An application

Let a Banach space (B([a,b]), ||.||∞) which is space of all continuous real valued functions on a closed
interval [a,b] a with endowed Chebyshev norm

‖x− y‖∞ = max
t∈[a,b]

|x(t) − y(t)|.

In this section, solution of a particular delay differential equation has a solution generated by Vn iteration
scheme.

x ′(t) = f(t, x(t), x(t− τ)), t ∈ [t0,b], (5.1)
x(t) = ψ(t), t ∈ [t0 − τ, t0]. (5.2)

We opine that the following conditions are performed

1. t0,b ∈ R, τ > 0;
2. f ∈ D([t0,b]×R2, R);
3. ψ ∈ D([t0 − τ,b], R);
4. if 2Lf(b− t0) < 1, there exist Lf > 0 such that

|f(t,u1,u2) − f(t, v1, v2)| 6 Lf

2∑
n=0

|ui − vi|, (5.3)

∀ui, vi ∈ R, i = 1, 2, t ∈ [t0,b].

By a solution of the problem (5.1)-(5.2) we understand function x ∈ D([t0 − τ,b], R)
⋂
C1([t0,b], R).

The problem (5.1)-(5.2) can be reformulated in the following form of integral

x(t) = ψ(t), t ∈ [t0 − τ, t0], x(t) = ψ(t0) +

∫t
t0

f(s, x(s), x(s− τ))ds, t ∈ [t0,b]. (5.4)

Theorem 5.1. Suppose that conditions 1-4 are satisfied. Then the problem (5.1)-(5.4) has a unique solution in
C([t0 − τ,b], R)

⋂
C1([t0,b], R).

Proof. Let {yn}∞n=0 be an iterative sequence generative by Vn iteration method (1.4) for the operator

℘x(t) = ψ(t), t ∈ [t0 − τ, t0],

or

℘x(t) = ψ(t0) +

∫t
t0

f(s, x(s), x(s− τ))ds, t ∈ [t0,b].

Let xω denote the fixed point of ℘. We will show that yn → xω as n→∞. For t ∈ [t0 − τ, t0], it is easy to
see that yn → xω as n→∞. For t ∈ [t0,b] we obtain

‖xn − xω‖∞ = ‖℘((1 − σ0
n)yn + σ0

n℘yn) − xω‖∞
= ‖ω((1 − σ0

n)yn + σ0
n℘yn) − ℘xω‖

6 ‖(1 − σ0
n)yn + σ0

n℘yn − xω‖
6 (1 − σ0

n)‖yn − xω‖∞ + σ0
n max
t∈[t0−τ,b]

|℘yn − ℘xω|

and hence,

‖xn − xω‖∞ = (1 − σ0
n)‖yn − xω‖∞ + σ0

n max
t∈[t0−τ,b]

∣∣∣∣ψ(t0) +

∫t
t0

f(s, x(s), x(s− τ))ds
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−ψ(t0) −

∫t
t0

f(s, xω(s), xω(s− τ))ds
∥∥xn − xω‖∞

= (1 − σ0
n)‖yn − xω‖∞ + σ0

n max
t∈[t0−τ,b]

∣∣∣∣ ∫t
t0

f(s, x(s), x(s− τ))ds

−

∫t
t0

f(s, xω(s), xω(s− τ))ds

∣∣∣∣
= (1 − σ0

n)‖yn − xω‖∞ + σ0
n max
t∈[t0−τ,b]

∫t
t0

∣∣∣∣f(s, x(s), x(s− τ))
which gives

−f(s, xω(s), xω(s− τ))ds

∣∣∣∣
= (1 − σ0

n)‖yn − xω‖∞ + σ0
n max
t∈[t0−τ,b]

∫t
t0

Lf

(
|yn(s) − xδ(s)|+ |yn(s− τ) − xω(s− τ)|

)
ds

= (1 − σ0
n)‖yn − xω‖∞ + σ0

n max
t∈[t0−τ,b]

∫t
t0

Lf

(
|yn(s) − xδ(s)|+ |yn(s− τ) − xω(s− τ)|

)
ds

= (1 − σ0
n)‖yn − xω‖∞ + σ0

nLf

(
max

t∈[t0−τ,b]
|yn(s) − xδ(s)|+ max

t∈[t0−τ,b]
|yn(s− τ) − xω(s− τ)|

) ∫t
t0

ds

= (1 − σ0
n)‖yn − xω‖∞ + 2σ0

nLf(b− t0)‖yn − xω‖,

and

‖xn − xω‖∞ =

[
1 − σ0

n(1 − 2Lf(b− t0))

]
‖yn − xω‖, (5.5)

and hence,

‖yn − xω‖∞ =

[
σ1
n − σ1

n(1 − 2Lf(b− t0))

]
‖zn − xω‖, (5.6)

similarly, we have

‖zn − xω‖∞ = ‖℘xn − ℘xω‖∞
= max
t∈[t0−τ,b]

∣∣∣∣ ∫t
t0

f(s, xn(s), xn(s− τ)) − f(s, xω(s), xω(s− τ))]ds

∣∣∣∣
6 max
t∈[t0−τ,b]

∫t
t0

∣∣∣∣f(s, xn(s), xn(s− τ)) − f(s, xω(s), xω(s− τ))

∣∣∣∣ds
= max
t∈[t0−τ,b]

∫t
t0

Lf

(
|xn(s) − xω(s)|+ |xn(s− τ) − xω(s− τ)|

)
ds,

‖zn − xω‖∞ 6 2Lf(b− t0)‖xn − xω‖∞,

(5.7)

and hence, we have

‖xn − xω‖∞ =

[
1 − σ0

n(1 − 2Lf(b− t0))

][
σ0
n − σ0

n(1 − 2Lf(b− t0))

][
2Lf(b− t0)‖xn − xω‖∞

]
,

using the equations (5.5), (5.6), and (5.7),

‖xn+1 − xω‖∞ 6 8L3
f(b− t0)

2
[

1 − σ0
n(1 − 2Lf(b− t0))

]
‖xn − xω‖. (5.8)
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Proceeding in the same manner, we have

‖xn − xω‖∞ 6 8L3
f(b− t0)

2
[

1 − σ0
n−1(1 − 2Lf(b− t0))

]
‖xn−1 − xω‖

and

‖xn−1 − xω‖∞ 6 8L3
f(b− t0)

2
[

1 − σ0
n−2(1 − 2Lf(b− t0))

]
‖xn−2 − xω‖

and hence we have

‖xn+1 − xω‖∞ 6
n∏
k=0

[
1 − σ0

k(1 − 2Lf(b− t0))

]
‖x0 − xω‖∞, (5.9)

where [1− σ0
k(1− 2Lf(b− t0)) ∈ (0, 1) because σ0

k ∈ (0, 1), for all natural numbers n. Also, since (1− x) 6
e−x for all x ∈ [0, 1], from (5.9) we can easily conclude that

‖yn+1 − xω‖∞ 6
‖y0 − xω‖

e(1−(2Lf(b−t0)))
∑∞
k=0 σ

0
k

, (5.10)

which leads us to limn→∞ ‖yn+1 − xω‖∞ = 0, when taking limits of both sides of equation (5.10).
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[5] D. Göhde, Zum Prinzip der Kontraktiven Abbildung, Math. Nachr., 30 (1965), 251–258. 1
[6] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150. 1
[7] W. A. Kirk, A fixed point theorem for mappings which do not increase distance, Amer. Math. Monthly, 72 (1965), 1004–

1006. 1
[8] W. A. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. 1
[9] L. N. Mishra, V. Dewangan, V. N. Mishra, S. Karateke, Best proximity points of admissible almost generalized weakly

contractive mappings with rational expressions on b-metric spaces, J. Math. Comput. Sci., 22 (2020), 97–109. 1
[10] M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229.

1
[11] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math.

Soc., 73 (1967), 591–597. 2.2
[12] B. E. Rhoades, Some fixed point iteration procedures, Internat. J. Math. Math. Sci., 14 (1991), 1–16. 1
[13] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Amer. Math. Soc.,

43 (1991), 153–159. 2
[14] H. F. Senter, W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44 (1974),

375–380. 3.6
[15] A. Sharma, M. Imdad, Approximating fixed points of generalized nonexpansive mappings via faster iteration schemes,

Adv. Fixed Point Theory, 4 (2014), 605–623.
[16] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal.

Appl., 340 (2008), 1088–1095. 1, 2, 2.4
[17] W. Takahashi, Nonlinear Functional Analysis, Yokohoma Publishers, Yokohoma, (2000). 2
[18] B. S. Thakur, D. Thakur, M. Postolache, A new iterative algorithm for numerical reckoning fixed points of Suzuki’s

generalized nonexpansive mappings, Appl. Math. Comput., 275 (2016), 147 pages. 1, 1
[19] K. Ullah, M. Arshad, New three-step iteration process and fixed point approximation in Banach spaces, J. Linear Topol.

Algebra, 7 (2018), 87–100. 1

http://hdl.handle.net/2263/39674
http://hdl.handle.net/2263/39674
https://link.springer.com/content/pdf/10.1007/978-0-387-75818-3.pdf
https://link.springer.com/content/pdf/10.1007/978-0-387-75818-3.pdf
https://www.researchgate.net/profile/Ravi_Agarwal9/publication/265365249_Iterative_construction_of_fixed_points_of_nearly_asymptotically_nonexpansive_mappings/links/54e506840cf276cec172f45c.pdf
https://www.researchgate.net/profile/Ravi_Agarwal9/publication/265365249_Iterative_construction_of_fixed_points_of_nearly_asymptotically_nonexpansive_mappings/links/54e506840cf276cec172f45c.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC219790/
https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.19650300312
https://doi.org/10.1090/S0002-9939-1974-0336469-5
https://doi.org/10.2307/2313345
https://doi.org/10.2307/2313345
https://www.jstor.org/stable/2032162
http://dx.doi.org/10.22436/jmcs.022.02.01
http://dx.doi.org/10.22436/jmcs.022.02.01
https://www.sciencedirect.com/science/article/pii/S0022247X00970422
https://pdfs.semanticscholar.org/83dc/9c723bda6724f7c3b0d4a3b231f4269209d3.pdf
https://pdfs.semanticscholar.org/83dc/9c723bda6724f7c3b0d4a3b231f4269209d3.pdf
https://www.hindawi.com/journals/ijmms/1991/372065/abs/
https://doi.org/10.1017/S0004972700028884
https://doi.org/10.1017/S0004972700028884
https://www.ams.org/proc/1974-044-02/S0002-9939-1974-0346608-8/
https://www.ams.org/proc/1974-044-02/S0002-9939-1974-0346608-8/
http://scik.org/index.php/afpt/article/view/1857
http://scik.org/index.php/afpt/article/view/1857
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.595.9917&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.595.9917&rep=rep1&type=pdf
https://ci.nii.ac.jp/naid/10010239684/
https://www.sciencedirect.com/science/article/pii/S0096300315015672
https://www.sciencedirect.com/science/article/pii/S0096300315015672
http://jlta.iauctb.ac.ir/index.php/jlta/article/view/article_540894.html
http://jlta.iauctb.ac.ir/index.php/jlta/article/view/article_540894.html

	Introduction
	Preliminaries
	Convergence theorems in uniformly Banach spaces
	Numerical example
	An application

