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Abstract

This paper investigates the use of Takagi-Sugeno fuzzy and passive control techniques to synchronize a four-dimensional
energy resource system. A passivity-based fuzzy controller is designed to synchronize the two identical four-dimensional
energy resource systems using an effective Lyapunov function and linear matrix inequality approach. Finally, computational
and simulation results are presented to show the benefits of the proposed findings.
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1. Introduction

When the evolution of a deterministic system is responsive to the initial conditions, it is said to be
chaotic. This property states that two trajectories originating from two different nearby initial conditions
can separate exponentially over time. In order for a deterministic system to be chaotic, it must be nonlinear
and at least three dimensional. Synchronization is the process of using the output of the driving system
to monitor the response system so that both systems oscillate at the same time. Readers should refer to
[13, 30] for more information. Nowadays, it is a well known fact that chaotic dynamics exist in a large
variety of nature systems (e.g., aerodynamics, biological and physical systems) and chaos synchronization
has attracted many engineers and scientists of different fields due to its wide variety of applications
in physics, engineering including biological systems, chemical reactions, human heart beat regulation,
ecological systems, fractional-order systems, secure communication, information processing and so on,
for more details see [1, 4, 18, 25, 29, 52, 53]. Many synchronization systems have been devised to date.
Several control and synchronization systems, including linear and nonlinear state feedback approaches,
have recently been investigated in the literature [2, 9, 26, 27, 51, 54].

Energy is now essential for human life, economic growth, and social change. Furthermore, energy
resources are not the same as forms of energy; they refer to methods of obtaining energy in order to

Email address: vembarasanv@gmail.com (V. Vembarasan)

doi: 10.22436/jmcs.025.03.06

Received: 2021-04-17 Revised: 2021-04-29 Accepted: 2021-06-17

http://dx.doi.org/10.22436/jmcs.025.03.06
http://dx.doi.org/10.22436/jmcs.025.03.06
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.025.03.06&domain=pdf


V. Vembarasan, J. Math. Computer Sci., 25 (2022), 269–283 270

produce electrical power. Energy resources can be classified as renewable energy and non-renewable en-
ergy according to the capability of sustainable utilization. Renewable energy sources include solar, wind,
hydropower, geothermal, biomass energy, and so on, while non-renewable energy sources include coal,
petroleum, lignite, nuclear power, and so on. Energy resource systems are a type of complex nonlinear
system that has a wide range of applications in science and engineering. Energy resources demand-
supply has become a hot topic for economic growth around the world, and scientists and researchers
have discussed it from different perspectives, see [16, 33–41, 47, 48] and references therein.

Sun et al. [35] developed a three-dimensional energy resource demand-supply structure without tak-
ing renewable energy resources into account. Sun et al. have also created a four-dimensional energy
resource system by introducing a new variable to the three-dimensional energy resource demand-supply
system, as stated in [34]. As a result of changing China’s energy resource utilisation strategy, the real
energy resources demand-supply mechanism will either be in a state of steady growth or in the context
of periodic vibrations, see [34, 39]. Authors in [37] have considered the Hopf Bifurcation analysis of the
energy resource chaotic system using analytic methods. [33, 36] have experimented with synchronization
for the four-dimensional energy resources system using adaptive control techniques. In [16, 36, 38], the ro-
bust synchronization issue for a four-dimensional energy resource system with mismatched uncertainties
and parameters was considered. Furthermore, authors in [41, 47, 48] investigated the synchronization of
energy resource systems using linear feedback control techniques. A systemic method for synchronising
the nonlinear energy resources system has been proposed in [40] using the fuzzy interpolation method.

The passive control technique has been widely used in nonlinear control systems [8, 15] in recent
years. Passivity theory has its roots in circuit theory and is used extensively in electrical networks and
control systems [11]. Since the 1970s, it has taken a big hit from the control community. Passivity is
one of the most important aspects of dissipation; the energy supply rate is defined as the product of
input and output, and passivity represents the attenuation characteristic of the systems under bounded
input conditions. In fact, passivity is a more advanced abstract of stability because it can lead to general
conclusions about stability using only input-output characteristics [24]. As a result of this, many authors
have studied the chaos synchronization passivity theory. For example, the chaos synchronization of the
Rikitake system, hyperchaotic Lü system, and delayed neural networks have been studied using the
passive control principle in [2], [51], and [54], respectively. In [49], a linear feedback controller has been
designed to use passive control to stabilise the Lorenz system to any desired equilibrium points. In [3],
stability results such as asymptotic stability, input-to-state stability, and bounded input-bounded output
stability based on the passive learning law have been presented for switched delayed Hopfield neural
networks.

Fuzzy control, on the other hand, has recently been demonstrated to be a powerful method for the
control problem of complex nonlinear systems. Many fuzzy controllers, in general, can be expressed as
nonlinear controllers with a bounded continuous input-output mapping and some symmetric properties
[8]. The concept of fuzzy system theory allows us to build a mathematical model for a system using
qualitative, linguistic information. For many real-world systems that are highly complex and inherently
nonlinear, conventional modelling approaches are frequently inapplicable, whereas the fuzzy approach
may be the only viable option. The control technique based on the so-called Takagi-Sugeno (T-S) fuzzy
model, in particular, has received a lot of attention. The T-S fuzzy model’s main purpose is to represent
or approximate a complex nonlinear system. This fuzzy model is described by a set of fuzzy IF-THEN
rules that correspond to the system’s local linear input-output relationships. Through the membership
functions, the overall fuzzy model of the system is blended into these local linear models. Then, based
on this fuzzy model, a control design is created to achieve the system’s stability and performance. The
T-S fuzzy model approach will provide a powerful method for nonlinear system analysis [10, 12, 23, 44].
Following that, this fuzzy control was successfully applied in many areas, including truck-trailer control
[43], spark ignition engine [19], servo control design [50], industries [31, 32], medicine [5], speed wind
turbine [6], wind energy conservation [17], vehicle cruise control system [28], and so on. Furthermore,
chaos synchronization using T-S fuzzy control approaches has been widely discussed in a variety of
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applications [20–22, 46].
Many fuzzy controllers can be thought of as passive dynamic nonlinear controllers with a single input

and a single output. It is demonstrated in [8] that passivity is a result of some characteristics of the fuzzy
controller’s input-output mapping. Furthermore, the passivity theory deals with control systems whose
controller characteristics can be poorly defined, and it produces more appropriate solutions for the exis-
tence of such systems’ stability. This demonstrates the importance of the passivity theory framework for
the stability analysis of control systems based on fuzzy logics or neural networks [8]. Exact linearization,
in particular, will play an important role in synchronization and chaotic models via fuzzy controllers [44].
Furthermore, for more general nonlinear systems, formulating the passivity-based synchronization condi-
tions in terms of linear matrix inequalities may be difficult (LMIs). The energy resources system, which is
a type of complex nonlinear system, is converted into linear sub models in this paper using the T-S fuzzy
control technique. Besides that, Lyapunov stability theory has been used to ensure the synchronization
of this energy resources system, and the corresponding sufficient conditions are expressed in terms of
LMIs, which can be efficiently solved by resorting to some standard algorithms [7]. Consequently, fuzzy
modelling techniques have been used to model four-dimensional chaotic energy resource systems in such
a way that the fuzzy energy resource systems can be chaotic. Unlike previous research, this paper focuses
on the passive synchronization of energy resources systems using fuzzy state-feedback controllers based
on LMI techniques. Finally, numerical results and analysis are presented to demonstrate the efficacy of
the derived results.

The detailed layout is as follows. The four-dimensional energy resource system and its corresponding
parameters are described in Section 2. The fundamental concepts of the passivity theory are presented
in Section 3. The fuzzy modelling theory for four-dimensional energy resources systems is introduced
in Section 4. Section 5 presents a passivity-based T-S fuzzy synchronization scheme for energy resource
systems, and Section 6 presents numerical simulations and analysis to validate the results. Section 7
comes to some conclusions.

2. Description of energy resource system

In this paper, we look at Sun et al. [34] four-dimensional energy resource system. It is a component
of the energy system because it is used to describe actual energy demand-supply and is instructive for
energy resource demand-supply in some regions. It consists of four ordinary differential equations that
are dependent on some positive real parameters. The dynamics of this system can be described by the
nonlinear ordinary differential equations listed below.


ẋ1 = a1x1(1 − x1

M) − a2(y1 + z1) − d3w1,
ẏ1 = −b1y1 − b2z1 + b3x1[N− (x1 − z1)],
ż1 = c1z1(c2x1 − c3),
ẇ1 = d1x1 − d2w1,

while x1(t) is the energy resource shortage in region R1; y1(t) is the energy resource supply increment in
region R2; z1(t) is the energy resource import in region R1; w1(t) is renewable energy resources in region
R1. M,N,ai,bj, cj,dj, (i = 1, 2; j = 1, 2, 3) are all positive real parameters. This system has three equilibria:
O(0, 0, 0, 0), S1(1.75,−1.52, 0, 2.91), S2(0.8, 0.669,−1.11, 1.33). When a1 = 0.09, a2 = 0.15, b1 = 0.06, b2 =
0.083, b3 = 0.07, c1 = 0.2, c2 = 0.5, c3 = 0.4, d1 = 0.1, d2 = 0.06, d3 = 0.08, M = 1.8, N = 1.0, a chaotic
attractor is observed as shown in Figure 1 (a)-(c), the time series of (x1(t),y1(t), z1(t),w1(t)) as shown in
Figure 1 (d), with O(0, 0, 0, 0) as an unstable saddle focus and [0.82, 0.29, 0.48, 0.1] as the initial conditions.
Moreover S1 and S2 are two saddle points. Choosing a3 = a1

M , b4 = b3N, r1 = c1c2, and r2 = c1c3, the
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above system can be rewritten as
ẋ1 = a1x1 − a2(y1 + z1) − a3x

2
1 − d3w1,

ẏ1 = −b1y1 − b2z1 − b3x1(x1 − z1) + b4x1,
ż1 = r1x1z1 − r2z1,
ẇ1 = d1x1 − d2w1.

(2.1)
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Figure 1: A four-dimensional energy resources chaotic attractor: (a) Chaotic attractor in (x1 −y1 − z1)-space; (b) Chaotic attractor
in (x1 − y1 −w1)-plane; (c) Chaotic attractor in (x1 − z1 −w1)-plane; (d) Time series of (x1,y1, z1,w1)-plane.

Further, the four-dimensional energy resource chaotic system (2.1) will be suppressed to its unique
unstable equilibrium O(0, 0, 0, 0) by applying the passivity theory. For this purpose, we consider the
following controlled system

ẋ1 = a1x1 − a2(y1 + z1) − a3x
2
1 − d3w1 + u1,

ẏ1 = −b1y1 − b2z1 − b3x1(x1 − z1) + b4x1 + u2,
ż1 = r1x1z1 − r2z1 + u3,
ẇ1 = d1x1 − d2w1 + u4.

(2.2)

where uk, k = 1, 2, 3, 4 are the controllers to be designed.

3. Passivity control technique for general nonlinear system

Consider the following differential equations:

ẋ(t) = f(x(t)) + g(x(t))u(t), y(t) = h(x(t)), (3.1)

where x(t) ∈ Rn is the state variable, u(t) ∈ Rm is the external input, and y(t) ∈ Rm is the output. f and
g are smooth vector fields and h is a smooth mapping. Without loss of generality, we suppose that the
vector field f has at least one equilibrium point. The notion of passivity can be described by the following
definition.
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Definition 3.1 ([2]). If there exists a nonnegative constant β and a positive semi-definite function V(x(t))
such that ∫t

0
uT (s)y(s)ds+β >

∫t
0
V(x(s))ds, ∀t > 0, (3.2)

then the systems (3.1) is said to be passive from the external input u(t) to the output y(t).

Remark 3.2. The concept of a passive system can be interpreted as the fact that the energy of nonlinear
systems (3.1) can only be increased by supplying it from an external source. A passive system, in general,
cannot store more energy than it receives. Passive systems are a subset of dissipative systems. The energy
dissipated within a dynamic system is less than the energy supplied from an external source in dissipative
systems. Stability issues are frequently linked to the theory of dissipative systems in many engineering
problems. Passive systems are inherently stable. To analyse stability properties, a passive system uses the
input-output relationship based on energy-related considerations. The main idea of passivity theory is
that the passive properties of system can keep the system internally stable.

4. Fuzzy modelling of energy resource system

It is not easy to find an appropriate Lyapunov function V for the general nonlinear energy resource
system (2.2) that meets the passivity condition (3.2). T-S fuzzy control logic, on the other hand, has been
proposed as a potential tool for approximating nonlinear energy resource systems, resulting in an easy
way to apply Lyapunov stability theory in terms of LMIs. The system (2.2) can be conventionally written
in state-space matrix form for this purpose as

ẋ(t) = Ax(t) +Bu(t), (4.1)

where ẋ(t) = [ẋ1, ẏ1, ż1, ẇ1]
T ; A =


a1 − a3x1 −a2 −a2 −d3
−b3x1 + b4 −b1 −b2 + b3x1 0

0 0 r1x1 − r2 0
d1 0 0 −d2

 , x = [x1,y1, z1,w1]
T .

Let the premise variable γ1(t) = x1(t), then the membership functions can be chosen as M1
1(γ1(t)) =

1
2(1 + x1(t)), M2

1(γ1(t)) =
1
2(1 − x1(t)). By using M1

1 and M2
1, the controlled energy resource system (4.1)

with control input u(t) can be expressed by the following T-S fuzzy model:
Plant Rule 1:
IF γ1(t) is M1

1 THEN ẋ(t) = A1x+Bu,
Plant Rule 2:
IF γ1(t) is M2

1 THEN ẋ(t) = A2x+Bu,
where x = [x1,y1, z1,w1]

T and

A1 =


a1 − a3 −a2 −a2 −d3
−b3 + b4 −b1 −b2 + b3 0

0 0 r1 − r2 0
d1 0 0 −d2

 , A2 =


a1 + a3 −a2 −a2 −d3
b3 + b4 −b1 −b2 − b3 0

0 0 −r1 − r2 0
d1 0 0 −d2

 , B = [1 1 1 1]T .

Hence the nonlinear energy resource system (4.1) can be described by a T-S fuzzy system:

ẋ(t) = Aix(t) +Bu(t), (4.2)

where i = 1, 2. By using a center average defuzzifier, the dynamical model of the T-S fuzzy system (4.2)
can be reformulated as

ẋ(t) =

2∑
i=1

hi(γ(t))
{
Aix(t) +Bu(t)

}
, (4.3)

with hi(γ(t)) = Hi(γ(t))/
∑2

i=1Hi(γ(t)), where γ = [γ1,γ2], Hi : R
2 → [0, 1], is the membership degree of

the consequent of each system rule with respect to plant rule i. The normalized fuzzy weighting functions
hi(γ(t)) satisfy hi(γ(t)) > 0,

∑2
i=1 hi(γ(t)) = 1.
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5. Passivity based synchronization of energy resource systems

In this section, the LMI problem for achieving the passivity based synchronization for two identical
energy resource system is presented. By using drive-response concept, the system (4.3) of T-S fuzzy
energy resource system is given as

ẋ(t) =

2∑
i=1

hi(γ(t))
{
Aix(t)

}
. (5.1)

Then, the controlled response system is given by

˙̂x(t) =
2∑

i=1

hi(γ(t))
{
Aix̂(t) +Bu(t)

}
, (5.2)

where x̂(t) ∈ R4 is the state vector, and B ∈ R4×1 is the known constant matrix.
Define the synchronization error e(t) = x̂(t) − x(t). Then we obtain the synchronization error system

as follows,

ė(t) =

2∑
i=1

hi(γ(t))
{
Aie(t) +Bu(t)

}
. (5.3)

In order to verify the passive synchronization of the error system (5.3), the following Lemma and
Theorem are very useful.

Lemma 5.1 ([45]). If the following conditions hold:

Nii < 0, 1 6 i 6 r,
1

r− 1
Nii +

1
2
(Nij +Nji) < 0, 1 6 i 6= j 6 r,

then the following inequality holds:
r∑

i=1

r∑
j=1

hihjNij < 0,

where hi, 1 6 i 6 r, satisfy 0 6 hi 6 1,
∑r

i=1 hi = 1; and r denotes the number of IF-THEN rules.

Theorem 5.2. If there exist matrices X = XT > 0, Z = ZT > 0 and Yj such that[
Θii X

∗ −Z

]
< 0, 1 6 i 6 r,

1
r− 1

[
Θii X

∗ −Z

]
+

1
2

[
Θij X

∗ −Z

]
+

1
2

[
Θji X

∗ −Z

]
< 0, 1 6 i 6= j 6 r,

(5.4)

where Θij = AiX + XAT
i + BYj + Y

T
j B

T , then the synchronization error system (5.3), under the control input
u(t) = YjX

−1e(t) + µ(t), where µ(t) is an external input signal, is passive from the external input signal µ(t) to
the output y(t) which is defined as: y(t) := 2BTPe(t).

Proof. The closed-loop error system with the control input u(t) =
∑2

j=1 hj(γ(t))Kje(t) + µ(t), where
Kj ∈ R1×4 is the gain matrix of the control input u(t), can be written as

ė(t) =

2∑
i=1

2∑
j=1

hi(γ(t))hj(γ(t))
{
[Ai +BKj]e(t) +Bµ(t)

}
. (5.5)
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Consider the following Lyapunov function

V(e(t)) = eT (t)Pe(t), (P = PT > 0).

The time derivative of V(e(t)) along the trajectory of (5.5) is

V̇(e(t)) = ėT (t)Pe(t) + eT (t)Pė(t),

=
{ 2∑

i=1

2∑
j=1

hi(γ(t))hj(γ(t))[Aie(t) +BKje(t) +Bµ(t)]
}T
Pe(t)

+ eT (t)P
{ 2∑

i=1

2∑
j=1

hi(γ(t))hj(γ(t))[Aie(t) +BKje(t) +Bµ(t)]
}

,

=

2∑
i=1

2∑
j=1

hi(γ(t))hj(γ(t))
{
eT (t)AT

i Pe(t) + e
T (t)KT

j B
TPe(t) + µT (t)BTPe(t)

+ eT (t)PAie(t) + e
T (t)PBKje(t) + e

T (t)PBµ(t)
}

,

=

2∑
i=1

2∑
j=1

hi(γ(t))hj(γ(t))e
T (t)[PAi +A

T
i P+ PBKj +K

T
j B

TP]e(t) + yT (t)µ(t),

=eT (t)
{ 2∑

i=1

2∑
j=1

hi(γ(t))hj(γ(t))[PAi +A
T
i P+ PBKj +K

T
j B

TP+Q]
}
e(t)

− eT (t)Qe(t) + yT (t)µ(t).

If the following matrix inequality is satisfied,
2∑

i=1

2∑
j=1

hi(γ(t))hj(γ(t))
{
PAi +A

T
i P+ PBKj +K

T
j B

TP+Q
}
< 0, (5.6)

then we have
V̇(e(t)) < −eT (t)Qe(t) + yT (t)µ(t). (5.7)

Integrating (5.7) both sides from 0 to t, we get∫t
0
V̇(e(s))ds < −

∫t
0
eT (s)Qe(s)ds+

∫t
0
yT (s)µ(s)ds,

[V(e(t))]t0 < −

∫t
0
eT (s)Qe(s)ds+

∫t
0
yT (s)µ(s)ds,

V(e(t)) − V(e(0)) < −

∫t
0
eT (s)Qe(s)ds+

∫t
0
yT (s)µ(s)ds.

Let β = V(e(0)). Since V(e(t)) > 0,∫t
0
yT (s)µ(s)ds+β >

∫t
0
eT (s)Qe(s)ds+ V(e(t)) >

∫t
0
eT (s)Qe(s)ds.

This implies that the system (5.5) is passive from the external input signal µ(t) to the output y(t) under
the feedback control input u(t) =

∑2
j=1 hj(γ(t))Kje(t) + µ(t) in the sense of Definition 3.1.

By using Lemma 5.1 and Schur complement lemma [14], matrix inequality (5.6) is equivalent to[
Ωii I

∗ −Q−1

]
< 0, 1 6 i 6 r,

1
r− 1

[
Ωii I

∗ −Q−1

]
+

1
2

[
Ωij I

∗ −Q−1

]
+

1
2

[
Ωji I

∗ −Q−1

]
< 0, 1 6 i 6= j 6 r,

(5.8)

where Ωij = PAi + A
T
i P + PBKj + K

T
j B

TP. Pre- and Post- multiplying by diag{P−1, I} and introduc-
ingchange of variables X = P−1, Z = Q−1, Yj = KjP

−1, LMI (5.8) are equivalent to (5.4). Then, the gain
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matrix of the control input u(t) is given by Kj = YjX
−1. This completes the proof.

Remark 5.3. When the external input µ(t) is zero, the passive control law u(t) makes the synchronization
error system (5.5) asymptotically stable, a phenomenon known as zero-input state response. In this
case, the synchronization error system (5.5) considered in this paper is reduced to the system discussed
in [40], so our results are finer than those previously reported. If the external input µ(t) is nonzero,
that is, µ(t) = −νy(t), where ν > 0 is the gain parameter, the passive control law u(t) also makes the
synchronization error system asymptotically stable, which is known as nonzero-input state response.
The simulation results in Figures 7 and 14 shows synchronization error trajectories for different values of
the gain parameter ν in the external input signal µ(t).

Remark 5.4. Sun et al. [40], investigated the robust stabilisation and synchronization problems for non-
linear energy resource systems using the T-S fuzzy model. Unlike [40], different parameterized LMI
characterizations for fuzzy control systems subject to passivity techniques are proposed in this paper.
These parametrized LMI characterizations are then relaxed into pure LMI programmes, making the LMI
formulation more feasible [45]. Furthermore, it offers tractable and effective methods for designing sub-
optimal fuzzy control systems. Further in [40], numerical results show that the receiver has full access
to all drive system states (B is full rank), transforming the synchronization problem into a stabilisation
problem with only the difference between initial conditions to overcome. In contrast to [40], we consid-
ered synchronization with less access to the drive system in this paper, which means B may not have full
rank (refer Section 6).

Remark 5.5. We presented the T-S fuzzy model representation for the chaotic four-dimensional energy
resources system subject to passive control techniques in this paper. Furthermore, linear state feedback
control methods are used in synchronization control schemes. Sliding-mode control has now become an
important component of control theory. Sliding-mode control is highly resistant to parameter uncertain-
ties and external noise disturbances in the controlled system, and it has been used successfully to control
chaos [9]. In the future, we will use the novel sliding-mode control to design a sliding mode controller,
along with fuzzy modelling techniques, to improve the control performance of a four-dimensional energy
resources system. In addition, we will take into account the uncertain model of the four-dimensional
energy resources system and design a robust sliding mode controller. These works will be released in the
near future.

6. Numerical results and analysis

In this section, numerical simulations are given to check the validity of the obtained theoretical re-
sults. The parameters of the energy resource system are selected as in Section 2. The initial conditions
of the drive and response system are chosen to be (x1(0),y1(0), z1(0),w1(0)) = (0.82, 0.29, 0.48, 0.1) and
(x2(0),y2(0), z2(0),w2(0)) = (0.78, 0.35, 0.4, 0.15), respectively. In the numerical simulations, the Euler
method is employed to solve the systems of differential equations with step size 0.1.

Example 6.1 (Four linear feedback controllers). In this example, we have considered, four linear fuzzy
state controllers in order to synchronize the two identical energy resource systems (5.1) and (5.2). From
Theorem 5.2, by using the MATLAB LMI Solver, the following feasible solutions are obtained.

X =


1.4848 1.1844 1.1975 1.0614
1.1844 1.2511 0.8968 0.6279
1.1975 0.8968 1.0517 0.7839
1.0614 0.6279 0.7839 1.7221

 , Z =


8.3988 0.7908 2.1682 0.9181
0.7908 10.0482 −0.6344 −1.0331
2.1682 −0.6344 9.3479 −0.0926
0.9181 −1.0331 −0.0926 13.4170

 ,

Y1 =
[

12.4915 −4.4779 −9.6064 −2.2529
]

, Y2 =
[

5.6990 −2.5565 −4.0171 −1.3138
]

.
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Figure 2: No synchronization between drive and response systems when control input u(t) = 0 in Example 6.1.
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Figure 3: Synchronization errors without control input u(t) in Example 6.1.
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Figure 4: Drive and response systems are synchronized when control input u(t) is presented in Example 6.1.
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Figure 5: Synchronization errors with control input u(t) in Example 6.1.
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Figure 6: The graph of the control actions that are being applied to the slave system in Example 6.1.
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Figure 7: Synchronization error trajectories (ν: the gain parameter of the external input signal) in Example 6.1.

Figure 2 displays that the time evolution curves of drive system and response system without the
control input u(t). Synchronization error of the system (5.3) without the passive fuzzy control law u(t) is
shown in Figure 3. Figures 2 and 3 show that in the absence of control u(t), no synchronization occurs
between drive and response systems. On the other hand, when the control u(t) is taken into account,
Figure 4 displays that the time evolution curves of drive system and response system. By taking passive
fuzzy control law as u(t) =

∑2
j=1 hj(γ(t))Kje(t) + µ(t), synchronization errors of the system (5.3) are

shown in Figure 5. The graphs of the control actions that are being applied to the slave system is shown
in Figure 6. The simulation results imply that the two identical energy resource systems (5.1) and (5.2) are
synchronized with each other when the control is applied, and validate the effectiveness of the proposed
method. The simulation result in Figure 7 shows synchronization error trajectories for different values of
the gain parameter ν in the external input signal µ(t).

Example 6.2 (Three linear feedback controller). If the the energy resource shortage, renewable energy
resources in region R1, and the energy resource supply increment in region R2 to R1 should be controlled,
then in this case the matrix B in the response system (5.2) takes the form B = [1 1 1 0]T . In this
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situation, the synchronization of the two identical energy systems can be obtained via three simple linear
fuzzy state feedback controller. The initial values of the two systems and the values of parameters are
same as in Example 6.1. From Theorem 5.2, by using the MATLAB LMI Solver, the following feasible
solutions are obtained.

X =


126.0262 110.4277 108.5965 −5.3546
110.4277 116.2437 89.0137 −26.4472
108.5965 89.0137 103.3678 −9.3799
−5.3546 −26.4472 −9.3799 58.7662

 ,

Z =


654.4252 132.1603 157.9680 14.9148
132.1603 794.0547 −33.5719 −129.4233
157.9680 −33.5719 750.4484 −36.8554
14.9148 −129.4233 −36.8554 882.4416

 ,

Y1 =
[

21.3141 −11.8540 −13.5918 −5.7060
]

, Y2 =
[

7.5387 −4.9820 −4.5362 −2.4330
]

.

0 50 100 150 200 250
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time (t secs)

er
ro
r
e(
t)

 

 

e
1
(t)

e
2
(t)

e
3
(t)

e
4
(t)

Figure 8: Synchronization errors with control input u(t) in Example 6.2.
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Figure 9: The graph of the control actions that are being applied to the slave system in Example 6.2.

Synchronization errors of the system (5.3) via the passive fuzzy control law u(t) are shown in Figure
8. The graphs of the control actions that are being applied to the slave system is shown in Figure 9. From
Figure 8, it is clear that the synchronization errors converge asymptotically to zero and two different
systems are indeed achieved with synchronization.

Example 6.3 (Two linear feedback controller). If the energy resource supply increment in region R2 to
R1 and the energy resource import in R1 of the response system is controlled, then B in the response
system (5.2) takes the form B = [0 1 1 0]T . In such case, two identical energy resource systems can be
synchronized via two simple linear fuzzy state feedback controller. The initial values of the two systems
and the values of parameters are same as in Example 6.1. From Theorem 5.2, by using the MATLAB LMI
Solver, the following feasible solutions are obtained.
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Figure 10: Synchronization errors with control input u(t) in Example 6.3.
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Figure 11: The graph of the control actions that are being applied to the slave system in Example 6.3.

X =


3.3183 5.5579 5.6944 −1.0746
5.5579 19.9207 15.7135 −2.4852
5.6944 15.7135 16.1621 0.0928
−1.0746 −2.4852 0.0928 6.0043

 , Z =


57.5094 −0.6462 17.0236 −2.0583
−0.6462 89.8797 −1.4139 −24.7411
17.0236 −1.4139 77.2367 7.3368
−2.0583 −24.7411 7.3368 85.6005

 ,

Y1 =
[

7.2240 1.0696 −4.4862 1.7483
]

, Y2 =
[

6.1084 0.4465 −3.2855 1.2870
]

.

Figure 10 indicates that synchronization errors of the system (5.3) via the passive fuzzy control law u(t)
is converges asymptotically to zero. In Figure 11, the trajectory of the control input u(t) being applied to
the slave system is depicted.

Example 6.4 (Single linear feedback controller). If the energy resource import variable in region R1 of
the response system should be controlled, then B in the response system (5.2) takes the form B =
[0 0 1 0]T . By applying a single fuzzy state feedback controller, the synchronization of the follow-
ing two identical energy resource systems are obtained. The initial values of the two systems and the
values of parameters are same as in Example 6.1. From Theorem 5.2, by using the MATLAB LMI Solver,
the following feasible solutions are obtained.

X =


23.7863 4.1694 32.0932 −2.0039
4.1694 15.6965 10.2929 −28.5421

32.0932 10.2929 193.1906 −0.3998
−2.0039 −28.5421 −0.3998 69.5972

 , Z =


636.0044 −30.9036 223.4416 45.8446
−30.9036 534.3771 1.5410 −213.2350
223.4416 1.5410 754.7407 68.2632
45.8446 −213.2350 68.2632 938.3907

 ,

Y1 =
[

3.0090 1.6059 −1.7402 0.7081
]

, Y2 =
[

2.2101 8.6092 −1.7836 3.5573
]

.

Synchronization errors of the system (5.3) via the passive fuzzy control law u(t) converges asymptotically
to zero as shown in Figure 12. The trajectory of the control input u(t) being applied to the slave system is
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shown in Figure 13. The simulation result in Figure 14 shows synchronization error in phase trajectories
for different values of the gain parameter ν in the external input signal µ(t).
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Figure 12: Synchronization errors with control input u(t) in Example 6.4.
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Figure 13: The graph of the control actions that are being applied to the slave system in Example 6.4.
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Figure 14: Synchronization error trajectories (ν: the gain parameter of the external input signal) in Example 6.4.

Remark 6.5. When there is no control input u(t) in the two identical energy resource chaotic system,
the trajectories will quickly separate and synchronization does not exist on the condition that the ini-
tial values are different. However, with appropriate fuzzy state feedback control schemes u(t), the two
identical energy resource systems will approach synchronization for any initial value. Further, from
Examples 6.1, 6.2, 6.3, the sufficient conditions for the synchronization are obtained analytically when
B = [1 1 1 1]T , B = [1 1 1 0]T , and B = [0 1 1 0]T , respectively. By Example 6.4, the synchronization
condition can be obtained when B = [0 0 1 0]T , in which only one state feedback controller is contained,
which is of important significance in synchronization. Therefore controlling the demand-supply energy
resources system is of significant important for steady state development.
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7. Conclusions

In this study, we looked at four techniques for synchronizing two identical energy resource systems
utilising only the simplest linear controllers, as well as passivity-based synchronization of a nonlinear
energy resource system when it exhibits chaotic behaviour. Using the Lyapunov function and build-
ing a fuzzy state-feedback controller, the necessary conditions for passive synchronization of the energy
resource system have been developed. Furthermore, using numerical simulations based on the LMI ap-
proach, synchronization strategies have been obtained and shown.
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application to secure communication, Phys. Scr., 76 (2007), 12 pages. 1, 5.5
[10] T. S. Chiang, P. Liu, Robust output tracking control for discrete-time nonlinear systems with time-varying delay: Virtual

fuzzy model LMI-based approach, Expert Syst. Appl., 39 (2012), 8239–8247. 1
[11] L. O. Chua, Passivity and complexity, IEEE Trans. Circuits Syst. I. Fundam. Theory Appl., 46 (1999), 71–82. 1
[12] G. Feng, A survey on analysis and design of model-based fuzzy control systems, IEEE Trans. Fuzzy Syst., 14 (2006),

676–697. 1
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