Stochastic fixed point theorems for a random Z-contraction in a complete probability measure space with application to non-linear stochastic integral equations

Volume 1, Issue 1, pp 40--48 http://dx.doi.org/10.22436/mns.01.01.05 Publication Date: November 01, 2017

Authors

Plern Saipara - KMUTTFixed Point Research Laboratory, Department of Mathematics, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand Poom Kumam - KMUTT-Fixed Point Theory and Applications Research Group (KMUTT-FPTA), Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand Apirak Sombat - KMUTTFixed Point Research Laboratory, Department of Mathematics, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand Anantachai Padcharoen - KMUTTFixed Point Research Laboratory, Department of Mathematics, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand Wiyada Kumam - Program in Applied Statistics, Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi (RMUTT), Pathumthani 12110, Thailand


Abstract

In this paper, we propose the random \(\mathcal{Z}\)-contraction, prove a stochastic fixed point theorem for this contraction, and show that a solution for a non-linear stochastic integral equations exists in Banach spaces.


Keywords


References

[1] J. Achari, On a pair of random generalized nonlinear contractions, Internat. J. Math. Math. Sci., 6 (1983), 467–475.
[2] R. F. Arens, A topology for spaces of transformations, Ann. of Math., 47 (1946), 480–495.
[3] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.
[4] I. Beg, N. Shahzad, Random fixed points of random multivalued operators on Polish spaces, Nonlinear Anal., 20 (1993), 835–847 .
[5] A. T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., 82 (1976), 641–657.
[6] Y. J. Cho, J. Li, N. J. Huang, Random Ishikawa iterative sequence with errors for approximating random fixed points, Taiwanese J. Math., 12 (2008), 51–61.
[7] O. Hanš, Reduzierende Zufällige Transformationen, (German) Czechoslovak Math. J., 7 (1957), 154–158.
[8] O. Hanš, Random operator equations, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Univ. California Press, Berkeley, Calif., II (1961), 185–202.
[9] S. Itoh, Random fixed-point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl., 67 (1979), 261–273.
[10] J. S. Jung, Y. J. Cho, S. M. Kang, B. S. Lee, B. S. Thakur, Random fixed point theorems for a certain class of mappings in Banach spaces, Czechoslovak Math. J., 50 (2000), 379–396.
[11] F. Khojasteh, S. Shukla, S. Radenovi´c, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1188–1194.
[12] P. Kumam, Random common fixed points of single-valued and multivalued random operators in a uniformly convex Banach space, J. Comput. Anal. Appl., 13 (2011), 368–375.
[13] P. Kumam, W. Kumam, Random fixed points of multivalued random operators with property (D), Random Oper. Stoch. Equ., 15 (2007), 127–136.
[14] W. Kumam, P. Kumam, Random fixed point theorems for multivalued subsequentially limit-contractive maps satisfying inwardness conditions, J. Comput. Anal. Appl., 14 (2012), 239–251.
[15] P. Kumam, S. Plubtieng, Random coincidence and random common fixed points of nonlinear multivalued random operators, Thai J. Math., 5 (2007), 155–163.
[16] P. Kumam, S. Plubtieng, The characteristic of noncompact convexity and random fixed point theorem for set-valued operators, Czechoslovak Math. J., 57 (2007), 269–279.
[17] P. Kumam, S. Plubtieng, Some random fixed point theorems for random asymptotically regular operators, Demonstratio Math., 42 (2009), 131–141.
[18] A. C. H. Lee, W. J. Padgett, On random nonlinear contractions, Math. Systems Theory, 11 (1977/78), 77–84.
[19] A. Mukherjee, Transformation aleatoires separable theorem all point xed aleatoire, C. R. Acad. Sci. Paris, Ser. A-B, 263 (1966), 393–395.
[20] W. J. Padgett, On a nonlinear stochastic integral equation of the Hammerstein type, Proc. Amer. Math. Soc., 38 (1973), 625–631.
[21] S. Plubtieng, P. Kumam, Random fixed point theorems for multivalued nonexpansive non-self-random operators, J. Appl. Math. Stoch. Anal., 2006 (2006), 9 pages.
[22] E. Rothe, Zur Theorie der topologischen Ordnung und der Vektorfelder in Banachschen Räumen, (German) Compositio Math., 5 (1938), 177–197.
[23] M. Saha, On some random fixed points of mappings over a Banach space with a probability measure, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 76 (2006), 219–224.
[24] M. Saha, L. Debnath, Random fixed point of mappings over a Hilbert space with a probability measure, Adv. Stud. Contemp. Math. (Kyungshang), 18 (2009), 97–104.
[25] M. Saha, D. Dey, Some random fixed point theorems for (\(\theta,L\))-weak contractions, Hacet. J. Math. Stat., 41 (2012), 795– 812.
[26] M. Saha, A. Ganguly, Random fixed point theorem on a iri-type contractive mapping and its consequence, Fixed Point Theory Appl., 2012 (2012), 18 pages.
[27] V. M. Sehgal, C. Waters, Some random fixed point theorems for condensing operators, Proc. Amer. Math. Soc., 90 (1984), 425–429.
[28] A. Špaček, Zufällige Gleichungen, (German) Czechoslovak Math. J., 5 (1955), 462–466.
[29] K. Yosida, Functional analysis, Die Grundlehren der Mathematischen Wissenschaften, Band 123 Academic Press, Inc., New York; Springer-Verlag, Berlin, (1965).