]>
2019
12
3
ISSN 2008-1898
0
A new extension of exponential distribution with statistical properties and applications
A new extension of exponential distribution with statistical properties and applications
en
en
A new extension of exponential distribution, named as the \(\textit{Type I half logistic exponential distribution}\) is introduced in this paper. Explicit expressions for the moments, probability weighted, quantile function, mean deviation, order statistics, and Renyi entropy are investigated. Parameter estimates of the new distribution are obtained based on maximum likelihood procedure. Two real data sets are employed to show the usefulness of the new distribution.
135
145
Abdullah M.
Almarashi
Statistics Department, Faculty of Science
King AbdulAziz University
Kingdom of Saudi Arabia
aalmarashi@kau.edu.sa
M.
Elgarhy
Vice Presidency for Graduate Studies and Scientific Research
University of Jeddah
KSA
m_elgarhy85@yahoo.com
Mamhoud M.
Elsehetry
Institute of Statistical Studies and Research (ISSR), Department of Mathematical Statistics
Cairo University
Egypt
m_elgarhy85@yahoo.com
B. M.
Golam Kibria
Department of Mathematics and Statistics
Florida International University
USA
kibriag@fiu.edu
Ali
Algarni
Statistics Department, Faculty of Science
King AbdulAziz University
Kingdom of Saudi Arabia
ahalgarni@kau.edu.sa
Exponential distribution
maximum likelihood method
moments
order statistics
type I half logistic-G distributions
Article.1.pdf
[
[1]
A. M. Almarashi, M. Elgarhy , A new muth generated family of distributions with applications , J. Nonlinear Sci. Appl., 11 (2018), 1171-1184
##[2]
A. Alzaatreh, C. Lee, F. Famoye , A new method for generating families of continuous distributions, Metron, 71 (2013), 63-79
##[3]
M. Bourguignon, R. B. Silva, G. M. Cordeiro , The Weibull–G family of probability distributions , J. Data Sci., 12 (2014), 53-68
##[4]
G. M. Cordeiro, M. Alizadeh, P. R. D. Marinho, The type I half-logistic family of distributions, J. Stat. Comput. Simul., 86 (2015), 707-728
##[5]
G. M. Cordeiro, M. Alizadeh, E. M. M. Ortega, The exponentiated half-logistic family of distributions: Properties and applications, J. Probab. Stat., 2014 (2014), 1-21
##[6]
G. M. Cordeiro, M. de Castro, A new family of generalized distributions, J. Stat. Comput. Simul., 81 (2011), 883-893
##[7]
H. A. David , Order statistics, John Wiley & Sons, New York (1981)
##[8]
M. Elgarhy, M. Haq, G. Ozel, A new exponentiated extended family of distributions with Applications, Gazi University J. Sci., 30 (2017), 101-115
##[9]
M. Elgarhy, A. S. Hassan, M. Rashed , Garhy-generated family of distributions with application, Math. Theory Model., 6 (2016), 1-15
##[10]
N. Eugene, C. Lee, F. Famoye, The beta-normal distribution and its applications, Commun. Stat. Theory Methods, 31 (2002), 497-512
##[11]
M. Haq, M. Elgarhy , The odd Frechet-G family of probability distributions, J. Stat. Appl. Prob., 7 (2018), 185-201
##[12]
A. S. Hassan, M. Elgarhy , A New family of exponentiated Weibull-generated distributions, Int. J. Math. Appl., 4 (2016), 135-148
##[13]
A. S. Hassan, M. Elgarhy, Kumaraswamy Weibull-generated family of distributions with applications , Adv. Appl. Stat., 48 (2016), 205-239
##[14]
A. S. Hassan, M. Elgarhy, M. Shakil , Type II half Logistic family of distributions with applications , Pak. J. Stat. Oper. Res., 13 (2017), 245-264
##[15]
D. Kundu, M. Z. Raqab , Estimation of R = P (Y < X) for three-parameter Weibull distribution, Stat. Prob. Lett., 79 (2009), 1839-1846
##[16]
M. M. Ristic, N. Balakrishnan , The gamma-exponentiated exponential distribution, J. Stat. Comput. Simul., 82 (2012), 1191-1206
##[17]
K. Zografos, N. Balakrishnan, On families of beta- and generalized gamma-generated distributions and associated inference, Statistical Methodology, 6 (2009), 344-362
]