Common fixed points for pairs of triangular \(\alpha\)-admissible mappings
Authors
Haitham Qawagneh
- School of mathematical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 UKM, Selangor Darul Ehsan, Malaysia
Mohd Salmi MD Noorani
- School of mathematical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 UKM, Selangor Darul Ehsan, Malaysia
Wasfi Shatanawi
- Department of Mathematics and General Courses, Prince Sultan University, Riyadh, Saudi Arabia
Habes Alsamir
- Department of Mathematics and General Courses, Aljouf University, Aljouf, Saudi Arabia
Abstract
In this paper, we introduce the notation of \((\alpha-\eta)-(\psi-\varphi)\)-contraction mappings defined on a set \(X\).
We prove the existence of common fixed point results for the pair of self-mappings involving C-class functions in the
setting of metric space. Our results generalize and extend several works existing in literature. We provide an example
and some applications in order to support our results.
Keywords
- C-class functions
- \(\alpha\)-admissible mapping
- common fixed point
- metric spaces
References
[1] P. Chuadchawna, A. Kaewcharoen and S. Plubtieng, Fixed point theorems for generalized \(\alpha-\eta-\psi\)-Geraghty contraction type mappings in \(\alpha-\eta-\psi\)-complete metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 471–485.
[2] S. Alizadeh, F. Moradlou, P. Salimi, Some fixed point results for \((\alpha,\beta) - (\psi,\phi)\)-contractive mappings, Filomat, 28 (2014), 635–647.
[3] H. Alsamir, M. S. Noorani, W. Shatanawi, F. Shaddad, GeGeneralized Berinde-type (\(\eta,\xi,\vartheta,\theta\)) contractive mappings in B-metric spaces with an application, J. Math. Anal., 6 (2016), 1–12.
[4] A. H. Ansari, Note on \(\varphi-\psi\)-contractive type mappings and related fixed point, The 2nd Regional Conference on Mathematics and Applications, Payame Noor University, Tehran, (2014), 377–380.
[5] A. H. Ansari, J. Kaewcharoen, C-class functions and fixed point theorems for generalized \(\alpha-\eta-\psi-\varphi-F-\)contraction type mappings in --complete metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 4177–4190.
[6] A. H. Ansari, W. Shatanawi, A. kurdi, G. Maniu, Best proximity points in complete metric spaces with (P)-property via C-class functions, J. Math. Anal., 7 (2016), 54–67.
[7] P. Das, L. K. Dey, A fixed point theorem in a generalized metric space, Soochow J. Math., 33 (2007), 33–39.
[8] N. Hussain, M. A. Kutbi, P. Salimi, Fixed point theory in \(\alpha\)-complete metric spaces with applications, Abstr. Appl. Anal., 2014 (2014), 11 pages.
[9] N. Hussain, P. Salimi, A. Latif, Fixed point results for single and set-valued \(\alpha-\eta-\psi-\)contractive mappings, Fixed Point Theory Appl., 2013 (2013), 23 pages.
[10] E. KarapÄ±nar, \(\alpha-\psi\)-Geraghty contraction type mappings and some related fixed point results, Filomat, 28 (2014), 37–48.
[11] E. KarapÄ±nar, P. Kumam, P. Salimi, On \(\alpha-\psi\)-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013 (2013), 12 pages.
[12] M. S. Khan, A fixed point theorem for metric spaces, Rend. Ist. Mat. Univ. Trieste, 8 (1976), 69–72.
[13] M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30 (1984), 1–9.
[14] D. K. Patel, T. Abdeljawad, D. Gopal, Common fixed points of generalized Meir-Keeler \(\alpha\)-contractions, Fixed Point Theory Appl., 2013 (2013), 16 pages.
[15] J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei,W. Shatanawi, Common fixed points of almost generalized \((\psi,\varphi)_s\)- contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl., 2013 (2013), 23 pages.
[16] P. Salimi, A. Latif, N. Hussain, Modified \(\alpha-\psi\)-contractive mappings with applications, Fixed Point Theory Appl., 2013 (2013), 19 pages.
[17] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for \(\alpha-\psi\)-contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165.
[18] W. Shatanawi, M. S. Noorani, H. Alsamir, A. Bataihah, Fixed and common fixed point theorems in partially ordered quasi-metric spaces, J. Math. Computer. Sci., 16 (2016), 516–528.
[19] W. Shatanawi, M. Postolache, Common fixed point results for mappings under nonlinear contraction of cyclic form in ordered metric spaces, Fixed Point Theory Appl., 2013 (2013), 13 pages.