Hybrid function projective synchronization in discrete dynamical networks via adaptive control

Authors

Ghada Al-mahbashi - School of mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Selangor Darul Ehsan, Malaysia
M. S. Md Noorani - School of mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Selangor Darul Ehsan, Malaysia
Sakhinah Abu Bakar - School of mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Selangor Darul Ehsan, Malaysia

Abstract

In this paper, we study the hybrid function projective synchronization between coupled complex discrete networks with different dimensions. The hybrid function projective synchronization is achieved by designing an adaptive control method. Based on the designed controller and the Lyapunov stability theory, we derive sufficient conditions to realize the hybrid function projective synchronization with different nodes. Moreover, with the adaptive update law, an adaptive control gains are obtained. Furthermore, we examine different cases of outer coupling matrix of node dynamics. Finally, we provide numerical examples to show the effectiveness of the proposed control scheme.

Keywords

Hybrid function projective synchronization, delay coupling and non-delay coupling, discrete complex dynamical networks, adaptive control

References

[1] G. Al-mahbashi, M. S. M. Noorani, S. A. Bakar, Projective lag synchronization in drive-response dynamical networks with delay coupling via hybrid feedback control, Nonlinear Dynam., 82 (2015), 1569–1579.
[2] G. Al-mahbashi, M. S. M. Noorani, S. A. Bakar, Hybrid function projective synchronization of uncertain discrete complex dynamical networks, Int. J. Dynam. Control, 2016 (2016), 9 pages.
[3] M. M. Al-sawalha, M. S. M. Noorani, Adaptive increasing-order synchronization and anti-synchronization of chaotic systems with uncertain parameters, Chin. Phys. Lett., 28 (2011), 3 pages.
[4] M. M. Al-sawalha, M. S. M. Noorani, Chaos reduced-order anti-synchronization of chaotic systems with fully unknown parameters, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1908–1920.
[5] R. Albert, A. L. Barabási, Statistical mechanics of complex networks, Rev. Modern Phys., 74 (2002), 47–97.
[6] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: structure and dynamics, Phys. Rep., 424 (2006), 175–308.
[7] H.-Y. Du, Function projective synchronization in drive-response dynamical networks with non-identical nodes, Chaos Solitons Fractals, 44 (2011), 510–514.
[8] X. Jian, Anti-synchronization of complex delayed dynamical networks through feedback control, Sci. Res. Essays, 6 (2011), 552–558.
[9] C.-P. Li, C.-X. Xu, W.-G. Sun, J. Xu, J. Kurths, Outer synchronization of coupled discrete-time networks, Chaos, 19 (2009), 7 pages.
[10] X.-W. Liu, T.-P. Chen, Synchronization analysis for nonlinearly-coupled complex networks with an asymmetrical coupling matrix, Phys. A, 387 (2008), 4429–4439.
[11] H. Liu, S.-G. Li, H.-X. Wang, Y.-H. Huo, J.-H. Luo, Adaptive synchronization for a class of uncertain fractional-order neural networks, Entropy, 17 (2015), 7185–7200.
[12] H.-M. Liu, W.-G. Sun, G. Al-mahbashi, Parameter identification based on lag synchronization via hybrid feedback control in uncertain drive-response dynamical networks, Adv. Difference Equ., 2017 (2017), 11 pages.
[13] A. Ouannas, M. M. Al-sawalha, Synchronization between different dimensional chaotic systems using two scaling matrices, Optik, 127 (2016), 959–963.
[14] S. A. Pandit, R. E. Amritkar, Characterization and control of small-world networks, Phys. Rev. E, 60 (1999), 15 pages.
[15] S. S. Strogatz, Exploring complex networks, Nature, 410 (2001), 268–276.
[16] W.-G. Sun, R. Wang, W.-X. Wang, J.-T. Cao, Analyzing inner and outer synchronization between two coupled discretetime networks with time delays, Cogn. Neurodyn., 4 (2010), 225–231.
[17] W.-G. Sun, S. Wang, G.-H. Wang, Y.-Q. Wu, Lag synchronization via pinning control between two coupled networks, Nonlinear Dynam., 79 (2015), 2659–2666.
[18] Z.-Y. Wu, Synchronization of discrete dynamical networks with non-delayed and delayed coupling, Appl. Math. Comput., 260 (2015), 57–62.
[19] B.-G. Xin, Z.-H.Wu, Projective synchronization of chaotic discrete dynamical systems via linear state error feedback control, Entropy, 17 (2015), 2677–2687.
[20] Z.-L. Yuan, Z.-Y. Xu, L.-X. Guo, Generalized synchronization of two bidirectionally coupled discrete dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 992–1002.
[21] Q.-J. Zhang, J.-A. Lu, J.-C. Zhao, Impulsive synchronization of general continuous and discrete-time complex dynamical networks, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 1063–1070.
[22] X.-B. Zhou, L.-L. Xiong, X.-M. Cai, Adaptive switched generalized function projective synchronization between two hyperchaotic systems with unknown parameters, Entropy 16 (2013), 377–388.

Downloads

XML export