Fourier series of sums of products of poly-Bernoulli functions and their applications

Authors

Taekyun Kim - Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea.
Dae San Kim - Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea.
Dmitry V. Dolgy - Hanrimwon, Kwangwoon University, Seoul 139-701, Republic of Korea.
Jin-Woo Park - Department of Mathematics Education, Daegu University, Gyeongsan-si, Gyeongsangbuk-do, 712-714, Republic of Korea.

Abstract

In this paper, we consider three types of sums of products of poly-Bernoulli functions and derive Fourier series expansions of them. In addition, we express those three types of functions in terms of Bernoulli functions.

Keywords

Fourier series, Bernoulli polynomial, poly-Bernoulli polynomial, poly-Bernoulli function.

References

[1] T. Arakawa, M. Kaneko,/ On poly-Bernoulli numbers,/ Comment. Math. Univ. St. Paul.,/ 48 (1999), 159–167.
[2] A. Bayad, Y. Hamahata,/ Multiple polylogarithms and multi-poly-Bernoulli polynomials,/ Funct. Approx. Comment. Math.,/ 46 (2012), 45–61.
[3] D. V. Dolgy, D. S. Kim, T. Kim, T. Mansour,/ Degenerate poly-Bernoulli polynomials of the second kind,/ J. Comput. Anal. Appl.,/ 21 (2016), 954–966.
[4] G. V. Dunne, C. Schubert,/ Bernoulli number identities from quantum field theory and topological string theory,/ Commun. Number Theory Phys.,/ 7 (2013), 225–249.
[5] C. Faber, R. Pandharipande,/ Hodge integrals and Gromov-Witten theory,/ Invent. Math.,/ 139 (2000), 173–199.
[6] I. M. Gessel,/ On Miki’s identity for Bernoulli numbers,/ J. Number Theory,/ 110 (2005), 75–82.
[7] M. Kaneko,/ Poly-Bernoulli numbers,/ J. Théor. Nombres Bordeaux,/ 9 (1997), 221–228.
[8] D. S. Kim, D. V. Dolgy, T. Kim, S.-H. Rim,/ Some formulae for the product of two Bernoulli and Euler polynomials,/ Abstr. Appl. Anal.,/ 2012 (2012), 15 pages.
[9] D. S. Kim, T. Kim,/ Bernoulli basis and the product of several Bernoulli polynomials,/ Int. J. Math. Math. Sci.,/ 2012 (2012), 12 pages.
[10] D. S. Kim, T. Kim,/ Some identities of higher order Euler polynomials arising from Euler basis,/ Integral Transforms Spec. Funct.,/ 24 (2013), 734–738.
[11] D. S. Kim, T. Kim,/ A note on degenerate poly-Bernoulli numbers and polynomials,/ Adv. Difference Equ.,/ 2015 (2015), 8 pages.
[12] D. S. Kim, T. Kim,/ A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials,/ Russ. J. Math. Phys.,/ 22 (2015), 26–33.
[13] D. S. Kim, T. Kim,/ Higher-order Bernoulli and poly-Bernoulli mixed type polynomials,/ Georgian Math. J.,/ 22 (2015), 265–272.
[14] D. S. Kim, T. Kim, H. I. Kwon, T. Mansour,/ Degenerate poly-Bernoulli polynomials with umbral calculus viewpoint,/ J. Inequal. Appl.,/ 2015 (2015), 13 pages.
[15] D. S. Kim, T. Kim, T. Mansour, J.-J. Seo,/ Fully degenerate poly-Bernoulli polynomials with a q parameter,/ Filomat,/ 30 (2016), 1029–1035.
[16] T. Kim, D. S. Kim, S.-H. Rim, D. V. Dolgy,/ Fourier series of higher-order Bernoulli functions and their applications,/ J. Inequal. Appl.,/ 2017 (2017), 7 pages.
[17] T. Kim, D. S. Kim, J.-J. Seo,/ Fully degenerate poly-Bernoulli numbers and polynomials,/ Open Math.,/ 14 (2016), 545–556.
[18] J. E. Marsden,/ Elementary classical analysis,/ With the assistance of Michael Buchner, Amy Erickson, Adam Hausknecht, Dennis Heifetz, Janet Macrae and William Wilson, and with contributions by Paul Chernoff, Istv´an F´ary and Robert Gulliver, W. H. Freeman and Co., San Francisco,/ (1974).
[19] K. Shiratani, S. Yokoyama,/ An application of p-adic convolutions,/ Mem. Fac. Sci. Kyushu Univ. Ser. A,/ 36 (1982), 73–83.
[20] P. T. Young,/ Bernoulli and poly-Bernoulli polynomial convolutions and identities of p-adic Arakawa-Kaneko zeta functions,/ J. Number Theory,/ 12 (2016), 1295–1309.
[21] D. G. Zill, M. R. Cullen,/ Advanced engineering mathematics, second edition,/ Jones & Bartlett Learning, Massachusetts,/ (2000).

Downloads

XML export