On some recent fixed point results for (\(\psi,\varphi\))contractive mappings in ordered partial bmetric spaces
Authors
Huaping Huang
 School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, China.
Diana DolićaninĐekić
 Faculty of Technical Sciences, University of PrištnaKosovska Mitrovica, Serbia.
Guantie Deng
 School of Mathematical Sciences, Beijing Normal University, Beijing, Beijing, 100875, China.
Abstract
In this paper we unite, complement, improve, and generalize the recent fixed point results in ordered
partial bmetric spaces, established by Mustafa et al. [Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg,
J. Inequal. Appl., 2013 (2013), 26 pages], with much shorter proofs. An example is given to show the
superiority of the results obtained.
Keywords
 Fixed point
 bmetric space
 partial metric space
 ordered partial bmetric space
 partially ordered set.
MSC
References

[1]
M. Abbas, V. Parvaneh, A. Razani, Periodic points of TCiric generalized contraction mappings in ordered metric spaces, Georgian Math. J., 19 (2012), 597610

[2]
A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered bmetric spaces, Math. Slovaca, 64 (2014), 941960

[3]
J. Ahmad, A. Azam, M. Arshad, Fixed points of multivalued mappings in partial metric spaces, Fixed Point Theory and Appl., 2013 (2013), 9 pages

[4]
A. Azam, N. Mehmood, J. Ahmad, S. Radenovic, Multivalued fixed point theorems in cone bmetric spaces, J. Inequal. Appl., 2013 (2013), 9 pages

[5]
I. A. Bakhtin, he contraction mapping principle in quasimetric spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk, 30 (1989), 2637

[6]
S. Czerwik, Contraction mappings in bmetric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 511

[7]
D. Đorić, Common fixed point for generalized (\(\psi,\phi\))weak contractions, Appl. Math. Lett., 22 (2009), 18961900

[8]
X. Ge, S. Lin, A note on partial bmetric spaces, Mediterr. J. Math., 13 (2016), 12731276

[9]
R. H. Haghi, Sh. Rezapour, N. Shahzad, Be careful on partial metric fixed point results, Topology Appl., 160 (2013), 450454

[10]
H. Huang, J. Vujaković, S. Radenović, A note on common fixed point theorems for isotone increasing mappings in ordered bmetric spaces, J. Nonlinear Sci. Appl., 8 (2015), 808815

[11]
N. Hussain, V. Parvaneh, J. R. Roshan, Z. Kadelburg, Fixed points of cyclic weakly ( \(\psi,\varphi,L, A,B\))contractive mappings in ordered bmetric spaces with applications, Fixed Point Theory and Appl., 2013 (2013), 18 pages

[12]
N. Hussain, J. R. Roshan, V. Parvaneh, A. Latif, A unification of Gmetric, partial metric, and bmetric spaces, Abstr. Appl. Anal., 2014 (2014), 14 pages

[13]
N. Hussain, R. Saadati, R. P. Agarwal, On the topology and wtdistance on metric type spaces, Fixed Point Theory and Appl., 2014 (2014), 14 pages

[14]
M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30 (1984), 19

[15]
M. A. Kutbi, J. Ahmad, N. Hussain, M. Arshad, Common fixed point results for mappings with rational expressions, , 2013 (2013), 11 pages

[16]
S. G. Matthews, Partial metric topology, Papers on general topology and applications, Ann. New York Acad. Sci., 728 (1994), 183197

[17]
A. Mukheimer, \(\alpha\psi\phi\)contractive mappings in ordered partial bmetric spaces, J. Nonlinear Sci. Appl., 7 (2014), 168179

[18]
Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Some common fixed point results in ordered partial bmetric spaces, J. Inequal. Appl., 2013 (2013), 26 pages

[19]
H. K. Nashine, Z. Kadelburg, S. Radenović, Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces, Math. Comput. Modelling, 57 (2013), 23552365

[20]
J. J. Nieto, R. RodríguezLópez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223239

[21]
J. J. Nieto, R. RodríguezLópez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.), 23 (2007), 22052212

[22]
V. Parvaneh, J. R. Roshan, S. Radenović, Existence of tripled coincidence points in ordered bmetric spaces and an application to a system of integral equations, Fixed Point Theory and Appl., 2013 (2013), 19 pages

[23]
O. Popescu, Fixed points for (\(\psi,\phi\))weak contractions, Appl. Math. Lett., 24 (2011), 14

[24]
S. Radenović, Coincidence point results for nonlinear contraction in ordered partial metric spaces, J. Indian Math. Soc. (N.S.), 81 (2014), 319333

[25]
A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 14351443

[26]
J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, W. Shatanawi, Common fixed points of almost generalized \((\psi,\varphi)_s\)contractive mappings in ordered bmetric spaces, Fixed Point Theory and Appl., 2013 (2013), 123 pages

[27]
P. Salimi, N. Hussain, S. Shukla, Sh. Fathollahi, S. Radenović, Fixed point results for cyclic \(\alpha\psi\varphi\)contractions with application to integral equations, J. Comput. Appl. Math., 290 (2015), 445458

[28]
S. Shukla, Partial bmetric spaces and fixed point theorems, Mediterr. J. Math., 11 (2014), 703711