A study on a class of q-Euler polynomials under the symmetric group of degree n
Authors
Serkan Araci
- Department of Economics, Faculty of Economics, Administrative and Social Science, Hasan Kalyoncu University, TR-27410 Gaziantep, Turkey.
Ugur Duran
- Department of Mathematics, Faculty of Arts and Science, University of Gaziantep, TR-27310 Gaziantep, Turkey.
Mehmet Acikgoz
- Department of Mathematics, Faculty of Arts and Science, University of Gaziantep, TR-27310 Gaziantep, Turkey.
Abstract
Motivated by the paper of Kim et al. [T. Kim, D. S. Kim, H. I. Kwon, J. J. Seo, D. V. Dolgy, J.
Nonlinear Sci. Appl., 9 (2016), 1077-1082], we study a class of q-Euler polynomials earlier given by Kim et
al. in [T. Kim, Y. H. Kim, K. W. Hwang, Proc. Jangjeon Math. Soc., 12 (2009), 77-92]. We derive some
new symmetric identities for q-extension of \(\lambda\)-Euler polynomials, using fermionic p-adic invariant integral
over the p-adic number field originally introduced by Kim in [T. Kim, Russ. J. Math. Phys., 16 (2009),
484-491], under symmetric group of degree n denoted by \(S_n\).
Keywords
- Symmetric identities
- q-extension of \(\lambda\)-Euler polynomials
- fermionic p-adic invariant integral on \(\mathbb{Z}_p\)
- invariant under \(S_n\).
References
[1] E. Ağyüz, M. Acikgoz, S. Araci, A symmetric identity on the q-Genocchi polynomials of higher-order under third dihedral group \(D_3\), Proc. Jangjeon Math. Soc., 18 (2015), 177-187.
[2] U. Duran, M. Acikgoz, S. Araci, Symmetric identities involving weighted q-Genocchi polynomials under \(S_4\), Proc. Jangjeon Math. Soc., 18 (2015), 455-465.
[3] Y. He, S. Araci, Sums of products of Apostol-Bernoulli and Apostol-Euler polynomials, Adv. Difference Equ., 2014 (2014), 13 pages.
[4] Y. He, S. Araci, H. M. Srivastava, M. Acikgoz, Some new identities for the Apostol-Bernoulli polynomials and the Apostol-Genocchi polynomials, Appl. Math. Comput., 262 (2015), 31-41.
[5] T. Kim, q-Volkenborn integration, Russ. J. Math. Phys., 9 (2002), 288-299.
[6] T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \(\mathbb{Z}_p\), Russ. J. Math. Phys., 16 (2009), 484-491.
[7] T. Kim, Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on \(\mathbb{Z}_p\), Russ. J. Math. Phys., 16 (2009), 93-96.
[8] D. S. Kim, T. Kim, Some identities of symmetry for q-Bernoulli polynomials under symmetric group of degree n, Ars Combin., 126 (2016), 435-441.
[9] T. Kim, Y. H. Kim, K. W. Hwang, On the q-extensions of the Bernoulli and Euler numbers, related identities and Lerch zeta function, Proc. Jangjeon Math. Soc., 12 (2009), 77-92.
[10] T. Kim, D. S. Kim, H. I. Kwon, J. J. Seo, D. V. Dolgy, Some identities of q-Euler polynomials under the symmetric group of degree n, J. Nonlinear Sci. Appl., 9 (2016), 1077-1082.
[11] D. Q. Lu, H. M. Srivastava, Some series identities involving the generalized Apostol type and related polynomials, Comput. Math. Appl., 62 (2011), 3591-3602.