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Abstract

In this paper, we explore the properties and importance of a lifetime distribution so called type I half-logistic Burr X
(TIHLpx) in detail (also called type I half logistic generalized Rayleigh (TIHLgg)). We investigate some of its mathematical
and statistical properties such as the explicit form of the ordinary moments, moment generating function, conditional moments,
Bonferroni and Lorenz curves, mean deviations, residual life and reversed residual functions, Shannon entropy and Renyi
entropy. The maximum likelihood method is used to estimate the model parameters. Simulation studies were conducted to
assess the finite sample behavior of the maximum likelihood estimators. Finally, we illustrate the importance and applicability
of the model by the study of two real data sets.
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1. Introduction

Burr [5] introduced twelve different forms of cumulative distribution functions for modeling lifetime
data, where among them is the Burr Type X distribution (BX) . Several authors considered different
aspects of the Burr Type X, for example [1, 13, 24, 27], anong others. [28] introduced two-parameter Burr
Type X distribution known as the generalized Rayleigh (GR) distribution. The two-parameter generalized
Rayleigh distribution is a particular member of the generalized Weibull distribution. [27] showed that
the two-parameter Burr X distribution can be effectively used in modeling strength data. The cumulative
distribution function (c.d.f) of Burr X distribution is given by

0
Gux(x, ,0) = [1 — e_(o‘x)z] , x>0, (1.1)

where o > 0 is the scale parameter and 6 > 0 is the shape parameter. The corresponding probability
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density function (p.d.f) and hazard rate function (h.r.f) are given by

o—1
2y ,— 2 _ 2
— 2. —(xx)? —(ax)2]97T 2002xe(xx) [1—6 (ocx)}

Jpx (X, &, 0) =20 xe [1—6 ] and h,, (x,«,0) =

1—[1—e(0x?]? ’
respectively. [24] shows that the hazard function of the BX distribution can be bathtub or an increasing
function, depending on the shape parameter 0. If 6 < 1, the hazard function is bathtub and for 6 > 1
it has an increasing hazard function. There are several extensions and generalizations of the Burr X (BX)
distributions (or generalized Rayleigh (GR)), for example, beta generalized Rayleigh (BGR) by [7], the
exponentiated generalized Burr type X (EGBX) by [12], beta Burr X by [17], and beta compound Rayleigh
by [25], among others.

The method of extending a family of distributions for added flexibility is a well-known technique in
the literature. In many applied sciences such as medicine, engineering, finance, economics, biomedical
sciences, public health, modeling and analyzing lifetime data are very essential. Several lifetime distribu-
tions have been used to analyze such kinds of data, but the quality of the procedure used in a statistical
study depends on the assumed probability model. However, there still are various vital problems where
the real data does not follow any of the classical probability models. Due to this, significant effort has
been spent in the development of new classes of flexible probability distributions along with relevant
statistical methodologies over the years. These include the following technique.

Let G(x) be any valid cumulative distribution function defined on IR. Various approaches for generat-
ing new distributions based on G(x) were proposed in recent years. The well-known generators include
beta-G by [10], gamma-G distributions by [30], Kumaraswamy-G distributions by [8], Weibull X distribu-
tions by [3], odd-generalized exponential-G by [29], and Poisson odd-generalized exponential-G by [19],
among others.

[6] presented a new G class of continuous distributions with an extra positive parameter A > 0 called
the type I half-logistic family.

The cumulative distribution function (cdf) of the new type I half-logistic (TIHL) family of distributions
is given by

~logll=Gad)]  pre—x 1-[1-Gx 8
F(x;é)zj —pdx = 5/

0 (1+e %) 1+[1—G(x;90)]
where G(x; 9) is the baseline cdf depending on a parameter vector 6. For each baseline G, we can generate

the type I half-logistic-G (TIHL — G) distribution by the cdf (1.2), and the corresponding probability
density function (pdf) to equation (1.2) is given by

~ 2Ag(x;8) [1— G(x; 8)M!
= 2
{1+0-6(x80}

where g(x; ) is the baseline pdf. Equation (1.3) will be more tractable when G(x;0) and g(x;8) have
simple expressions. The failure rate function is

(1.2)

f(x;90) , (1.3)

Ag(x;8)

h(x, 8) = .
[1— G(x:5)] {1 Y- G(x;é)])‘}

In this paper, we derived the lifetime model so-called the type I half-logistic Burr X (TIHLgx ) dis-
tribution. The model serves as an excellent alternative to many existing life distributions in modeling
positive real data. This model was also mentioned in [23].

The rest of the paper is arranged as follows. In Section 2, we derive the TIHLgx distribution and
presented some of its essential mathematical and statistical properties. In Section 3, we established the
parameter estimation by the method of maximum likelihood and accessed the maximum likelihood esti-
mators via simulation studies. In Section 4, we illustrate the importance of the TIHLgx distribution by
two real data applications. Finally, conclusions in Section 5.
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2. The TIHLgx model and Properties

In this section, we derived the three-parameter type I half-logistic Burr X (TIHLgx) distribution. Using
(1.1) in (1.2), the cdf of the (TIHLgx) distribution can be written as

1— [1 - (1 - e—(“x)z)er'

—log [p(lfefmmz) 9] e M

F(x;A, o, 0) = JO Trenpdt= o 2.1)
1+ [1 (1-e (=) ]
The corresponding probability density function is given by
A1
{1 - (1 - e-(ax)z)e}
2 2161
f( A, o, ) = 4ABaxe (&%) [1 — e (o) } 2.2)

{1+ {1— (1_6—(ax)2>6})\}2'

The hazard rate function of the TIHLgx takes the form

A oxe— (%) [1—e*(°0<)2r_1

- (1—6_(“")2)8] {1+ {1— (1_e—(cxxﬂﬂ }

A random variable X having pdf (2.2) is denoted by X ~ TIHLgx (¢), where ¢ = ( A, o, 0).
Figures 1 and 2 represent some plots of the probability density and hazard rate function of the TIHLgx

distribution for some different parameter values.

h'(Xr Cb) = |:

f(x; @)
f(x; @)
f(x; @)

00 02 04 06 08 10 12 14

h(x; @)

Figure 2: Plots of the hazard rate function of TIHLgx for some parameter values.
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2.1. Expansion of the density function.

In this subsection, we can express the type I half-logistic Burr X as an infinite mixture of Burr X
distributions . If |z] < 1, k > 0, and b > 0, we have the series representations

(1+2)7°=) (797, (2.3)
j=0
and o
(1-2°1=) (-1} N (2.4)
i=0

-2
07 A
Expanding {1 + [1 — (1 — e*("‘"y) ] } as in (2.3), we can write (2.2) as

2 (a2 § (2 (ax)?] 07 wor) O]

. _ —(oxx — —(oxx —(xx

f(x; A, 8, o) = 4ABoPxe ;)(j ) [1—e } [1— (1—e ) ] . (25)
]:

by considering (2.4) in the expansion equation (2.5) and after some algebra, the pdf of type I half-logistic

Burr X can be written as

o0

_ 2 L . o - 2 0(i+1)—1
f(X,' A0, OC) = 47\90(2766 (o) Z (_1)1( Jz) (7\(]+i1) 1) (1 —e (23 )
j,i=0
- 0(i+1)—1 ©
= Y 9 200%(i+ e (1—em () =Y f(x;0(i+1)),
J,i=0 i=0

where
i (—2) ()\(j+_1)—1)

j i

© 2\(—1)
b = ;0 (i+1) ’

and f(x; o, 0(i 4 1)) denotes the Burr X (BX) density function with parameters « and 0(i + 1). Thus, the
TIHLgx density function can be expressed as an infinite linear combination of BX densities and then some
of its basic mathematical and statistical properties can be obtained from those of BX properties. Another
series form of pdf for type I half-logistic Burr X is

>0 . . 0(i+1)—1
f(x; A, 0, &) = 4AQoxe (0%)* Z (—1)1(_.2) (M”.l)*l) (1 — e*(“")2> ey

. . ) l
3 1=0 (2.6)

— 402 Z (_1)i+k(f‘2) (7\(5+_1)—1) (e(i+k1)—1)xe—(k+1)(ocx)2 — Wik Xe—(k+1)(o¢x)2,
where wj i1 = 4A00® Zfi,kzo(_l)wk(?) (Mj+il)_1) (e(if)_l)'

2.2. Quantile and moments

The inverse of the cdf in (2.1) yields the quantile function of the TIHLgx as

1/2

B 1A\ 170
Qu) = —élog 1—(1—<8+3> ) , ue(0,1).
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Since the uniform random variables are easily generated in most statistical packages, the above scheme is

very useful to generate TIHLgx random variates and therefore can be easily implemented. In particular,
the median (M) of X is Q(0.5) given by

1/6
1 ) 1/A

Figure 3 shows the plots of the Median of the TIHLgx, (i) for fixed value of A = 0.5 the median is
increasing in 6 and decreasing in « (ii) for 6 = 0.2 the median is decreasing in both « and A, and (iii) for
o = 0.2 the median is increasing in 6 and decreasing in A.

1/2

@ (ii) (iii)
Figure 3: Plots of the Median of TIHLpx distribution.
Here, we provide the ordinary moments and moment generating function of the TIHLgx distribution.
Theorem 2.1. If X ~ TIHLgx, then the vt moment of X is given by
r;;+1)
2002 (k +1)2+1

by (x) = Wik (2.7)

Proof. Let X be a random variable following the TIHLgx distribution, the rih ordinary moment of X can
obtained using (2.6) as

— Ty T o r4+1_—(k+1)(axx)? I 2
i (x) =E(X") Jo x"f(x, d)dx = wyjx Jo x" e dx—wmlk2 2y i

Theorem 2.2. If X ~ TIHLgx, then the moment generating function (mgf) of X is given as

o0

tr rL+1)
Mx(t) = ZO WU g )i
r=

Proof. We start with the well known definition of the moment generating function given by

o0

tr o[> 2 g,
_ tXy T _
Mx(t) =E(e*) = éﬂjo x"f(x)dx = ;)T!pr(x),
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thus, substituting (2.7) into (2.2) we get

o0

it = 3 Uy 4D

= 1’J’kz(,(r+2(k_,_ 1)5+1

O

Further, the central moments W, in (2.7) can be used to obtain the higher order moments by substituting
r=123,...

Corollary 2.3. Let X ~ TIHLgx with pdf in (2.2), then the variance(o?), coefficient of variation (CV), skewness
(v?), and kurtosis (y*) could be determined from

y s_ M =B H2i gy — s o Gl o+ B
/2 1 V - ’ 3/2 ’Y - ! l2 2 *
Ky (b — 1) (uy — ui)

Table 1 provides some numerical values of the first six moments, 02, CV, v3, and y* for some param-
eter values. Observe from the table, as the A, «, and 0 increase the first six moments, CV and skewness
decrease while the kurtosis increases.

Gzzu;—p,lf, CV =

Table 1: First six moments, variance (02), coefficient of variation (CV), skewness v°, and kurtosis y* of TIHLgx for some

parameter values.

A a] 0] m 1o T Iy Us He 0? CV v? v
1.0 | 0.1 | 0.1 | 3.1888 | 27.558 | 322.73 | 4524.4 | 72052.5 | 1266445 | 7.3896 | 1.3077 | 1.7091 | 4.1185
1102 |03 |29181 | 13.975 | 83.816 | 582.97 | 4532.2 | 38537.1 | 5.4594 | 0.8007 | 0.8761 | 2.2426
13|04 | 05| 1.6959 | 4.0522 | 11.668 | 38.284 | 139.04 | 549.10 | 1.1761 | 0.6395 | 0.6327 | 18.203
1.6 | 0.6 | 0.9 | 1.3444 | 20224 | 42073 | 8.8257 | 20.133 | 49.334 | 0.4150 | 0.4792 | 0.3875 | 80.885
210091209025 | 09520 | 1.1216 | 1.4414 | 1.9921 | 2.9329 | 0.1375 | 0.4108 | 0.2788 | 240.15
23 (15| 1.8 | 06271 | 04361 | 0.3286 | 0.2645 | 0.2256 | 0.2024 | 0.0428 | 0.3301 | 0.1569 | 841.90
25| 1.8 |19 | 05192 | 0.2969 | 0.1832 | 0.1204 | 0.0836 | 0.0609 | 0.0274 | 0.3188 | 0.1330 | 1177.1
32212004191 | 0.1919 | 0.0942 | 0.0490 | 0.0268 | 0.01535 | 0.0162 | 0.3037 | 0.0837 | 1775.1
35| 25|25 (03777 | 0.1528 | 0.0654 | 0.0294 | 0.0138 | 0.0067 | 0.0102 | 0.2672 | 0.0226 | 3258.0
45130 | 3.1 (03220 | 0.1092 | 0.0387 | 0.0143 | 0.0054 | 0.0021 | 0.0056 | 0.2319 | -0.0599 | 6682.9
55|45 | 4.1 |0.2290 | 0.0544 | 0.0134 | 0.0034 | 0.0009 | 0.0002 | 0.0020 | 0.1956 | -0.1345 | 18430.5
65|55 |51 | 01965 | 0.0397 | 0.0083 | 0.0018 | 0.0004 | 8.40e~5 | 0.0011 | 0.1713 | -0.1878 | 36298.5

It is also of interest to compute the conditional moments of this lifetime model. One of the important
applications of the first incomplete moment refers to the Bonferroni and Lorenz curves. The s lower
and upper incomplete moments of X are defined by vs(t) = E(X® | X < 1) fo x3f(x, d)dx and ns(t) =
E(XS | X >t) = [{°x5f(x, ¢)dx, respectively. For any s € N, the s™ lower 1ncomp1ete moment of TIHLgx
distribution is

7

t t
ve(t) = J xSf(x)dx = Wik J Xs+1e*(k+1)(ocx)zdx — Wiz
0 0

Y5 +1, (k+1)(at)?)
20cs+2(k+ 1)z +1

where y(s, t) fo x$~le™*dx is the lower incomplete gamma function. Similarly, the s™ upper incomplete
moment of TIHLgx dlstrlbution is

(oe) o0
ns(t) = J Xsf(X)dX _ Wi,j,kJ Xs+1e—(k+1)(ocx)z dx — Wik
t t

N5 +1, (k+1)(t)?)
20(S+2(k+1)%+1 ’

where (s, t) = [{* x5~ e *dx is the upper incomplete gamma function.
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2.3. Mean deviation

In this subsection, we compute the mean deviation about the mean and the mean deviation about
the median. If X has the TIHLgx distribution, then we can derive the mean deviations about the mean
= E(X) and the mean deviations about the median M as

51(x) = j:o lx—p | fx)dx = 2 [uF(w) — ()] and  85(x) = JOOO Ix— M| f(x)dx = p—2J(M),

respectively. The measures 81(x) and ;(x) can be calculated using the relationships J(.) as

d
J(d) = L xf(x)dx = wy;x

Y3 +1, (k+1)(«d)?)
203(k+1)2+1 '

2.4. Bonferroni and Lorenz curves

Bonferroni and Lorenz curves are income inequality measures that are also useful and applicable to
other areas including reliability, demography, medicine and insurance.
The Lorenz curve for a positive random variable X is defined as

L(p) = 1 Jq xf(x)dx = J(q) _ wijk

0 m m 203(k +1)2+1

v +1, (k+ 1)(ocd)2)]

where q = F~!(p). Also Bonferroni curve of X is given by

B(p) = i Jq xf(x)dx = J(q) _ Wi j k
Up Jo up up

v+ 1, (k+1)(d)?)
208(k +1)2+1 '

3. Residual life and reversed residual life functions

Suppose that a component survives up to time t > 0, the residual life is the period beyond t until the
time of failure and is defined by the conditional random variable X —t[X > t. In theory of reliability, it
is well known that the mean residual life function and ratio of two consecutive moments of residual life
determine the distribution uniquely (see [11]). Therefore, we obtain the T'-order moment of the residual
life via the general formula

KR (1) = E(X— )7 [X > ) = F(lt) f(x—t)ff(x, @) dx.

Applying the binomial expansion of (x —t)" and substituting f(x, ¢) given by (2.6) into the above formula
gives

T 0
W. .
HRr(t) — ij,k Z(_t)h(;) J Xr—h+1e—(k+l)(ocx)2dX’
Fit) = t
T

Wik
Rr t - 1) t h(r
|5 ( ) F(t) £ 0( ) (h) [

Mt +1, (k+1)(oct)2)]

202k +1) |

where T'(s,t) = [°xSle *dx is the upper incomplete gamma function. The mean residual life of the
TIHLgx distribution is given by

Wik
uR(t) = ()

(341, (k+1)(at)?) .
203(k +1)z+1 '
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The variance of the residual life of the TIHLgx distribution can be obtained easily by using pR>(t) and
uR(t). The reversed residual life can be defined as the conditional random variable t — X|X < t which
denotes the time elapsed from the failure of a component given that its life is less than or equal to t. This
random variable may also be called the inactivity time (or time since failure). The ™M order moment of
the reversed residual life can be obtained by

t
mR.(t) =E((t—=X)" [ X <t) = 1J (t—x)"f(x, @)dx.
F(t) Jo
Applying the binomial expansion of (t —x)" and substituting f(x, ¢) given by (2.6) into the above formula
gives

.. T t
mR,(t) = V;I(J]c)k Z(—t)h(}rl) Jo X"l e= (k1) (x)? gy
h—0

v +1, (k+1)(at)2)]

= 20— h+2(k + 1) =ht
where y(s,t) = fé x$~le~*dx is the lower incomplete gamma function. Thus, the mean reversed residual
life (or mean waiting time) of the TIHLgx distribution is given by

Wik

mR(t) =t )

Y341, (k+1)(at)?)
203(k +1)2+1 '

Using mR(t) and mR;(t) one can obtain the variance and the coefficient of variation of the reversed
residual life of the TIHLgx distribution.

3.1. Entropy

Entropy of a random variable X can be defined as a measure of variation of uncertainty. In this
subsection, we consider the two most important and popular entropies known as the Shannon and Renyi
entropies. The Shannon entropy measure of a random variable X with TIHLgx distribution can be defined
by E[—log f(x)]. The Shannon entropy of TIHLgx can be computed by considering the following lemmas.

t
Lemma 3.1. For t € R, let X be a random variable with TIHLgx, let, P(t) = E [(1 — e*(“x)2> ] , then,

IR~ G O O
bit) = W""klzo 2((k+1+1)a]i

Proof.

W(t) =wijk ro(l — e (Pyty e (erlle) gy
0

:Wifisz(—l)l(E)J x e~ (kLD (ax)? 40 :Wi,i,kz (k) -
1=0 0 = 2[(k+1+1)o?2

Lemma 3.2. Let X be a random variable with TIHLgx distribution and pdf given by (2.2), then,

E [log (1 — e*(“x)zﬂ = agtll)(tﬂtzoz
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Ellogx] = i (9,
~(ox)? i Ui 1CI0)
E{log(l— 1 e (ax) )}
( > mz—l m
x X )stw— 1(As
E [log (1+ (1_ (1_6—(0002)9) )] - Z N S(w)ﬂ)(GW)/
s=1w=0

where 1, (x) is the t™ moments of X by considering (2.7) and \p(.) is given by Lemma 3.1.

Now, the Shannon entropy of X can be expressed as

E [—log f(x)] = — log(4A0a?) — Ellog x] + a?E[x2] — (6 — 1) log(1 — e(**)*)

—(A—1)E [log (1 _ (1 —e—(“XJ2)9>] +2E |log (1 n (1 - (1 —e—<“’<)2)e>x>] .

By using the Lemma 3.2 we get

aatw(tnt:o

s—|—w 1 (}\S)ll)(ew)

oo

> = .
S

1w=0

—

E [ log f(x)] = — log(4A002) — 11} (x)le—o + apy(x) — (6 — 1)

ot
o0 (—1)2m+1ﬂ)(9k

- -1) —

Hl\/]8

m=1

The Renyi entropy of a random variable X is defined by Ig(,) = ﬁ log UZ f (x)pdx}, where p > 0
and p # 1. The Renyi entropy of X with TIHLgx distribution can be obtained as follows

J fp(x)dx:wfjk(p)J oo lerpran g WiaxlPTls 1)’
0 7o [(k+p)a2]2*

1

where wi; (p) = 4°0°0®® T3 572 373 (75°) (PN (POTDHOY (1)t Thus,

Wi*,j,k(p) r(% +1)
[(k+p)o2] 5+

I(p) = (1—p) "' log

4. Maximum likelihood estimation

Let X1, Xy, ..., X, be a random sample of size n from TIHLgx (@), let ¢ = (A, «, 0)T be the parameter
vector. The log likelihood function for the vector of parameters can be written as

log L =nlog(4A) —i—nlog(xz—i-in— oc2Zx%+ (0—1) Zlogz?
i=1 i i=1 4.1)

L(A=1) Zlog 1 29] ZZIOg{l—i—[l—z]A},

where z; = (1 — e~ (o) ) The associated score function is given by

dlogL dlogL 610gL]T

u == 4 7
n(®) [ax da ' 20
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The log-likelihood can be maximized by solving the nonlinear likelihood equations obtained by differen-
tiating (4.1). The components of the score vector are given by

alog L 2 log[ 29]
*+Zlog [1—-27] Z ST (4.2)
i=1 { 1] }
R TP b
da « 20(;7(1—1_20((8 1); [1_6—(oo<)2] (43)
" 2o (ax)?,0-1 n o2, (ax)?,0-1[1 _ 01 A1 :
ron-1y MET A ey Me A AZI] ,
o -] i1 {1+[1—z?] }
and
alog L z{ log 2 22 logz; [1—2¢ ]7\71
logzi —(A—1) +2A (4.4)
Z i ; 1—zl ; {1+ [1 ?]?\}

The maximum likelihood estimation (MLE) of ¢, say @, is obtained by solving the nonlinear sys-
tem U, (@) = 0. These equations cannot be solved analytically, but statistical software can be used to
solve them numerically via iterative methods. For interval estimation and hypothesis tests on the model
parameters, we require the information matrix. The 3 x 3 observed information matrix is given by

Lix e Ine
In((P):_ Ioc?\ Iococ Ioce

Iox Ipx Ipe

and I, (@) = — (%Z(Sgg(p L) ) Applying the usual large sample approximation, MLE of ¢, i.e ¢ can be treated

as being approximately N3(¢o, Jnl@)™1), where ] (@) = E [I.(@)]. Under conditions that are fulfilled for
parameters in the interior of the parameter space but not on the boundary, the asymptotic distribution
of vn(® — @) is N3(0,J(¢@)~ "), where J(¢@) = limn_oon "I (@) is the unit information matrix. This
asymptotic behavior remains valid if J(¢) is replaced by the average sample information matrix evaluated
at @, say n ~11,,(®). The estimated asymptotic multivariate normal N3 (¢, I, (@) 1) distribution of @ can
be used to construct approximate confidence intervals for the parameters and for the hazard rate and

survival functions. An 100(1 — &) asymptotic confidence interval for each parameter ¢, is given by

ACIL = <(pr ITTI Pr +Z” \ If\) ,

where Irr is the (r,7) diagonal element of I,,(®)~! for r = 1,2,3 and zy is the quantile 1 — 3 of the
standard normal distribution.

4.1. Simulation

Simulations have been performed to assess the proposed method of maximum likelihood estimate.
The simulation study was performed base on ten thousand (10, 000) samples of size 30, 50, 100, 200, and
300 each of which is randomly sampled from TIHLgx distribution for some different values of A, «, and
0. The MLEs are obtained by solving the nonlinear equations (4.2) to (4.4) using mlninb package in R
software. Moreover, no restriction was imposed on the number of the iterations performed. The MLEs
A, &, and 6 and their standard deviations sd(A), sd(&), and sd(0) of the parameters are given in Table 2
below. The results show that the maximum likelihood performed consistently, as the sample size increases
the standard deviations of the MLEs decrease and the MLE approaches their true values in most cases.



M. Sharhili, I. Elbatal, M. Muhammad, J. Nonlinear Sci. Appl., 12 (2019), 262-277

272

Table 2: MLEs and Standard deviations for some various values of parameters.

Sample size

Actual values

Estimated values

Standard deviations

n

A

0.8

S)

=~

A

A

x

~

S)

sd(A)

sd(&)

sd(0)

30

0.3

0.5

0.1

0.6587

0.4308

0.0939

0.8395

0.1493

0.0330

0.3

0.6

0.2

3.2204

0.3466

0.1918

19.8349

0.2023

0.0711

0.1

0.3

0.4

3.1268

0.3971

0.3745

27.5131

0.3490

0.1076

0.1

0.1

0.2

0.2488

0.1241

0.1900

5.0583

0.0463

0.0476

0.1

0.1

0.1

0.1567

0.1205

0.1743

0.2554

0.0504

0.0493

0.2

0.2

0.2

1.0767

0.4001

0.1351

3.7793

0.3937

0.0765

0.1

1.1

0.1

0.5260

0.8577

0.1146

6.1836

0.2664

0.0646

1.0

2.0

3.0

6.3094

49136

4.0987

99.5357

1.0961

7.7823

0.1

4.0

0.2

1.3531

3.4673

0.1959

18.2509

0.8912

0.0910

50

0.3

0.5

0.1

0.4312

0.1925

0.0972

0.3718

0.1436

0.0188

0.3

0.6

0.2

1.5788

0.3212

0.1832

4.2086

0.1550

0.0570

0.1

0.3

0.4

1.3101

0.3353

0.3756

14.7392

0.2407

0.0782

0.1

0.1

0.2

0.1952

0.1134

0.1911

1.3772

0.0355

0.0442

0.1

0.1

0.1

0.1478

0.1114

0.1789

0.1062

0.0360

0.0444

0.2

0.2

0.2

0.8497

0.3559

0.1402

1.7679

0.3607

0.0728

0.1

1.1

0.1

0.2444

0.9041

0.1054

0.3243

0.2113

0.0449

1.0

2.0

3.0

3.6648

4.4701

4.5363

57.4154

0.9987

4.3836

0.1

4.0

0.2

0.2964

3.6873

0.1828

2.4830

0.6372

0.0591

100

0.3

0.5

0.1

0.2794

0.1333

0.0986

0.2156

0.0921

0.0077

0.3

0.6

0.2

1.1991

0.3026

0.1760

0.6835

0.1167

0.0429

0.1

0.3

0.4

0.3674

0.2962

0.3843

4.8677

0.1101

0.0554

0.1

0.1

0.2

0.1376

0.1051

0.1916

0.1150

0.0226

0.0341

0.1

0.1

0.1

0.1201

0.1025

0.1900

0.0618

0.0217

0.0335

0.2

0.2

0.2

0.6437

0.2971

0.1522

0.4319

0.2923

0.0625

0.1

1.1

0.1

0.1497

0.9646

0.1006

0.1263

0.1284

0.0346

1.0

2.0

3.0

0.5845

3.9230

4.6716

6.9230

0.6615

2.1013

0.1

4.0

0.2

0.1485

3.8931

0.1842

0.1650

0.3192

0.0398

200

0.3

0.5

0.1

0.3256

0.4896

0.0993

0.1156

0.0532

0.0063

0.3

0.6

0.2

1.1007

0.3376

0.1777

0.3973

0.1081

0.0285

0.1

0.3

0.4

0.2167

0.2972

0.3947

0.1620

0.0345

0.0316

0.1

0.1

0.2

0.1106

0.1010

0.1971

0.0544

0.0101

0.0207

0.2

0.2

0.2

0.4121

0.2688

0.1647

0.2825

0.1856

0.0424

0.1

0.1

0.1

0.1080

0.9952

0.0997

0.0486

0.0542

0.0084

1.0

2.0

3.0

0.3564

3.8934

4.3273

0.1357

0.4554

1.2545

0.1

4.0

0.2

0.1110

3.9780

0.1949

0.0454

0.1175

0.0283

300

0.3

0.5

0.1

0.3072

0.4970

0.0998

0.0667

0.0291

0.0030

0.3

0.6

0.2

1.0538

0.3452

0.1781

0.3672

0.1093

0.0258

0.1

0.3

0.4

0.2032

0.2992

0.3981

0.0606

0.0108

0.0186

0.1

0.1

0.2

0.1033

0.1002

0.1991

0.0280

0.0056

0.0097

0.1

0.1

0.1

0.1007

0.1000

0.1998

0.0150

0.0037

0.0047

0.2

0.2

0.2

0.3272

0.2601

0.1712

0.2001

0.1272

0.0308

0.1

1.1

0.1

0.1017

0.9987

0.1001

0.0228

0.0233

0.0089

1.0

2.0

3.0

0.3544

3.8510

4.1248

0.0939

0.3743

0.9402

0.1

4.0

0.2

0.1030

3.9955

0.1983

0.0199

0.0389

0.0138
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5. Applications

In this section, we illustrate the performance of the TIHLgx distribution as compared to some al-
ternative distributions using two real data applications. For each data set, the estimates of the model
parameters by maximum likelihood estimation, Akaike Information Criterion (AIC), Bayesian Informa-
tion Criterion (BIC), and Consistent Akaike Information Criterion (CAIC) are calculated to compare the
fitted models. The model with the smallest values of these measures represents the data better than the
others. The numerical values of these measures for the TIHLgx and the other competing distributions
of the first data are provided in Table 3 and for the second data set in Table 4. The competing distribu-
tions includes the beta BurrX (BBX) by [17], beta compound Rayleigh (BCR) [25], transmuted generalized
Rayleigh (TGR) [15], Weibull Rayleigh (WR) [16], exponentiated generalized inverse Weibull (EGIW) [9],
generalized half-logistic Poisson (GHLP) [20], half-logistic Poisson (HLP) [22], Kumaraswamy Exponenti-
ated Inverse Rayleigh (KwEIR) [2], Transmuted Rayleigh (TR) [14], generalized BurrXII Poisson (GBXIIP)
[18], type I half-logistic Frechet (TIHL-Fr) [6], complimentary exponentiated BurrXII Poisson (CEBXIIP)
[21], Burr-XII (BXII) and Burr-X (BX) (or generalized Rayleigh (GR)) by [5] and Rayleigh (R) distributions.

The first data set consists of 63 observations of the strengths of 1.5 cm glass fibers obtained by workers
at the UK National Physical Laboratory. The data are:

0.55,0.74, 0.77, 0.81, 0.84,0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 1.48, 1.48,
1.49,1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 1.61,1.62, 1.62, 1.63, 1.64,
1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76,1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00,
2.01, 2.24. Also analyzed by [17, 25, 26].

The second data set is the life of fatigue fracture of Kevlar 373/epoxy that are subject to constant
pressure at the 90% stress level until all had failed. The data was provided and studied in [4]. The data
set are: 0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753,
0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570,
1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 1.7746,
1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100,
2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455,
3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960.

Figure 4 is the TTT (total time on test) plot of: (i) First data set, it show that the data exhibit an
increasing failure rate function and TIHLgx is capable of accommodating increasing failure rates. (ii)
Second data set, it shows that the data exhibit an upside down bath-tube failure rate functions but we
illustrate how TIHLgx accommodating the failure rate of the data. We also used the muhaz package in
R software to obtain the empirical hazard function of each of the two data set and then fitted with the
estimated hazard function of the TIHLgx.

T(i/n)

0.4 0.8
I |
T(i/n)

0.4 0.8
I |

0.0
|
0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
in in
0] (i)
Figure 4: TTT-plots of (i) first data set, (ii) second data set.

The results presented in Tables 3 and 4 show that TIHLgx fit the two data set better than the other
competing distributions since TIHLgx has the smallest values of the AIC, BIC, and CAIC.
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Table 3: MLEs, L, AIC, BIC, and CAIC of the competing distributions for the first data set.
Model & B 0 A a b L AIC BIC CAIC
TIHLg x 0.3407 — 2.8431 64.7396 — — —14.293 | 34.586 | 41.0153 | 34.993
BBX 0.3833 | 37.7339 | 7.8336 0.5352 — — —14.858 | 37.717 46.289 38.406
BCR 96.1649 — 489.55 — 5.0878 | 9.0725 | —21.022 | 50.043 58.616 50.733
TGR 0.8302 — 4.8452 0.9000 — — —21.962 | 49.923 56.353 50.330
BX(GR) 0.9869 — 5.4860 — — — —23.929 | 51.858 56.144 52.058
WR 1.2665 2.1534 0.4751 — — — —14.643 | 35.286 41.716 35.693
EGIW 0.2896 81.371 9.7617 0.2651 — — —47.414 | 102.83 111.40 103.52
GHLP 9.26e3 | 30.136 — 500.64 — — —31.384 | 68.770 75.198 69.176
HLP 2.7427 — — —20.417 — — —29.294 | 62.587 66.874 62.787
CEBXIIP | 2.9820 2.2085 4.3066 4.2033 — — —27.501 | 63.001 71.574 63.691
GBXIIP 7.0099 0.5258 | 3.14e~? | 2.0287 — — —42.323 | 92.647 | 101.219 | 93.336
BXII 7.4821 0.3207 — — — — —48.721 | 105.44 114.02 106.13
R 0.6490 — — — — — —49.791 | 101.582 | 103.725 | 101.647
Table 4: MLEs, L, AIC, BIC and CAIC of the competing distributions for the second data set.
Model & &) 0 A a b L AIC BIC CAIC
TIHLgx | 0.0135 — 0.5563 | 76.2386 — — —122.71 | 251.42 | 258.41 | 251.75
BBX 1.5863 | 27.8447 | 0.4957 | 0.0268 — — —122.38 | 252.76 | 262.08 | 253.32
TGR 0.2598 — 0.6237 | 0.7546 — — —122.84 | 251.68 | 258.67 | 252.01
TR 0.3406 — — 0.7035 — — —130.87 | 265.75 | 270.41 | 26591
TIHLFr | 64.8083 | 0.3223 — 32.1303 — — —125.11 | 256.23 | 263.22 | 256.56
KwEIR 0.2041 — 0.1986 — 0.1987 | 0.1803 | —190.89 | 387.79 | 394.78 | 388.12
BX(GR) 0.3165 — 0.5325 — — — —125.50 | 255.00 | 259.67 | 255.17
EGIW 22.6658 | 0.5637 | 0.4344 | 36.8006 — — —128.51 | 265.02 | 274.34 | 265.58
HLP 0.0359 — — 28.4939 — — —127.15 | 258.29 | 262.95 | 258.46
BXII 2.2306 0.6656 — — — — —128.55 | 265.11 | 274.43 | 265.67
R 0.3989 — — — — — —137.32 | 276.64 | 278.97 | 276.69

Figure 5 provides the plots of the (i) histogram and estimated density (ii) empirical and estimated
cdfs of the TIHLgx distribution for the first data set, and Figure 6 shows the (i) quantile-quantile plot,
(ii) empirical and estimated hazard functions of the TIHLgx distribution for the first data set. While
Figure 7 presents the plots of the (i) histogram and estimated density (ii) empirical and estimated cdfs
of the TIHLgx distribution for the second data set, and Figure 8 gives the (i) quantile-quantile plot, (ii)
empirical and estimated hazard functions of the TIHLgx distribution for the second data set.

Density

1.0

— TIHLgx
— Empirical

et

0.0

[ I
0.5 1.0

I
15

X

@

|
2.0

cdf

0.8

0.4

0.0

7| — TIHLgx
— Empirical

(ii)

Figure 5: Plots of the (i) histogram and estimated density, (ii) empirical and estimated cdfs of the TIHLgx distribution for the

first data set.
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Figure 6: Plots of the (i) quantile-quantile, (ii) empirical and estimated hazard functions of the TIHLgx distribution for the first
data set.
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Figure 7: Plots of the (i) histogram and estimated density, (ii) empirical and estimated cdfs of the TIHLgx distribution for the
second data set.
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Figure 8: Plots of the (i) quantile-quantile, (ii) empirical and estimated hazard functions of the TIHLgx distribution for the
second data set.
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6. Conclusion

In this paper, we have derived and studied the properties and applications of the type I half-logistic
Burr X (TIHLgx) also called type I half-logistic generalized Rayleigh (TIHLggr). The model extends the
Burr X (BX) (or generalized Rayleigh (GR)) distribution. We provide an explicit mathematical expression
for the moments, moment generating function, conditional moment, Bonferroni and Lorenz curves, mean
deviations, residual life and reversed residual life functions, Shannon and Renyi entropies. We estimated
the model parameters by the method of maximum likelihood and assessed by simulation studies. Finally,
we fit the model to two real data set to demonstrate its usefulness and flexibility; the results show that
the type I half-logistic Burr X (TIHLgx ) distribution provides a better fit than some other popular distri-
butions as measured regarding the AIC, BIC, and CAIC. We hope that this distribution will attract wider
applications in the areas of sciences and applied sciences.
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