Ekeland’s variational principle in complete quasi-G-metric spaces

E. Hashemia, M. B. Ghaemib,* \\
aDepartment of Mathematics, College of Basic Sciences, Karaj Branch, Islamic Azad University, Alborz, Iran. \\
bDepartment of Mathematics, Iran University of Science and Technology, Tehran, Iran.

Abstract

In this paper, by concept of Γ-function which is define on q-G-m (quasi-G-metric) space, we establish a generalized Ekeland’s variational principle in the setting of lower semicontinuous from above. As application we prove generalized flower petal theorem in q-G-m.

Keywords: Γ-Function, q-G-m space, generalized EVP, lower semicontinuous from above function, generalized Caristi’s (common) fixed point theorem, nonconvex minimax theorem, generalized flower petal theorem.

2010 MSC: 54H25, 54C60.

1. Introduction

EVP was first studied in 1972. Many equivalents have been found by scholars over the years for primitive EVP\cite{10, 11}, see \cite{2–7, 17, 18, 20, 22}. Interesting applications in various fields of applied mathematics are found. A number of generalized of these results have been reviewed by other researchers \cite{1–4, 8, 12–16, 23–30}.

2. Ekeland’s variational principle

In this paper, $\theta : (-\infty, \infty) \rightarrow (0, \infty)$ is a nondecreasing function, a function $g : U \rightarrow (-\infty, \infty)$ is said to be lower semicontinuous from above (shortly Lsca) at r_0, when for each sequence $\{r_n\}$ in U such that $r_n \rightarrow r_0$ and $g(r_1) \geq g(r_2) \geq \cdots \geq g(r_n) \geq \cdots$, we have $g(r_0) \leq \lim_{n \rightarrow \infty} g(r_n)$. The function g is said to be Lsca on U, when g is Lsca at every point of U, g is proper when $h \not\equiv \infty$.

Theorem 2.1 (\cite{9, Ekeland theorem}). Let U be a complete metric space with meter d, $g : U \rightarrow \mathbb{R} \cup \{+\infty\}$ be a proper, semicontinuous, and bounded below function. Then there exists $v \in U$ such that $g(v) \leq g(u)$, $d(u, v) \leq 1$, and $g(w) > g(v) - \epsilon d(v, w)$ for all $v \neq w$.

*Corresponding author

Email addresses: ehhagh_hashemi@yahoo.com (E. Hashemi), mghaemi@iust.ac.ir (M. B. Ghaemi)

doi: 10.22436/jnsa.012.03.06

Received: 2018-01-19 Revised: 2018-09-28 Accepted: 2018-10-25
Definition 2.2 ([19]). Assume that U is a nonempty set and mapping

$$G : U \times U \times U \longrightarrow [0, \infty)$$

is satisfying the following conditions:

(i) $G(r, s, t) = 0$ if $r = s = t$;
(ii) $G(r, r, s) > 0$ for all $r, s \in U$, where $r \neq s$;
(iii) $G(r, r, t) \leq G(r, s, t)$ for all $r, s, t \in U$ with $r \neq t$;
(iv) $G(r, s, t) = G(p(r, s, t))$ such that p is a permutation of r, s, t;
(v) $G(r, s, t) \leq G(r, \alpha, \alpha) + G(\alpha, s, t)$ for all r, s, t, α in U.

Then G is said to be G-metric and pair (U, G) is said to be G-metric space.

Definition 2.3 ([19]). Let (U, G) be a G-metric space. A sequence $\{r_n\}$ in U is said to be

(a) G-Cauchy sequence if for all $\epsilon > 0$, there exists $q_0 \in \mathbb{N}$ such that for every $p, q, l \in \mathbb{N}$ and $p, q, l \geq q_0$ then $G(r_{q_0}, r_{q+p}, r_{q+l}) < \epsilon$;
(b) G-convergent to $r \in U$ if for all $\epsilon > 0$, there exists natural number q_0 such that for all $p, q \geq q_0$, then $G(r_{q_0}, r_{p+q}, r_p) < \epsilon$.

Proposition 2.4 ([19]). Assume that (U, G) is a G-metric space, then the following statements are equivalent:

(a) $\{r_n\}$ is a G-causly sequence;
(b) for each $\epsilon > 0$, there exists natural number q_0 such that for all $p, q \geq q_0$, then $G(r_{q_0}, r_{q+p}, r_p) < \epsilon$.

Definition 2.5. A function $\sigma : \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ is subadditive when $\sigma(r + s) \leq \sigma(r) + \sigma(s)$, and $\sigma(\epsilon r) = \epsilon \sigma(r)$ for every $\epsilon > 0$.

Definition 2.6. Let U be a nonempty set. A function

$$G : U \times U \times U \longrightarrow [0, \infty)$$

is said to be quasi-G-metric (q-G-m) if the following conditions be satisfied

1. $G(r, s, t) = 0$ if $r = s = t$;
2. $G(r, r, s) > 0$ for all $r, s \in U$, $r \neq s$;
3. $G(r, r, t) \leq G(r, s, t)$ for all $r, s, t \in U$, $t \neq s$;
4. $G(r, s, t) \leq G(r, \epsilon, \epsilon) + G(\epsilon, s, t)$ for all $r, s, t, \epsilon \in U$.

(U, G) is said to be q-G-m space when U is a nonempty set and G is a q-G-m. The concept of Cauchy sequence, convergence, and complete space are defined as G-metric space.

Definition 2.7. Let (U, G) be a q-G-m space. A function $\Gamma : U \times U \times U \longrightarrow [0, \infty)$ is said to be Γ-function when

1. $\Gamma(r, s, t) \leq \Gamma(r, \epsilon, \epsilon) + \Gamma(\epsilon, s, t)$ for all $r, s, t, \epsilon \in U$;
2. if $r \in U$, $(s_n)_{n \in \mathbb{N}}$ be a sequence in U which is convergent to s in U and $\Gamma(r, s, s_n) \leq M$, then $\Gamma(r, s, s_n) \leq M$;
3. for every $\epsilon > 0$, there exists $\delta > 0$ such that $\Gamma(r, \epsilon, \epsilon) \leq \delta$ and $\Gamma(\epsilon, s, t) \leq \delta$ imply $G(r, s, t) \leq \epsilon$.

Example 2.8 ([21]). Let (U, d) be a metric space and $G : U^3 \longrightarrow [0, \infty)$ defined by $G(r, s, t) = \max\{d(r, s), d(r, t), d(s, t)\}$ for all $r, s, t \in U$. Then $\Gamma = G$ is a Γ-function on U.

Example 2.9. Assume that

$$G : U^3 \longrightarrow [0, \infty), \quad G(r, s, t) = \frac{1}{3}(|t - r| + |r - s|)$$

is a function, then G is a q-G-m but isn’t G metric.
Proof. q-G-m is obvious. We show that \(G(r, s, t) \neq G[p(r, s, t)] \) (p is a permutation of \(r, s, t \)). Since
\[
G(3, 5, 2) = \frac{1}{3}(|2 - 3| + |3 - 5|) = 1, \quad G(2, 3, 5) = \frac{1}{3}(|3 - 2| + |5 - 2|) = \frac{4}{3},
\]
then \(G \) is not a G-metric.

Example 2.10. Let \(G(r, s, t) \) be the same as in the previous example. Then \(\Gamma = G \) is a \(\Gamma \)-function.

Proof. (a) and (b) are obvious. Let \(\epsilon > 0 \) be given, put \(\delta = \frac{\epsilon}{2} \) if \(\Gamma(r, \epsilon, \epsilon) = \frac{1}{2}(|t - \epsilon| + |\epsilon - s|) < \frac{\epsilon}{2} \), then
\[
G(r, s, t) = \frac{1}{3}(|t - s| + |r - s|) \leq \frac{1}{3}(|t - \epsilon| + |\epsilon - s| + |r - \epsilon| + |\epsilon - s|) < \epsilon.
\]

So, (c) is established.

Lemma 2.11 ([21]). Assume that \((U, G) \) is a G-metric space and \(\Gamma \) is a \(\Gamma \)-function on \(U \). Let \(\{u_n\} \) and \(\{v_n\} \) be two sequences in \(U \), \(\{\rho_n\} \) and \(\{\phi_n\} \) be in \([0, \infty), \) which are convergent to zero. Let \(u, v, w, \epsilon \in U \), then

1) if \(\Gamma(v, u_n, u_n) \leq \rho_n \) and \(\Gamma(u_n, v, w) \leq \phi_n \) for all \(n \in \mathbb{N} \), then \(G(v, w) < \epsilon \) and hence \(w = v; \)
2) if \(\Gamma(u_m, u_n, u_n) \leq \rho_n \) and \(\Gamma(u_n, u_m, w) \leq \phi_n \) for every \(m > n \), then \(G(v_n, v_m, w) \) is convergent to zero and hence \(v_n \rightarrow w; \)
3) if \(\Gamma(u_m, u_n, u_l) \leq \rho_n \) for all \(m, n, l \in \mathbb{N} \) with \(n \leq m \leq l \), then \(\{u_n\} \) is a G-Cauchy sequence;
4) if \(\Gamma(u_n, \epsilon, \epsilon) \leq \rho_n \) for all \(n \in \mathbb{N} \), then \(\{u_n\} \) is a G-Cauchy sequence.

Lemma 2.12. Let \(\Gamma \) be a \(\Gamma \)-function on \(U \times U \times U \). If sequence \(\{r_n\} \) be in \(U \) that \(\limsup_{n \rightarrow \infty} \Gamma(r_n, r_m, r_l) = 0 \) if \(n \leq m \leq l \), then \(\{r_n\} \) will be a G-Cauchy sequence in \(U \).

Proof. Assume \(\rho_n = \sup\{\Gamma(r_n, r_m, r_l)\}, n \leq m \leq l \), then \(\lim_{n \rightarrow \infty} \rho_n = 0 \). By Lemma 2.11 (3), \(\{r_n\} \) is a G-Cauchy sequence.

Lemma 2.13. Let \(g : U \rightarrow [-\infty, \infty] \) be a function and \(\Gamma \) be a \(\Gamma \)-function on \(U \times U \times U \). The set \(P(r) \) is defined by
\[
P(r) = \{s \in U; s \neq r, \Gamma(r, s, s) \leq 0(g(r))(g(r) - g(s))\}.
\]
If \(P(r) \) be nonempty, then for every \(s \in P(r) \), we will have\[P(s) \subseteq P(r) \text{ and } g(s) \leq g(r).
\]

Proof. Let \(s \in P(r) \). So \(s \neq r \) and \(\Gamma(r, s, s) \leq 0(g(r))(g(r) - g(s)) \). Since \(\Gamma(r, s, s) \geq 0 \) and \(0 \) is nondecreasing and positive function, then \(g(r) \geq g(s) \). If \(P(s) = \emptyset \) then \(P(s) \subseteq P(r) \). Therefore \(t \neq s \) and \(\Gamma(s, t, t) \leq 0(g(s))(g(s) - g(t)) \) as above \(g(s) \geq g(t) \). Since \(\Gamma \) be a \(\Gamma \)-function, then
\[
\Gamma(r, t, t) \leq \Gamma(r, s, s) + \Gamma(s, t, t) \leq 0(g(r))(g(r) - g(t)).
\]
We claim that \(t \neq r \). Assume that \(t = r \) so \(\Gamma(r, t, t) = 0 \). On the other hand
\[
\Gamma(r, s, s) \leq 0(g(r))(g(r) - g(s)) \leq 0(g(r))(g(r) - g(t)) = 0 \Rightarrow \Gamma(r, s, s) = 0,
\]
then \(\Gamma(r, s, s) = 0 \). For every \(\epsilon > 0 \), we have \(\Gamma(r, t, t) = 0 < \epsilon \) and \(\Gamma(t, s, s) = 0 < \epsilon \) then by definition \(\Gamma \)-function, we have \(G(t, s, s) < \epsilon \), so \(G(t, s, s) = 0 \) and \(t = s \). This is a contradiction, therefore \(t \in P(r) \) and \(P(s) \subseteq P(r) \).

Proposition 2.14. Assume that \((U, G) \) is a complete q-G-m space and \(g : U \rightarrow [-\infty, \infty] \) is a proper and bounded below function, \(\Gamma \) is a \(\Gamma \)-function on \(U \times U \times U \). Let
\[
P(r) = \{s \in U; s \neq r, \Gamma(r, s, s) \leq 0(g(r))(g(r) - g(s))\}.
\]
Let \(\{r_n\} \) be a sequence in \(U \) such that \(P(r_n) \) be nonempty and for all \(n \in \mathbb{N}, r_{n+1} \in P(r_n) \). Then, there exists...
\(r_0 \in U\) such that \(r_n \longrightarrow r_0\) and \(r_0 \in \bigcap_{n=1}^{\infty} P(r_n)\). Also if for every \(n \in \mathbb{N}\), we have \(g(r_{n+1}) \leq \inf_{t \in P(r_n)} g(t) + \frac{1}{n}\), then \(\bigcap_{n=1}^{\infty} P(r_n)\) will only has one member.

Proof. At first we prove that \(\{r_n\}\) is a Cauchy sequence by Lemma 2.13, \(g(r_n) \geq g(r_{n+1})\) for all \(n \in \mathbb{N}\). Therefore \(\{g(r_n)\}\) is nonincreasing. On the other hand \(g\) is bounded below then \(\lim_{n \to \infty} g(r_n) = u\), and \(g(r_n) \geq u\) for all \(n \in \mathbb{N}\). We claim that

\[
\limsup_{n \to \infty} \Gamma(r_n, r_m, r_m) : m > n = 0.
\]

We have

\[
\Gamma(r_n, r_m, r_m) \leq \Gamma(r_n, r_{n+1}, r_{n+1}) + \Gamma(r_{n+1}, r_m, r_m)
\]

\[
\leq \Gamma(r_n, r_{n+1}, r_{n+1}) + \Gamma(r_{n+1}, r_{n+2}, r_{n+2}) + \cdots + \Gamma(r_{m-1}, r_m, r_m),
\]

then

\[
\Gamma(r_n, r_m, r_m) \leq \sum_{j=n}^{m-1} \Gamma(r_n, r_j, r_{j+1}) \leq \theta(g(r_n))(g(r_n) - g(r_0))
\]

for all \(m, n \in \mathbb{N}\) with \(m > n\).

Put \(\rho_n = \theta(g(r_n))(g(r_n) - u)\), then \(\sup_{m > n} \Gamma(r_n, r_m, r_m) \leq \rho_n\) for all \(n \in \mathbb{N}\). Since \(\lim_{n \to \infty} g(r_n) = u\), we result

\[
\limsup_{n \to \infty} \Gamma(r_n, r_m, r_m) : m > n = 0
\]

and \(\lim_{n \to \infty} \rho_n = 0\). By Lemma 2.12, \(\{u_n\}\) is a G-Cauchy sequence. Then, there exists \(r_0 \in U\) such that \(r_n \to u_0\). We show that \(r_0 \in \bigcap_{n=1}^{\infty} P(r_n)\). Since \(g\) is Lsca, then \(g(r_0) \leq \lim_{n \to \infty} g(r_n) = u \leq g(r_k)\).

Let \(n \in \mathbb{N}\), we have

\[
\Gamma(r_n, r_m, r_m) \leq \sum_{j=n}^{m-1} \Gamma(r_j, r_{j+1}, r_{j+1}) \leq \theta(g(r_n))(g(r_n) - g(r_0))
\]

for all \(m \in \mathbb{N}\) with \(m > n\). By Definition 2.7 (2), we have

\[
\Gamma(r_n, r_0, r_0) \leq \theta(g(r_n))(g(r_n) - g(r_0))
\]

for all \(n \in \mathbb{N}\). Also \(r_0 \neq r\) for all \(n \in \mathbb{N}\), suppose it is not, then there exists \(j \in \mathbb{N}\) such that \(r_0 = r_j\). Since

\[
\Gamma(r_j, r_{j+1}, r_{j+1}) = \theta(g(r_j))(g(r_j) - g(r_{j+1})) \leq \theta(g(r_j))(g(r_j) - g(r_0)) = 0,
\]

then we have \(\Gamma(r_j, r_{j+1}, r_{j+1}) = 0\) and in the same way

\[
\Gamma(r_{j+1}, r_{j+2}, r_{j+2}) = 0.
\]

Now assume \(\epsilon > 0\), \(\Gamma(r_j, r_{j+1}, r_{j+1}) = 0 < \delta\), and \(\Gamma(r_{j+1}, r_{j+2}, r_{j+2}) = 0 < \delta\). Therefor by Definition 2.7 (3) we get it \(G(r_j, r_{j+2}, r_{j+2}) < \epsilon\). Then \(r_j = r_{j+2}\) that is a contradiction because of \(r_j \neq r_{j+2}\). Since \(r_{j+1} \in P(r_j)\), then \(P(r_{j+1}) \subseteq P(r_j)\) and \(r_{j+2} \in P(r_{j+1})\). So \(r_{j+2} \in P(r_j)\). We suppose \(r_{j+2} \neq r_j\) for all \(n \in \mathbb{N}\).

We have \(r_0 \in \bigcap_{n=1}^{\infty} P(r_n)\), then \(\bigcap_{n=1}^{\infty} P(r_n) \neq \emptyset\). Let \(g(r_{n+1}) \leq \inf_{t \in P(r_n)} g(t) + \frac{1}{n}\) for all \(r_0 \neq r_n\). We show that

\[
\bigcap_{n=1}^{\infty} P(r_n) = \{r_0\}.\]

Assume that \(w \in \bigcap_{n=1}^{\infty} P(r_n)\), then

\[
\Gamma(r_n, w, w) \leq \theta(g(r_n))(g(r_n) - g(w)) \leq \theta(g(r_1))(g(r_1) - g(r_n)) + \frac{1}{n} \leq \theta(g(r_1))(g(r_1) - g(r_{n+1}) + \frac{1}{n}).
\]
Let
\[
\varphi_n = \theta(g(r_1))(g(r_n) - g(r_{n+1}) + \frac{1}{n})
\]
for all \(n \in \mathbb{N}\), then \(\lim_{n \to \infty} \varphi_n = 0\), we get it \(\lim_{n \to \infty} \Gamma(r_n, w, w) = 0\). On the other hand \(\{r_m\}\) is a G-Cauchy sequence. Then \(\lim_{n \to \infty} \Gamma(r_m, r_m, r_n) = 0\) and we get it \(r_n \to \infty\), by uniqueness \(w = r_0\). Then
\[
\bigcap_{n=1}^{\infty} P(r_n) = \{r_0\}.
\]
□

Theorem 2.15 (Generalized Ekeland’s variational principle). Assume that \((U, G)\) is a complete \(q\)-G-m space and \(g : U \to (-\infty, \infty)\) be a proper, bounded below and Lsca function. \(\Gamma\) is a \(\Gamma\)-function on \(U \times U \times U\), then there exists \(r \in U\) such that
\[
\Gamma(v, r, r) > \theta(g(r))(g(r) - g(v))
\]
for all \(r \in U\) with \(v \neq r\).

Proof. Suppose it isn’t true. Then for every \(r \in U\), there exists \(s \in U, s \neq r\) such that \(\Gamma(r, s, s) \leq \theta(g(r))(g(r) - g(s))\). That is \(P(r) \neq \emptyset\). We define the sequence \(\{r_n\}\) as follows. Put \(r_1 = \varepsilon\), we choose \(r_2 \in P(r_1)\) such that \(g(r_2) \leq \inf_{r \in P(r_1)} g(r) + 1\). In the same way suppose that \(r_n \in U\) is given. We choose \(r_{n+1} \in P(r_n)\) such that \(g(r_{n+1}) \leq \inf_{r \in P(r_n)} g(r) + \frac{1}{n}\). By proposition 2.14, there exists \(r_0 \in U\) such that
\[
\bigcap_{n=1}^{\infty} P(r_n) = \{r_0\}.
\]
By lemma 2.13, we have \(P(r_0) \subseteq \bigcap_{n=1}^{\infty} P(r_n) = \{r_0\}\) then \(P(r_0) = \{r_0\}\). This is a contradiction. Therefore there exists \(v \in U\) such that
\[
\Gamma(v, r, r) > \theta(g(v))(g(v) - g(r)).
\]

□

Theorem 2.16 (Generalized Caristi’s common fixed point theorem for a family of multivalued maps). Assume that \((U, G)\) is a complete \(q\)-G-m space and \(g : U \to (-\infty, \infty)\) be a proper, bounded below and Lsca function. \(\Gamma\) is a \(\Gamma\)-function on \(U \times U \times U\). Let \(I\) be any index set and for each \(j \in J\), suppose \(T_j : U \to 2^U\) is multivalued map such that for each \(r \in U\), there is \(s = s(r, j) \in T_j(r)\) with
\[
\Gamma(r, s, s) \leq \theta(g(r))(g(r) - g(s)).
\]
(2.1)

Then there is \(w \in U\) such that \(w \in \bigcap_{j \in J} T_j(w)\), and \(\Gamma(w, w, w) = 0\).

Proof. By Theorem 2.15, there exists \(w \in U\) such that \(\Gamma(w, r, r) > \theta(g(w))(g(w) - g(r))\) for all \(r \in U\) with \(r \neq w\). Now we show that \(w \in \bigcap_{j \in J} T_j(w)\) and \(\Gamma(w, w, w) = 0\). According to the assumption, there exists \(r(t, j) \in T_j(w)\) such that \(\Gamma(w, t, t) \leq \theta(g(t))(g(t) - g(t(w, j)))\). We show that \(t(w, j) = w\) for all \(j \in J\). On the contrary, let \(t(w, j_0) \neq w\) for some \(j_0 \in J\), then
\[
\Gamma(w, t, t) \leq \theta(g(w))(g(w) - g(t)) < \Gamma(w, t, t),
\]
which is a contradiction. Therefore \(w = t(w, j) \in T_j(w)\) for all \(j \in T\).

Since \(\Gamma(w, w, w) \leq \theta(g(w))(g(w) - g(w)) = 0\), we obtain \(\Gamma(w, w, w) = 0\).

□

Remark 2.17. We conclude that Theorem 2.16 concludes Theorem 2.15.

On the contrary, for each \(r \in U\), there exists \(s \in U\) with \(s \neq r\) such that
\[
\Gamma(r, s, s) \leq \theta(g(r))(g(r) - g(s)).
\]
Put $T : U \rightarrow 2^U \setminus \emptyset$ by

$$T(r) = \{s \in U : s \neq r, \Gamma(r, s, s) \leq \theta(g(r))(g(r) - fg(s))\}.$$

By Theorem 2.16, T has a fixed point $w \in U$, this means, $w \in T(w)$. This is a contradiction, because $w \notin T(w)$.

Theorem 2.18 (Nonconvex maximal element theorem for a family of multivalued maps). Assume that (U, G) is a complete g-G-m space and $g : U \rightarrow (-\infty, \infty]$ be a proper, bounded below and Lsca function. Γ is a Γ-function on $U \times U \times U$, and J be any index set. For each $j \in J$, let $T_j : U \rightarrow 2^U$ be a multivalued map. Suppose that for each $(r, j) \in U \times J$ with $T_j(r) \neq \emptyset$, there exists $s = s(r, j) \in U$ with $s \neq r$ such that (2.1) holds. Then there exists $w \in U$ such that $T_j(W) = \emptyset$ for each $j \in J$.

Proof. By Theorem 2.15, there exists $w \in U$, such that $\Gamma(w, r, r) > \theta(g(w))(g(w) - f(r))$ for all $r \in U$ with $r \neq w$. We prove that $T_j(w) = \emptyset$ for each $j \in J$. Indeed, if $T_j(w) \neq \emptyset$, for some $j_0 \in J$, according to the assumption, there exists $t = t(w, j_0) \in U$ with $t \neq w$ such that $\theta(w, t, t) \leq \theta(g(w))(g(w) - g(t))$. Also $\Gamma(w, t, t) > \theta(g(w))(g(w) - g(t))$, which is a contradiction. \hfill \Box

Remark 2.19. We conclude that Theorem 2.18 concludes Theorem 2.15.

On the contrary, thus for each $r \in U$, there exists $s \in U$ with $s \neq r$ such that

$$\Gamma(r, s, s) \leq \theta(g(r))(g(r) - g(s)).$$

For each $r \in U$, we define $T(r) = \{s \in U : s \neq r, \Gamma(r, s, s) \leq \theta(g(r))(g(r) - g(s))\}$. Then $T(r) \neq \emptyset$ for all $r \in U$. But by Theorem 2.18, there exists $w \in U$ such that $T(w) = \emptyset$, which is a contradiction.

3. **Nonconvex optimization and minimax theorems**

Theorem 3.1 (Generalized Takahashi’s nonconvex minimization theorem). Assume that (U, G) is a complete g-G-m space and $g : U \rightarrow (-\infty, \infty]$ be a proper, bounded below and Lsca function. Γ is a Γ-function on $U \times U \times U$. Suppose that for any $r \in U$ with $g(r) > \inf_{w \in U} fg(w)$ there exists $s \in U$ with $s \neq r$ such that (2.1) holds. Then there exists $w \in U$ such that $g(w) = \inf_{t \in U} g(t)$.

Proof. By Theorem 2.15, there exists $w \in U$ such that $\Gamma(w, r, r) > \theta(g(w))(g(w) - g(r))$ for all $r \in U$, $r \neq w$. Now we prove that $g(w) = \inf_{t \in U} g(t)$.

On the contrary, then $g(w) > \inf_{t \in U} g(t)$. According to the assumption, there exists $s \in U \setminus \{w\}$, with $s \neq w$ such that $\Gamma(w, s, s) \leq \theta(g(w))(g(w) - g(s))$. Then we have $\Gamma(w, s, s) \leq \theta(g(w))(g(w) - g(s)) < \Gamma(w, s, s)$, which is a contradiction. \hfill \Box

Remark 3.2. Using Theorem 3.1, we can conclude Theorem 2.15.

On the contrary, then for each $r \in U$, there exists $s \in U$ with $s \neq r$ such that $\Gamma(r, s, s) \leq \theta(g(r))(g(r) - g(s))$. By Theorem 3.1, there exists $w \in U$ such that $g(w) = \inf_{t \in U} g(t)$. According to the assumption, there exists $z \in U$ with $z \neq r$, such that $\Gamma(z, z, z) \leq \theta(g(w))(g(w) - g(z)) \leq 0$. Then $\Gamma(w, z, z) = 0$ and $g(w) = g(z) = \inf_{t \in U} g(t)$. There exists $t \in U$ with $t \neq z$ such that $\Gamma(z, t, t) \leq \theta(g(z))(g(z) - g(t)) \leq 0$. Then we have $\Gamma(z, t, t) = 0$ and $g(w) = g(z) = g(t) = \inf_{t \in U} g(r)$. Since $\Gamma(w, z, z) \leq \Gamma(w, z, z) + \Gamma(z, t, t)$, then $\Gamma(w, t, t) = 0$. For $e > 0$ we have $\Gamma(w, z, z) = 0 < \delta$, $\Gamma(z, t, t) = 0 < \delta$ then $G(w, t, t) < e$, that is, $w = t$. Also for $e > 0$ we have $\Gamma(z, w, w) = 0 < \delta$, $\Gamma(w, t, t) = 0 < \delta$, then $G(z, t, t) < e$ that is, $z = t$, which is a contradiction.

Theorem 3.3 (Nonconvex minimax theorem). Assume that (U, G) is a complete g-G-m space and Γ is a Γ-function on $U \times U \times U$. Let $F : U \times U \rightarrow (-\infty, \infty]$ be a proper Lsca and bounded below function in the first argument. Suppose that for each $r \in U$ with $\{x \in U : F(r, x) > \inf_{a \in U} F(a, x)\} \neq \emptyset$, there exists $s = s(r) \in U$ with $s \neq r$ such that

$$\Gamma(r, s, s) \leq \theta(F(r, w))(F(r, w) - F(s, w)) \leq \theta(g(r))(g(r) - fg(s))$$

(3.1)

for all $w \in \{x \in U : F(r, x) > \inf_{a \in U} F(a, x)\}$. Then $\inf_{r \in U} \sup_{s \in U} F(u, s) = \sup_{s \in U} \inf_{r \in U} F(r, s)$.

Proof. By Theorem 3.1, for every \(s \in U \), there exists \(r(s) \in U \) such that \(F(r(s), s) = \inf_{r \in U} F(r, s) \). Then \(\sup_{s \in U} F(r(s), s) = \sup_{s \in U} \inf_{r \in U} F(r, s) \).

By displacement of \(r(s) \) with an arbitrary \(r \in U \) and then getting \(\inf \), we obtain \(\inf_{r \in U} \sup_{s \in U} F(r, s) = \sup_{s \in U} \inf_{r \in U} F(r, s) \).

\(\square \)

Theorem 3.4 (Nonconvex equilibrium theorem). Assume that \((U, G)\) is a complete q-G-m space and \(\Gamma \) is a \(\Gamma \)-function on \(U \times U \times U \). Let \(F \) and \(\theta \) be the same as in Theorem 3.3. Let, for each \(r \in U \) with \(\{x \in U : F(r, x) < 0\} \neq \emptyset \), there exists \(s = s(r) \in U \) with \(s \neq r \) such that (3.1) holds for all \(t \in U \). Then there exists \(y \in U \) such that \(F(y, s) \geq 0 \) for all \(s \in U \).

Proof. From Theorem 2.15 for each \(t \in U \), there exists \(y(t) \in U \) such that \(\Gamma(y(t), t, r) \geq \theta(F(y(t), t))(F(y(t), t) - F(r, t)) \) for all \(r \in U \) with \(r \neq y(t) \). We show that there exists \(y \in U \) such that \(F(y, s) \geq 0 \) for all \(s \in U \). On the contrary, for each \(r \in U \) there exists \(s \in U \) such that \(F(r, s) < 0 \). Then for each \(r \in U \), \(\{x \in U : F(r, x) < 0\} \neq \emptyset \). According to the assumption, there exists \(s = s(y(t)) \), \(y \neq y(t) \) such that \(\Gamma(y(t), s, s) \leq \theta(F(y(t), t))(F(y(t), t) - F(s, t)) \), which is a contradiction. \(\square \)

Example 3.5. Let \(U = [0, 1] \) and \(G(r, s, t) = \max\{|r - s|,|r - t|,|s - t|\} \). Then \((X, G)\) is a complete q-G-m space. Suppose that \(a, b \) be positive real numbers with \(a > b \). Suppose \(H : U \times U \rightarrow \mathbb{R} \) with \(H(r, s) = \frac{s^3}{r^3} - \frac{s}{r} \). Therefore, function \(r \rightarrow H(r, s) \) is proper, lower semicontinuous and bounded below, and \(H(1, s) \geq 0 \) for every \(s \in U \). Also \(H(r, s) \geq 0 \) for every \(r \in [\frac{b}{a}, 1] \) and for every \(s \in U \). In fact, for every \(r \in [0, \frac{b}{a}] \), \(H(r, s) = ar - bs < 0 \) when \(s \in [\frac{a}{b}, 1] \). Then set \(\{x \in U : H(r, x) < 0\} \neq \emptyset \) for every \(r \in [0, \frac{b}{a}] \). Let \(s, r, s, r \in U \), \(r \geq s \), we have \(r - s = \frac{3}{2}(\frac{s}{r} - \frac{s}{r}) - \frac{3}{2}(\frac{s}{r} - \frac{s}{r}) \) for every \(x \in U \). Let \(\theta : [0, \infty) \rightarrow [0, \infty) \) with \(\theta(t) = \frac{2}{3} \) be defined. Therefore \(G(r, s, t) \leq \theta(H(r, x))(H(r, x) - H(s, x)) \) for every \(r \geq s \), and \(r, s, x \in U \). By Theorem 3.4 there exists \(y \in U \) such that \(H(y, s) \geq 0 \) for every \(s \in U \).

4. Applications

Definition 4.1. Let \((U, G)\) be a q-G-m space and \(a, b \in U \). Suppose that \(\lambda : U \rightarrow (0, \infty) \) be a function and \(\Gamma \) be a \(\Gamma \)-function on \(U \). Define \(\Gamma_\varepsilon(a, b, \lambda) = \{r \in U : \varepsilon \Gamma(a, b, r, \lambda) \leq \lambda(a) \} \Gamma(b, a, \lambda) - \Gamma(b, r, r) \}

such that \(\varepsilon \in (0, \infty) \) and \(a, b \in U \).

Lemma 4.2. Assume that \((U, G)\) is a complete q-G-m space and \(g : U \rightarrow (-\infty, \infty] \) be a proper, bounded below and Lipschitz function and \(\Gamma \) is a \(\Gamma \)-function on \(U \times U \times U \). Let \(\varepsilon > 0 \). Suppose that there exists \(x \in U \) such that \(g(x) < \infty \) and \(\Gamma(x, x, x) = 0 \). Then there exists \(t \in U \) such that

(i) \(\varepsilon \Gamma(x, t, t) \leq \theta(g(x))(g(x) - g(t)) \);

(ii) \(\Gamma(t, r, r) > \theta(g(t))(g(t) - g(r)) \) for all \(r \in U \) with \(r \neq t \).

Proof. Let \(x \in U \), \(g(x) < +\infty \) and \(\Gamma(x, x, x) = 0 \). Put \(S = \{r \in U : \varepsilon \Gamma(x, r, r) \leq \theta(g(x))(g(x) - g(r)) \} \).

Therefore \((S, G)\) is a nonempty complete q-G-m space. By Theorem 2.15, there exists \(t \in S \) such that \(\varepsilon \Gamma(x, t, r) > \theta(g(t))(g(t) - g(r)) \) for all \(r \in S \) with \(r \neq t \). For any \(r \in U \setminus S \), since \(\varepsilon \Gamma(x, t, t) + \Gamma(t, r, r) \geq \varepsilon \Gamma(x, r, r) > \theta(g(x))(g(x) - g(r)) \geq \varepsilon \Gamma(x, t, t) + \theta(g(t))(g(t) - g(r)) \), therefore \(\varepsilon \Gamma(t, r, r) > \theta(g(t))(g(t) - g(r)) \) for all \(r \in U \setminus S \). Then \(\varepsilon \Gamma(t, r, r) > \theta(g(t))(g(t) - g(r)) \) for all \(r \in U \) with \(r \neq t \). \(\square \)

Theorem 4.3 (Generalized flower petal theorem). Suppose that \(P \) be a proper complete subset of a q-G-m space \(U \) and \(a \in P \). Let \(\Gamma \) be a \(\Gamma \)-function on \(U \) with \(\Gamma(a, a, a) = 0 \). Let \(b \in P \cap \Gamma(b, P, P) = \inf_{r \in P} \Gamma(b, r, r) \geq u \) and \(\Gamma(b, a, a) = u > 0 \) and there exists a function \(\lambda \) from \(U \) into \((0, \infty)\) satisfying \(\lambda(r) = \theta(F(b, r, r)) \) for some nondecreasing function \(\theta \) from \((-\infty, \infty)\) into \((0, \infty)\). Then for each \(\varepsilon > 0 \), there exists \(t \in P \cap \Gamma_\varepsilon(a, b, \lambda) \) such that \(\Gamma_\varepsilon(t, b, \lambda) \Gamma(P \setminus t) = \emptyset \) and \((a, t, t) \leq e^{-1}\lambda(a)(s - r) \).

Proof. \((P, G)\) is a complete q-G-m space. Consider \(g : P \rightarrow (-\infty, \infty], g(r) = \Gamma(b, r, r) \). Since \(g(a) = \)
\(\Gamma(b, a, a) = s < \infty \) and \(\Gamma(b, P, P) = \inf_{r \in P} \Gamma(b, r, r) \geq u \) then \(g \) is a proper lower semicontinuous and bounded below function. By Lemma 4.2, there exists \(t \in P \) such that

(i) \(\epsilon \Gamma(a, t, t) \leq \lambda(a) |(g(a) - g(t))| \);

(ii) \(\epsilon \Gamma(t, r, r) > \lambda(t)(g(t) - g(t)) \) for all \(r \in P \) with \(r \neq t \).

Applying (i), we have \(t \in P \bigcap \Gamma(a, b, \lambda) \). Also, applying (i) again, we have \(\Gamma(a, t, t) \leq e^{-1}\lambda(a)(\Gamma(b, a, a) - \Gamma(b, t, t)) \leq e^{-1}\lambda(a)(s - r) \). By (ii), we obtain \(\epsilon(t, r, r) > \lambda(t)(\Gamma(b, t, t) - \Gamma(b, r, r)) \) for all \(r \in P \) with \(r \neq t \). Therefore \(u \notin \Gamma_{e}(t, b, \lambda) \) for all \(r \in P \setminus \{t\} \) or \(\Gamma_{e}(t, b, \lambda) \cap \{P \setminus \{t\}\} = \emptyset \). \(\Box \)

References

